
Citation: Kinari, S.A.; Funabiki, N.;

Aung, S.T.; Wai, K.H.; Mentari, M.;

Puspitaningayu, P. An Independent

Learning System for Flutter

Cross-Platform Mobile Programming

with Code Modification Problems.

Information 2024, 15, 614. https://

doi.org/10.3390/info15100614

Academic Editor: Aneta

Poniszewska-Maranda

Received: 26 July 2024

Revised: 20 September 2024

Accepted: 5 October 2024

Published: 7 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

An Independent Learning System for Flutter Cross-Platform
Mobile Programming with Code Modification Problems
Safira Adine Kinari 1, Nobuo Funabiki 1,* , Soe Thandar Aung 1 , Khaing Hsu Wai 1, Mustika Mentari 1

and Pradini Puspitaningayu 2

1 Graduate School of Environmental, Life, Natural Science and Technology, Okayama University,
Okayama 700-8530, Japan; safiraak@s.okayama-u.ac.jp (S.A.K.); soethandar@s.okayama-u.ac.jp (S.T.A.);
pjsu9uam@s.okayama-u.ac.jp (K.H.W.); pqt85hm5@s.okayama-u.ac.jp (M.M.)

2 Department of Electrical Engineering, Universitas Negeri Surabaya, Surabaya 60231, Indonesia;
pradinip@unesa.ac.id

* Correspondence: funabiki@okayama-u.ac.jp

Abstract: Nowadays, with the common use of smartphones in daily lives, mobile applications have
become popular around the world, which will lead to a rise in Flutter framework. Developed by
Google, Flutter with Dart programming provides a cross-platform development environment to create
visually appealing and responsive user interfaces across mobile, web, and desktop platforms using a
single codebase. However, due to time and staff limitations, the Flutter/Dart programming course is
not included in curricula, even in IT departments in universities. Therefore, independent learning en-
vironments for students are essential to meet this growing popularity. Previously, we have developed
programming learning assistant system (PLAS) as a web-browser-based self-learning platform for novice
students. PLAS offers various types of exercise problems designed to cultivate programming skills
step-by-step through a lot of code reading and code writing practices. Among them, one particular type
is the code modification problem (CMP), which asks to modify the given source code to satisfy the new
specifications. CMP is expected to be solved by novices with little effort if they have knowledge of
other programming languages. Thus, PLAS with CMP will be an excellent platform for independent
learning. In this paper, we present PLAS with CMP for the independent learning of Flutter/Dart
programming. To improve the readability of the source code by students, we provided rich comments
on grammar or behaviors. Besides, the code can be downloaded so that students can check and run it
on an IDE. For evaluations, we generated 38 CMP instances for basic and multimedia/storage topics
in Flutter/Dart programming and assigned them to 21 master students at Okayama University, Japan,
who have never studied it. The results confirm the validity of the proposal.

Keywords: Flutter; Dart; cross-platform; programming; code modification problem; PLAS; independent
learning

1. Introduction

The use of mobile devices has become an integral part of daily life for a lot of people.
In 2023, over 4.2 billion people worldwide used smartphones. Projections from Statista
suggest that this number will continue rising so that over 6.3 billion people will use
smartphones in the next five years [1].

As smartphone adoption grows, so does the demand for innovative and high-quality
mobile applications. Based on data.ai, users worldwide downloaded over 255 billion mobile
applications in 2023, demonstrating a strong interest in installing mobile applications that
offer added value to smartphones [2]. This surge in application downloads has reflected the
significant role of mobile applications that are relied upon for various purposes, including
entertainment, communication, productivity, and shopping.

Traditionally, developers build applications using Java and Kotlin for Android, and Swift
and Objective-C for iOS. These languages stand to be popular due to the fact that a lot of

Information 2024, 15, 614. https://doi.org/10.3390/info15100614 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info15100614
https://doi.org/10.3390/info15100614
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0003-3234-3473
https://orcid.org/0009-0009-4598-0878
https://orcid.org/0000-0002-2053-2907
https://doi.org/10.3390/info15100614
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info15100614?type=check_update&version=1

Information 2024, 15, 614 2 of 20

developers have been acquainted with these platforms [3]. Native development allows
developers to fully utilize the exclusive capabilities and features of each operating system.
However, one major drawback is developers need to build and manage different source
codes depending on platforms even for the same applications.

To address this challenge, cross-platform application development [4] has emerged as a way
to create applications for developers to write code once and deploy it on multiple platforms.
This approach saves time, effort, and costs while reaching wider audiences. Cross-platform
application development has gained great popularity in recent years.

Among the most prominent frameworks for cross-platform application development is
Flutter, which has been developed by Google. Flutter is an open-source UI development
toolkit that enables developers to build natively compiled applications for mobile, including
Android and iOS, web, and desktop platforms from a single codebase. It provides a rich set
of prebuilt widgets and tools that help developers create attractive, responsive, and flexible
user interfaces [5].

The following advantages can be observed in learning and using the cross-platform
application development with Flutter:

1. A single source code using one language, Dart, can run on various platforms.
2. An attractive, responsive, and flexible user interface can be easily made using prebuilt

widgets and tools.
3. Real-time code changes become possible by the hot-reload feature.
4. Comprehensive documentation and a supportive community make Flutter particularly

suitable for self-learners, enabling individuals to independently tackle and resolve
code modification problems.

As a result, Flutter has become favored by many well-known companies due to its
numerous advantages, and Flutter has been adopted at well-known companies such as
Cryptograph, Postmuse, Hamilton, Apptree, and Google [6].

However, this rapid growth in the popularity of Flutter has not been accompanied by
a proportional increase in classroom instruction and lectures in universities. Many universi-
ties still lack sufficient resources in terms of teachers and/or time to deliver comprehensive
lectures on Flutter development. As a result, there is a growing need for independent learn-
ing environments for new developers and students to learn Flutter with Dart programming
on their own.

In response to this gap, we previously developed a web-based Programming Learning
Assistant System (PLAS) for self-study of programming languages through practicing code
reading and code writing. Currently, PLAS covers familiar programming languages such
as C, C++, Java, JavaScript, Python, Scratch, and Verilog. PLAS provides various types of
programming exercises to enhance the programming learning experience.

Building on this foundation, we have also studied the use of Grammar Understanding
Problem (GUP) for learning cross-platform application development with Flutter in PLAS. Each
question in GUP relates to a fundamental grammar concept of the Flutter [7]. Additionally,
the Learning Environment for Initiating Flutter App Development Using Docker has been im-
plemented for Code Writing Problem (CWP). This environment makes it easier for novice
students to set up the Flutter environment on their computers and independently modify
the source code in the projects by following instructions [8].

In this paper, we present a system for independent learning using Code Modification
Problem (CMP) for Flutter/Dart programming in cross-platform application development. A CMP
instance asks to modify the given source code to generate the user interface as shown in the
given screenshot. The correctness of any student answer is verified through string matching
with the correct answer. A screenshot will help a student to understand the source code and
answer the CMP instance. Novice students can learn the basics of Flutter/Dart programming
through analyzing the screenshot of the user interface.

Information 2024, 15, 614 3 of 20

In this study, we explore the following Research Questions (RQs):

• Can a student who has studied a major programming language such as C or Java but
not Flutter/Dart programming modify its source codes without taking formal classes?

• Can such a student develop a basic knowledge of Flutter/Dart programming by solving
CMP instances?

To explore the answers to these RQs, we generated CMP instances covering various
topics and widgets in Flutter/Dart programming, and assigned them to students with
no Flutter/Dart programming experience. In the CMP instances, it is requested to alter
only the parameters, such as color, alignment, and other widget properties. Solving
CMP instances helps students become familiar with Dart coding patterns and build a
fundamental understanding of the Flutter framework.

For evaluations of the proposal, we generated 20 CMP instances for basic topics and
18 CMP instances for advanced topics of Flutter/Dart programming. We assigned them to
21 master’s students at Okayama University, Japan, who have never studied it. Their
solution results indicate that the students effectively fulfilled the assignments and delivered
sufficient outcomes.

This paper’s structure is outlined as follows: Section 2 contains a review of relevant
research on the approach. Section 3 provides an overview of Flutter and Dart Language.
Section 4 addresses the code modification problem (CMP) for Flutter. Section 5 presents
experimental results. Section 6 concludes this paper with future works.

2. Literature Review

In this section, we explore a comprehensive review of the literature related to the topic
of our paper. We examine several studies that have focused on the development of learning
platforms for mobile applications.

In [9], Al-Hakim et al. presented an Android-based application for teaching algorithms
and data structures. This application is implemented using Java and Android Studio for An-
droid 6.0 and above, containing 13 learning modules covering topics, such as introductions
to algorithms and programming, data structures, and linked lists. The application is freely
available for learning purposes. It uses UML diagrams that are similar to activity diagrams
and use case diagrams for system processing and user interactions. It adopts black-box testing
to check the answer. The authors conclude that this application can replace textbooks,
enabling both independent and lecturer-assisted learning using mobile technology.

In [10], Septiana et al. presented a learning application on Android Studio for build-
ing Android applications. The authors used various components within Android Studio,
including manifest files, Java source code, and resource files to build the core functionality
of the mobile application. Blender was used for 3D development and integrations. It is an
open-source 3D computer graphics software tool that allows creating 3D models, animations,
and visualizations. The integrated 3D contents from Blender enhanced biology learning
experiences on Android devices with interactive features and multimedia presentations.

In [11], Tung presented a flashcard mobile application called Memoa using the Flutter
framework, Dart, and Google Firebase services. This project aims to create gamified learning
experiences for users struggling to retain knowledge from online courses. It covers flash-
cards, spaced repetitions, and gamification principles. The project follows an Agile Kanban
methodology for developments. Key features include user authentication, cloud storage,
the Leitner algorithm for spaced repetitions, and a virtual pet for gamification.

In [12], Yassine et al. presented a mobile application that teaches programming
fundamentals by incorporating the multi-agent system, domain ontology, checkpoint system,
and Xamarin.Forms for cross-platform developments. The goal is to appeal to wide au-
diences, reduce development and maintenance efforts, and offer versatile and engaging
learning experiences.

Information 2024, 15, 614 4 of 20

In [13], Hu et al. discussed improving the teaching of Mobile Application Development
(MAD) for students with diverse programming backgrounds using online and blended
learning approaches. The study addresses the challenges posed by traditional lecture-based
methods and text-based lab instructions, which did not adequately cater to students with
differing programming experiences.

This literature review provides insights into advancements in the development of
learning platforms for mobile application programming. It explores various methodologies,
tools, and technologies that have been implemented to enhance the learning of mobile
application programming.

To better understand and compare the features of these platforms, Table 1 summarizes
their key attributes, advantages, and limitations.

Table 1. Comparison Features of Platforms.

Study Platform/Tool Key Features Advantages Limitations

Al-Hakim et al.
(2021) [9] Android-based app

13 learning modules,
UML diagrams,

black-box testing

Freely available,
replaces textbooks,
supports independent
learning

Focused on Android
only, lacks cross-
platform compatibility

Septiana et al.
(2019) [10]

Android Studio +
Blender

3D development,
interactive biology

lessons

Enhanced user
engagement through
3D

Limited to specific
content (biology), lacks
gamification features

Tung (2021) [11] Flutter-based flashcard
app

Gamification, spaced
repetition, cloud

storage

Cross-platform,
gamified learning, uses
modern frameworks

Primarily a flashcard
system, limited scope
for broader learning

Yassine et al. (2018) [12] Xamarin.Forms-based
app

Multi-agent system,
domain ontology,

checkpoint system

Cross-platform,
versatile learning
experiences

Complex to implement,
challenging
for beginners

Hu et al. (2021) [13] Online/blended
learning

Combines online and
lecture-based learning

Flexible, addresses
diverse learning needs,
suitable for novices

Relies on text-based
instructions, may not
engage
advanced students

CMP Flutter-PLAS Flutter-based app

Code modification
tasks, problem-solving

focus, Flutter/Dart
widget usage examples

Engages students in
practical coding
challenges, familiarizes
them with Flutter/Dart
syntax, enhances
problem-solving skills

Requires some basic
understanding of
coding, but gradually
builds expertise
through practice

3. Overview of Flutter and Dart

In this section, we overview the Flutter framework and Dart language. In this project,
we are using Flutter version 3.22.2 and Dart version 3.4.3.

3.1. Flutter Framework

Flutter has significantly contributed to the popularity of Dart by enabling the creation of
high-performance mobile application for both iOS and Android using a single codebase. Dart
is the primary programming language for Flutter, and it offers strong support for building
applications. The primary benefit of Flutter lies in its capability to create applications that
exhibit close-to-native performance and allow the utilization of a powerful rendering engine
and an adaptable architecture based on widgets [5].

Flutter uses widgets as fundamental building blocks for user interfaces. Every visual
and functional element in Flutter is a widget which is immutable. Widgets can be divided
into StatelessWidget for static elements and StatefulWidget for dynamic elements, according
to user interactions. The widget-based architecture of Flutter simplifies the development and
management of complex and flexible user interfaces [5].

Information 2024, 15, 614 5 of 20

Figure 1 shows a Flutter application that uses three main widget components: Mate-
rialApp, Scaffold, and ElevatedButton. The MaterialApp provides the framework of the app
with a material design, the Scaffold provides the basic structure of the page including the
app bar and body, while the ElevatedButton is a button (with a background) that depresses
when clicked, and it contains the text “Hello, Flutter!” as its child widget. This combination
of widgets creates a simple user interface.

Figure 1. Flutter example application.

3.2. Dart Language

Dart is a programming language that is utilized for natively compiling mobile applica-
tions through Flutter. Both of them were developed by Google [14]. Dart is an object-oriented,
class-based language in which the syntax is remarkably similar to JavaScript. This makes the
transition to Dart using Flutter easy if one is familiar with JavaScript.

Google has developed Dart to overcome the limitations of JavaScript and achieve supe-
rior performance in web and mobile application development. One of the key advantages
of Dart is its ability to be compiled into JavaScript, enabling developers to write code in
Dart and execute them on web platforms that do not natively support Dart [14]. Moreover,
Dart can be compiled to run on a virtual machine for server-side applications.

In addition, the public package system of Dart enables easy dependency management
and a rich library ecosystem, making it simple for developers to integrate various functions
and services into their applications [14].

The Dart code in Figure 2 generates a color randomly for the window, using the Random
class in the dart:math library to generate a random number. The getRandomColor() method
randomly selects a color from the colors list using the random number. The colors list consists
of Color objects from the Flutter library, where each object defines a different color. The ge-
tRandomColor() method generates a random index by calling the random.nextInt(colors.length)
method, where nextInt(int max) returns a random integer ranging from 0 to max−1. This

Information 2024, 15, 614 6 of 20

index is used to return the corresponding color in the list that is applied as the back-
ground color of the Container widget through the color property, where Container(color:
getRandomColor()) sets the Container’s background color based on the selected color.

Figure 2. Dart Example Application.

4. Code Modification Problem for Flutter/Dart Programming

In this section, we present a code modification problem (CMP) for self-study of Flutter/Dart
programming in PLAS.

4.1. Overview of PLAS

Previously, we developed a web-based Programming Learning Assistant System (PLAS)
for the self-study of programming languages through practicing code reading and code
writing. Currently, PLAS covers familiar programming languages such as C, C++, Java,
JavaScript, Python, Scratch, and Verilog. PLAS provides various types of programming
exercises to enhance the effectiveness of learning programming.

Figure 3 shows the learning path of a programming language in PLAS.

Figure 3. Flow of learning path in PLAS.

Information 2024, 15, 614 7 of 20

1. Grammar—Concept Understanding Problem (GUP) asks to answer the keywords or
common libraries in the given source code that represent the concepts in the questions,
which emphasizes the grammar study.

2. Value Trace Problem (VTP) asks to answer the values of important variables and output
messages in the source code, which emphasizes the code reading study.

3. Code Modification Problem (CMP) asks to modify the source code to satisfy the new
specifications, which emphasizes code debugging study.

4. Element Fill-in-blank Problem (EFP) asks to fill in the blank elements in the source code
with the original words, which emphasizes the partial code writing study.

5. Code Writing Problem (CWP) asks to write the source code that can pass the test code
from scratch, which emphasizes the code writing study.

Along this learning path in PLAS, first, students will grasp the various keywords of the
programming language used in the source code GUP. Second, they will understand the
behaviors of the source code with VTP. Third, they will study how to debug and modify
the source code with CMP. Fourth, they will study how to complete the source code with
EFP. Finally, they will study how to write the source code from scratch with CWP.

4.2. Overview CMP

A CMP instance consists of a Dart source code and a set of screenshots for mobile
application pages. Among them, the initial screenshot displays the application page created
by the Dart source code. The second screenshot depicts the page created by the source code
modified by a student. These pages may have differences in parameters, widgets, functions,
methods, properties, or variables. Challenges for the student are to carefully analyze source
code and determine necessary modifications by comparing the original screenshots and the
modified screenshots.

The elements targeted for modifications in the CMP include parameters such as
color, size, positioning, and alignment, because they directly impact the visual layout
of the mobile application. Ensuring these elements have only one correct modifications,
which guarantees that the answer remains unique. Moreover, modifying them is highly
beneficial in learning Flutter/Dart programming as it deepens students’ understanding
of widget properties and layout management. This hands-on approach reinforces key
Flutter/Dart programming concepts and helps students grasp the principles of UI designs
and widget behaviors.

The correctness of any answer from a student is checked by matching string with the
registered correct answer. The system employs two types of matching:

• Exact matching with spaces/tabs: This compares the hashed value of the student’s
answer, including spaces and tabs, with the correct answer’s hash.

• Matching without spaces/tabs: This compares the hashed value of the answer after
removing any extra space or tab, ensuring that minor formatting issues do not affect
the correctness.

In the CMP, we follow the requirement to create any problem code line that has only
one correct modification. When a student modifies the problem source code, the correctness
of his/her answer is checked through string matching by the JavaScript program at the web
interface, while avoiding missing any correct answer nor allowing any incorrect one.

4.3. Modification Code Selections for CMP Instance

A source code in cross-platform mobile programming is composed of widgets and meth-
ods that define the structure and behaviors of the application. Thus, the following elements
in a source code can be selected for modifications in a CMP instance:

• Variables and values;
• Conditional statements;
• Function and classes (with parameters, properties, methods).

Information 2024, 15, 614 8 of 20

It is noted that Flutter forms an interface by taking the concept of a widget tree. This
means that each widget represents a class that has the key properties aiding the develop-
ment of the interface. Therefore, the modifications in a CMP instance may include changes
in shape, color, alignment, text content, shadow effects, and borders of widgets. To learn
the effective use of widgets, students will frequently make modifications to data types,
variables, conditional statements, functions, and classes. This hands-on approach helps
students understand the interactive aspects of Flutter and Dart programming, thus enabling
them to create cross-platform mobile applications.

4.4. CMP Generation Procedure

A CMP instance can be generated through the following procedure:

1. Prepare a source code containing the Flutter/Dart topics to be studied in this instance,
such as widgets, classes, and methods.

2. Execute this source code and take the screenshots of the generated application pages.
3. Select the parts to be modified in this (original) source code as the questions to be

answered by students.
4. Make the the modified source code by changing the selected parts. It is noted that cur-

rently, these steps are carried out manually, which will be automated in future studies.
5. Execute the modified source code and take the screenshots of the application pages.
6. Save the original source code and the modified source code in one text file. This text

file is used as the input file to the interface generation program [15].
7. Execute the interface generation program with the input text file to generate the CMP

instance files including HTML, CSS, and JavaScript for the answer interface on a
web browser.

8. Add the screenshots in the generated files, since they are not included automatically,
which will also be automated in future studies.

4.5. Example of Generating CMP Instance

Here, we discuss an example of a new CMP instance generation.

4.5.1. Original Source Code

Basically, in this paper, we selected a source code that covers basic topics or multimedia
and storage topics to generate a new CMP instance. For this example, the source code in
Listing 1 is selected as the original source code that covers the topic of inserting an image
into an application. It is used in the CMP instance with ID = 3 for basic topics.

Listing 1 CMP original source code.
1 import "package:flutter/material.dart" ;
2
3 void main () {
4 runApp (const Insert ingImage ()) ;
5 }
6
7 c l a s s Insert ingImage extends Sta te lessWidget {
8 const Insert ingImage ({ Key? key }) : super (key : key) ;
9

10 @override
11 Widget bui ld (BuildContext contex t) {
12 return MaterialApp (
13 home : S c a f f o l d (
14 appBar : AppBar (
15 //"AppBar" typically contains the title of the application.
16 backgroundColor : Colors . blueAccent ,
17 t i t l e : const Text (
18 "Problem 3 : Insert Image" ,
19 s t y l e : T e x t S t y l e (c o l o r : Colors . white , fontWeight : FontWeight

. normal) ,

Information 2024, 15, 614 9 of 20

20) , //It gives the title message "Problem 3 : Insert Image" and
its text style.

21 c e n t e r T i t l e : fa lse , //It aligns the title to the left side of
the screen.

22) ,
23 body : Column (
24 ch i ldren : [
25 Image . a s s e t (
26 //It displays an image.
27 "assets/images/tamagotchi.png" ,
28 alignment : Alignment . center ,
29 s c a l e : 1 , //The image size is unchanged from the original

size.
30) ,
31 const Padding (
32 padding : EdgeInsets . symmetric (v e r t i c a l : 10 , h o r i z o n t a l :

20) ,
33 c h i l d : Text (
34 "This is Tamagotchi. Tamagotchi is a digital pet that

was popular in the 1990s and is still enjoyed by
many today." ,

35 te x t Al ig n : TextAlign . center , //It aligns the text to the
center.

36) ,
37)
38] ,
39)
40) ,
41) ;
42 }
43 }

4.5.2. Original Result

The results of the original source code for CMP basic topic instance ID = 3 in Figure 4
show the application that was created using source code in Listing 1. This application is
offered as a reference for understanding the source code.

Figure 4. CMP original result.

4.5.3. Modified Source Code

The original source code can be converted to the modified source code by changing a
few parameters and functions. It is important for students to understand the connections
among widget classes, parameters, and properties when creating the application. Listing 2

Information 2024, 15, 614 10 of 20

displays the modified source code as the correct answer. In this instance, it is necessary
to change the value of the scale parameter for the image and the value of the alignment
parameter for the text content and to adjust the appbar content by changing the title and
centering it.

Listing 2 CMP modified source code.
1 import "package:flutter/material.dart" ;
2
3 void main () {
4 runApp (const Insert ingImage ()) ;
5 }
6
7 c l a s s Insert ingImage extends Sta te lessWidget {
8 const Insert ingImage ({ Key? key }) : super (key : key) ;
9

10 @override
11 Widget bui ld (BuildContext contex t) {
12 return MaterialApp (
13 home : S c a f f o l d (
14 appBar : AppBar (
15 //"AppBar" typically contains the title of the application.
16 backgroundColor : Colors . blueAccent ,
17 t i t l e : const Text (
18 "Bigger Image" ,
19 s t y l e : T e x t S t y l e (c o l o r : Colors . white , fontWeight : FontWeight

. bold) ,
20) , //It gives the title message "More Big Image" and its text

style.
21 c e n t e r T i t l e : true , //It aligns the title to the center.
22) ,
23 body : Column (
24 ch i ldren : [
25 Image . a s s e t (
26 //It displays an image.
27 "assets/images/tamagotchi.png" ,
28 alignment : Alignment . center ,
29 s c a l e : 0 . 7 , //It scales the image to 70% of the original

size.
30) ,
31 const Padding (
32 padding : EdgeInsets . symmetric (v e r t i c a l : 10 , h o r i z o n t a l :

20) ,
33 c h i l d : Text (
34 "This is Tamagotchi. Tamagotchi is a digital pet that

was popular in the 1990s and is still enjoyed by
many today." ,

35 te x t Al ig n : TextAlign . j u s t i f y , //It justifies the text at
the left end.

36) ,
37)
38] ,
39)
40) ,
41) ;
42 }
43 }

4.5.4. Modified Result

Figure 5 shows the results of the application page from the source code that stu-
dents modified.

Information 2024, 15, 614 11 of 20

Figure 5. CMP modified result.

4.6. Answer Interface for CMP

The answer interface for resolving this CMP instance in Figure 6 highlights the input
form in red if the answer is incorrect. If it is correct, it keeps the white background.
Students can continue submitting answers until they become correct. The answer interface
automatically records the number of submissions and the answers for each attempt.

Figure 6. CMP answer interface.

Information 2024, 15, 614 12 of 20

4.7. Student Workflow for Solution Submission

Figure 7 outlines the workflow of modifying and submitting a solution to a CMP
instance. First, a student reads the instruction and sees the initial web page by the given
source code. Second, he/she directly modifies the source code in the interface. Third,
he/she can download the current source code into a text file by clicking the “File Save”
button, and run it on a web browser to see the output web page if necessary. Fourth, he/she
submits the source code by clicking the “Answer” button.

Figure 7. Student workflow for solution submission.

Since direct testing of the modified source code within the system is not available, we
provide a feature that allows a student to download the modified code into a text file and
run it on a web browser. It enables him/her to review the current answer and ensure its
alignment with the required page before its submission. Additionally, we offer the function
for downloading all the necessary packages and dependencies in a zip file, allowing the
student to run any modified code locally in an IDE.

5. Evaluation

In this section, we evaluate the code modification problem for Flutter/Dart programming
in PLAS.

5.1. CMP Instances

For this evaluation, we generated 20 CMP instances for basic topics in Table 2 and
18 CMP instances for multimedia and storage topics in Table 3 in Flutter/Dart cross-platform
mobile application programming. These tables show the topic or widget, the number of
lines in the source code, and the number of elements to be modified. The two sets of CMP
instances were designed with the consideration of ensuring that novice students can solve
them on a self-study basis.

Information 2024, 15, 614 13 of 20

Table 2. CMP instances for basic topics.

ID (CMP Instances) Topic/Widget # of LINES # of Modified Elements

1 Text and Align 60 10
2 Container and AppBar 58 11
3 Insert Image 41 5
4 Column and Row 70 13

5 Device Height and
Width 42 5

6 Textfield and Button 61 6
7 State Objects Change 53 5
8 TextField Type and Icon 62 15
9 Card Tile List 49 10

10 Using List View 45 7
11 Using Grid View 52 7
12 Scrolling View 60 8
13 Dropdown Button 72 5

14 Radio Button with
Enum 51 6

15 Using Check Box Uses 65 7
16 Pop Up Dialog 69 11
17 Pop Up Snack Bar 66 6

18 Navigation to Other
Page 72 12

19 Bottom Navigation Bar 69 8
20 Progress Bar 62 11

Table 3. CMP instances for multimedia and storage topics.

ID (CMP Instances) Topic/Widget # of Lines # of Modified Elements

1 Passing Data to Next
Page 98 12

2 Package Install 56 11
3 Add Video 79 8
4 Video Player Controls 99 15
5 Add Audio 66 9
6 Audio Player Controls 88 11

7 Future, Async and
Await 97 12

8 File Image from Gallery 80 13
9 File picker 91 14

10 Take Image with
Controls 112 16

11 Take Image and Save 115 18
12 Animated Container 70 10
13 Tween Animation 82 14
14 Hero Animation 88 14
15 Shared Preferences 75 13
16 Local Storage Create

and Read
98 11

17 Local Storage Update 113 11
18 Local Storage Remove 104 9

5.2. Assignment to Students

Then, we assigned these instances to 21 first-year master students at Okayama Uni-
versity in Japan who have not formally studied Flutter/Dart programming. Before the as-
signments, we did not conduct any lectures on them. Instead, we provided references
and websites that can be helpful in solving the CMP instances. The students spent two

Information 2024, 15, 614 14 of 20

class hours solving the 38 CMP instances, where one class hour has 100 min. They could
continue solving them for one more week at home if necessary.

5.3. Solution Results for Basic Topics

First, we discuss the solution results for basic topics.

5.3.1. Results of Individual Students

In the beginning, we see the solution results for the individual students. Table 4 shows
the number of answer submission times and the correct answer rate (%) for each of the
21 students among the 20 CMP instances for basic topics.

Table 4. Solution results of individual students for basic topics.

ID (Students) # of Sub. Times Ave. Correct Rate

1 270 99.83%
2 302 95.67%
3 563 97.99%
4 93 98.17%
5 204 97.98%
6 230 98.67%
7 104 25.00%
8 168 99.92%
9 288 97.12%
10 99 60.32%
11 50 98.68%
12 213 86.18%
13 29 24.86%
14 116 100.00%
15 208 100.00%
16 168 99.92%
17 165 99.74%
18 153 34.20%
19 228 100.00%
20 133 100.00%
21 140 100.00%

Distribution of Correct Answer Rate

Table 5 shows the distribution of the correct answer rates. Five students achieved the
perfect score (100%), and 11 students did the score above 90%. On the other hand, only five
students did the score bellow 90%. The results indicate that the generated CMP instances
can be solved by novice students on a self-study basis. Thus, the proposed PLAS with CMP
for basic topics is proper for independent learning of the Flutter/Dart cross-platform mobile
programming by novice students.

Table 5. Correct answer rate distribution for basic topics.

Correct Rate Answer # of Students

≤65% 4
66–90% 1
91–99% 11

100% 5

Distribution of Answer Submission Times

Table 6 shows the number of answer submission times by the students to finalize their
answer. The average number of submission times to solve the 20 CMP instances for basics
topics is 186.85. Generally, the students could solve one instance by submitting answers

Information 2024, 15, 614 15 of 20

9.34 times on average, which suggests that the students carefully reviewed their answers
before submissions.

Table 6. Submission times distribution for basic topics.

Sub. Times Range # of Students

25–50 2
51–100 2
101–150 4
151–250 9
≥251 4

5.3.2. Results of Individual Instances

Then, we discuss the solution results for the individual instances. Table 7 shows the
average correct answer rate and the average number of answer submission times among
the 21 students for each of the 20 CMP instances. This table suggest that the difficulty
varied across the instances, where the lowest rate is 96.90% for ID = 11 and the highest rate
is 99.67% for ID = 1. Similarly, the number of answer submission times required varied,
where the lowest one is 3.72 for ID = 10 and the highest one is 18.74 for ID = 7.

Table 7. Solution results of individual instances for basic topics.

ID (CMP Instances) # of Students Who
Answered Ave. Rate (%) Ave. # Sub.

1 21 99.67% 13
2 21 99.50% 8.81
3 21 99.07% 6.81
4 21 98.57% 12.71
5 21 99.32% 11.05
6 19 99.14% 14.21
7 19 97.42% 18.74
8 18 98.21% 15.39
9 18 98.53% 5.44
10 18 99.63% 3.72
11 18 96.90% 6
12 18 97.87% 8.94
13 18 98.15% 9.56
14 17 97.92% 7.76
15 17 99.64% 5.29
16 17 99.57% 12.41
17 16 98.48% 14.63
18 17 98.77% 6.18
19 16 97.74% 14.13
20 17 97.34% 18.65

5.4. Solution Results for Multimedia and Storage Topics

Next, we discuss the solution results of 17 students for 18 CMP instances for multimedia
and storage topics. Unfortunately, four students did not solve them.

5.4.1. Results of Individual Students

In the beginning, we see solution results for the individual students. Table 8 shows the
number of answer submission times and correct answer rate (%) for each of the 17 students
among the 18 CMP instances for multimedia and storage topics.

Information 2024, 15, 614 16 of 20

Table 8. Solution results of individual students for multimedia and storage topics.

ID (Students) # Sub. Times Ave. # Rate (%)

1 263 99.52%
2 189 51.19%
3 44 98.07%
4 247 98.91%
5 175 98.21%
6 410 32.87%
7 429 99.66%
8 95 55.92%
9 253 94.86%
10 31 27.38%
11 47 99.95%
12 477 99.31%
13 136 49.31%
14 298 98.20%
15 152 32.85%
16 264 100.00%
17 257 99.56%

5.4.2. Distribution of Correct Answer Rate

Table 9 shows the distribution of the correct answer rates. One student achieved the
perfect score (100%), and 10 students received a score above 90%. On the other hand, six
students did not reach a score of 90%. The results indicate that the generated CMP instances
can be solved by most novice students on self-study basis. Thus, the PLAS with CMP for
multimedia and storage topics is also proper.

Table 9. Correct answer rate distribution for multimedia and storage topics.

Correct Rate Answer # of Students

≤65% 6
66–90% 0
91–99% 10

100% 1

5.4.3. Distribution of Answer Submissions Times

Table 10 shows the number of answer submission times by the students to finalize
their answers. The average number of submission times to solve the 18 CMP instances
for multimedia and storage topics is 221.59. The students solved one instance by submitting
answers 12.31 times on average.

Table 10. Submission times distribution for multimedia and storage topics.

Sub. Times Range # of Students

25–50 3
51–100 1
101–150 1
151–250 4
≥251 8

5.4.4. Results of Individual Instances

Then, we discuss the solution results for individual instances. Table 11 shows the
average correct answer rate and the average number of answer submission times among
the 17 students for each of the 18 CMP instances. It is noted that some students did not
have enough time to complete the CMP instances for multimedia and storage topics. This

Information 2024, 15, 614 17 of 20

table suggests that the difficulty is varied across the instances, where the lowest rate is
96.73% for ID = 6 and the highest is 99.39% for ID = 18. Similarly, the number of answer
submission times is varied, where the lowest one is 5.18 for ID = 18 and the highest one is
38.94 for ID = 1.

Table 11. Solution results of individual instances for multimedia and storage topics.

ID (CMP Instances) # of Students Who
Answered Ave. Rate (%) Ave. # Sub.

1 17 97.78% 38.94
2 17 98.11% 17.06
3 17 98.66% 18.88
4 17 98.16% 14.76
5 17 98.66% 14.18
6 16 96.73% 25.13
7 14 97.57% 10.21
8 14 97.14% 16.21
9 14 97.25% 9.86
10 13 97.73% 11.15
11 12 97.30% 13.58
12 11 99.22% 9.91
13 11 98.43% 17.18
14 11 98.86% 10
15 11 98.30% 12.55
16 11 99.26% 8.18
17 11 99.03% 8.27
18 11 99.39% 5.18

5.5. Discussions

Understanding the challenges faced by novice students is crucial for improving educa-
tional approaches in mobile programming. Several studies have highlighted the significant
challenges novice students face when working on mobile programming tasks. These diffi-
culties often arise from the need to integrate platform-specific knowledge with foundational
programming skills, along with the high cognitive demands of mobile application develop-
ment [16,17]. This is consistent with our observations in the proposed learning system.

Building on these insights, we analyzed the frequent mistakes of students from their
solution results.

5.5.1. Mistakes in Basic Topics

In the 20 CMP instances for basic topics, ID = 3, 5, 6, and 11 contain classes that require
properties to be applied. Properties are variables defined in the class. Students struggled
with properties such as aligning, font weight, and font style.

ID = 7 requires the addition of the .toString() method, which is used to convert any
data type into String. However, students often struggled to understand how to use this
method. To help students understand how to use it, a debugging exercise can be useful by
showing the output of the method, which will be in future works.

ID = 11 contains an element that requests the use of List in the program. Although List
functions similarly to Array in other programming languages, students are unsure how
to use it in Flutter/Dart. To improve their understanding, it can be useful to provide
the problems for understanding collection data types such as lists, maps, sets, and enums,
combined with data structures on Dart with their use in Flutter.

5.5.2. Mistakes in Multimedia and Storage Topics

Next, we analyzed the frequent mistakes of students from their solution results in
multimedia and storage topics.

Information 2024, 15, 614 18 of 20

In ID = 1, 7, 9, 11, 13, and 15, certain elements can be modified based on the given
instructions or by referring to the provided screenshots. This often involves changing
the color of the elements, despite providing instructions and being able to see it in the
screenshots. Students are required to read and comprehend these modifications. Thus,
the instruction can be improved for better understanding.

In ID = 3, 5, and 6, there is an element that requires the use of ternary conditional
operators. Students did not understand how to utilize this operator.

In ID = 16, 17, and 18, there is an element that requires the use of the provided Maps.
The Maps type in Flutter is similar to the dictionary type in other programming languages.
Students often struggle with how to utilize them in Flutter. To help students understand
them, additional problems on collection data types combined with data structure and ternary
conditional operators in Dart should be provided with guidance, which will be carried out in
future works.

5.5.3. Comparing of Learning Platforms

Compared with other platforms such as the mobile-based application developed by
Al-Hakim et al. [9], cross-platform solution presented by Yassine et al. [12], and the blended
learning approach discussed by Hu et al. [13], our approach focuses on enhancing problem-
solving skills through code modification problems. While these platforms provide struc-
tured learning experiences or integrate various learning methods. Our system offers a
distinct method by inviting students to modify code, which helps students practice their ob-
servation and problem-solving abilities in a controlled environment. This method supports
students in developing their coding skills by engaging them in practical coding challenges
where they need to understand and adjust code to meet specific interface requirements.

Our findings align with previous research indicating that students benefit from en-
gaging in problem-solving activities [10,11]. By focusing on coding modification tasks that
require students to analyze and adapt code based on interface observations, our system
supports the idea that engaging students in practical, hands-on activities can improve
their comprehension and retention of programming concepts. This approach aligns with
the view that active involvement in solving coding problems enhances learning outcomes
compared with more passive methods.

5.6. Feedback

After solving the CMP instances, the students gave the following opinions as feedback:

• The screenshots are unclear, and certain text and word styles are difficult to see.
• The instructions are challenging to read.
• Some problems are quite tricky.
• The transition from basic topics to multimedia and storage topics makes a significant dif-

ference.
• The hint button is useful if available.

To support independent learning by the proposal, we will address these problems in
our future works.

5.7. Limitations

While this study provides valuable insights, several limitations should be considered.
First, the sample size of 21 novice students from a single university may limit the gener-
alizability of the findings. This participant pool may also introduce the subject selection
bias, since students from different backgrounds or institutions may produce varied re-
sults. Although 38 CMP instances were developed to ensure the thorough coverage of
fundamental concepts of Flutter/Dart programming, some advanced topics still need to be
implemented. Besides, the current system allows the modifications of the parameters such
as color, size, position, and alignment to avoid the issues related to string matching at the
answer verification. As the next step, this limitation should be alleviated to allow modifica-

Information 2024, 15, 614 19 of 20

tions of functions or classes. Further integration across various educational contexts will be
necessary in future works or studies.

5.8. Implications

This study has several implications for both researchers and practitioners in education
technology and mobile application programming learning. For researchers, the findings
will provide a foundation for further investigations of adaptive learning systems that
automatically adjust the problem difficulty based on student performances. For practi-
tioners, and particularly for educators, this system will serve as a practical tool to support
independent learning and supplement classroom teaching of Flutter/Dart programming. It
offers an interactive method to enhance student engagement. Integrating this system into
both formal and informal learning environments could offer students a more flexible and
self-paced way to develop their programming skills.

6. Conclusions

This paper presented the programming learning assistant system (PLAS) with the code
modification problem (CMP) for Flutter/Dart cross-platform mobile application programming.
Since the answer interface is implemented on a web browser, students can easily access
this independent learning environment without needing additional tools or setups. A key
feature of our system is the use of user interface screenshots, which helps students visual-
ize the expected output and understand the relationship between the code and interface
changes. For the evaluations, 38 CMP instances were generated and assigned to 21 novice
students at Okayama University, Japan. Without the formal classes of Flutter/Dart pro-
gramming, their solution results confirm that novice students can understand and solve
the CMPs efficiently. It is implied that PLAS with CMP is a valuable system for providing
a structured platform for independent learning. In future works, we will enhance the
PLAS with CMP for independent learning with additional topics in the cross-platform mobile
application programming and evaluate the effectiveness with a larger sample size. We will
also focus on expanding the areas of code modifications, such as enabling edits to entire
functions or classes to further improve the system’s flexibility and effectiveness. They will
help us further assess its effectiveness in supporting independent learning across a wider
range of programming skills.

Author Contributions: Conceptualization, S.A.K. and N.F.; methodology, S.A.K.; software, S.A.K.,
S.T.A., K.H.W., M.M. and P.P.; investigation, S.A.K.; writing—original draft preparation, S.A.K.;
writing—review and editing, S.A.K. and N.F.; supervision, N.F.; project administration, N.F.; All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Statista. Smartphone Users Worldwide—Forecast to 2027. Available online: https://www.statista.com/forecasts/1143723/

smartphone-users-in-the-world (accessed on 20 July 2024).
2. data.ai. State of Mobile 2023. Available online: https://www.data.ai/en/go/state-of-mobile-2023/ (accessed on 20 July 2024).
3. Pinto, C.M.; Coutinho, C. From native to cross-platform hybrid development. In Proceedings of the 2018 International Conference

on Intelligent Systems (IS), Madeira, Portugal, 25–27 September 2018.
4. Hiwale, P.R. Review on cross-platform Mobile Application Development. Int. J. Res. Appl. Sci. Eng. Technol. 2022, 10, 1433–1439.

[CrossRef]
5. Flutter. Build Apps for Any Screen. Available online: https://flutter.dev/ (accessed on 20 July 2024).
6. Simplilearn. Kotlin vs. Flutter: The Best Guide to Choose between Them. Available online: https://www.simplilearn.com/

tutorials/kotlin-tutorial/kotlin-vs-flutter (accessed on 20 July 2024).

https://www.statista.com/forecasts/1143723/smartphone-users-in-the-world
https://www.statista.com/forecasts/1143723/smartphone-users-in-the-world
https://www.data.ai/en/go/state-of-mobile-2023/
http://doi.org/10.22214/ijraset.2022.40004
https://flutter.dev/
https://www.simplilearn.com/tutorials/kotlin-tutorial/kotlin-vs-flutter
https://www.simplilearn.com/tutorials/kotlin-tutorial/kotlin-vs-flutter

Information 2024, 15, 614 20 of 20

7. Patta, A.R.; Funabiki, N.; Lu, X.; Syaifudin, Y.W. A study of grammar-concept understanding problem for flutter cross-platform
mobile programming learning. In Proceedings of the 2023 Sixth International Conference on Vocational Education and Electrical
Engineering (ICVEE), Surabaya, Indonesia, 25–26 October 2023.

8. Aung, S.T.; Funabiki, N.; Aung, L.H.; Kinari, S.A.; Mentari, M.; Wai, K.H. A study of learning environment for initiating Flutter
App Development using Docker. Information 2024, 15, 191. [CrossRef]

9. Al Hakim, R.R.; Kisworini, R.Y.; Hamid, A.P.; Pangestu, A.; Jaenul, A.; Arief, Y.Z. Design and Development of Android-Based
Learning Media for Learning Algorithm and Data Structure. Semnasfkip 2021, 3, 321–329.

10. Septiana, D.; Gunarhadi, G.; Akhyar, M. Mobile application with 3D to improve self-determined learning interest: Student’s
response and challenge in biology class. In Proceedings of the First International Conference on Progressive Civil Society
(ICONPROCS 2019), Surakarta, Indonesia, 27–28 August 2019.

11. Huynh, T. A Flashcard Mobile Application Development with Flutter; Theseus: Helsinki, Finland, 2021.
12. Yassine, A.; Berrada, M.; Tahiri, A.; Chenouni, D. A cross-platform mobile application for Learning Programming Basics. Int. J.

Interact. Mob. Technol. (IJIM) 2018, 12, 139. [CrossRef]
13. Hu, M.; Assadi, T.; Baliuag, C. Using online and blended learning method for teaching novices in mobile application development.

In Proceedings of the 2021 World Engineering Education Forum/Global Engineering Deans Council (WEEF/GEDC), Madrid,
Spain, 15–18 November 2021.

14. Dart. Dart Overview. Available online: https://dart.dev/overview (accessed on 20 July 2024).
15. Wai, K.H.; Funabiki, N.; Qi, H.; Xiao, Y.; Mon, K.T.; Syaifudin, Y.W. Code modification problems for multimedia use in JavaScript-

based web client programming. In Complex, Intelligent and Software Intensive Systems; Springer: Cham, Switzerland, 2022;
pp. 548–556.

16. Malik, S.I.; Mathew, R.; Hammood, M.M. PROBSOL: A web-based application to develop problem-solving skills in introductory
programming. In Smart Technologies and Innovation for a Sustainable Future; Springer: Cham, Switzerland, 2019; pp. 295–302.

17. McCall, D.; Kölling, M. A new look at novice programmer errors. ACM Trans. Comput. Educ. 2019, 19, 1–30. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/info15040191
http://dx.doi.org/10.3991/ijim.v12i7.9442
https://dart.dev/overview
http://dx.doi.org/10.1145/3335814

	Introduction
	Literature Review
	Overview of Flutter and Dart
	Flutter Framework
	Dart Language

	Code Modification Problem for Flutter/Dart Programming
	Overview of PLAS
	Overview CMP
	Modification Code Selections for CMP Instance
	CMP Generation Procedure
	Example of Generating CMP Instance
	Original Source Code
	Original Result
	Modified Source Code
	Modified Result

	Answer Interface for CMP
	Student Workflow for Solution Submission

	Evaluation
	CMP Instances
	Assignment to Students
	Solution Results for Basic Topics
	Results of Individual Students
	Results of Individual Instances

	Solution Results for Multimedia and Storage Topics
	Results of Individual Students
	Distribution of Correct Answer Rate
	Distribution of Answer Submissions Times
	Results of Individual Instances

	Discussions
	Mistakes in Basic Topics
	Mistakes in Multimedia and Storage Topics
	Comparing of Learning Platforms

	Feedback
	Limitations
	Implications

	Conclusions
	References

