
Citation: Aung, S.T.; Funabiki, N.;

Aung, L.H.; Kinari, S.A.; Wai, K.H.;

Mentari, M. An Image-Based User

Interface Testing Method for Flutter

Programming Learning Assistant

System. Information 2024, 15, 464.

https://doi.org/10.3390/info15080464

Academic Editors: Ricardo Queirós

and Mário Pinto

Received: 15 June 2024

Revised: 27 July 2024

Accepted: 31 July 2024

Published: 3 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

An Image-Based User Interface Testing Method for Flutter
Programming Learning Assistant System
Soe Thandar Aung * , Nobuo Funabiki * , Lynn Htet Aung , Safira Adine Kinari, Khaing Hsu Wai
and Mustika Mentari

Department of Information and Communication Systems, Okayama University, Okayama 700-8530, Japan
* Correspondence: soethandar@s.okayama-u.ac.jp (S.T.A.); funabiki@okayama-u.ac.jp (N.F.)

Abstract: Flutter has become popular for providing a uniform development environment for user
interfaces (UIs) on smart phones, web browsers, and desktop applications. We have developed the
Flutter programming learning assistant system (FPLAS) to assist its novice students’ self-study. We
implemented the Docker-based Flutter environment with Visual Studio Code and three introductory
exercise projects. However, the correctness of students’ answers is manually checked, although
automatic checking is necessary to reduce teachers’ workload and provide quick responses to students.
This paper presents an image-based user interface (UI) testing method to automate UI testing by the
answer code using the Flask framework. This method produces the UI image by running the answer
code and compares it with the image made by the model code for the assignment using ORB and
SIFT algorithms in the OpenCV library. One notable aspect is the necessity to capture multiple UI
screenshots through page transitions by user input actions for the accurate detection of changes
in UI elements. For evaluations, we assigned five Flutter exercise projects to fourth-year bachelor
and first-year master engineering students at Okayama University, Japan, and applied the proposed
method to their answers. The results confirm the effectiveness of the proposal.

Keywords: Flutter; FPLAS; testing; image; Flask; OpenCV; user interface

1. Introduction

Recently, integrating mobile app developments into educational curricula [1] has be-
come increasingly crucial due to the ubiquitous presence of mobile devices and the growing
demand for digital skills in the modern workforce. As smartphones and tablets become
integral in everyday life, understanding how to create and manage mobile applications
is essential for university students aiming to thrive in technology-driven environments.
By incorporating mobile app developments into their teaching programs, educational
institutions can equip students with practical, industry-relevant skills highly valued in
today’s job market [2].

Flutter [3] is a prominent framework developed by Google that utilizes the Dart programming
language [4]. This combination offers a robust and flexible solution for building cross-platform
applications. Flutter enables developers to write a single codebase that can be deployed on multiple
platforms, including iOS, Android, web browser, and desktop, significantly reducing development
time and effort. One of Flutter’s standout features is its “hot reload” capability, which allows
developers to instantly see the results of their code changes without restarting the application.
This feature is particularly beneficial in an educational setting, as it fosters a more interactive and
iterative learning process, enabling students to experiment and see the immediate impacts of
their work.

Adopting Flutter in educational curricula can enhance the learning experience by
providing students with hands-on opportunities to engage with current technologies. It
also aligns with the latest trends in software development, ensuring that the skills acquired
by students are relevant and up-to-date. Additionally, using a single, unified framework

Information 2024, 15, 464. https://doi.org/10.3390/info15080464 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info15080464
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0009-0009-4598-0878
https://orcid.org/0000-0003-3234-3473
https://orcid.org/0000-0001-8346-6997
https://doi.org/10.3390/info15080464
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info15080464?type=check_update&version=1

Information 2024, 15, 464 2 of 17

for multiple platforms helps streamline the learning process, allowing students to focus on
mastering core programming concepts and application design principles without being
overwhelmed by platform-specific complexities.

To support the independent learning of Flutter and mobile app development for novice
students, we have developed the Flutter programming learning assistant system (FPLAS) [5].
FPLAS is designed to provide an accessible and streamlined entry point for beginners,
integrating a Docker-based Flutter development environment. This setup ensures that novice
students can easily access a consistent and pre-configured development environment via
Visual Studio Code [6], regardless of whether they use Windows, Linux, or Mac. By eliminating
the often cumbersome manual configuration processes, FPLAS allows students to focus
directly on learning and developing their mobile app projects. To facilitate hands-on learning,
FPLAS includes three sample projects that guide students through essential concepts and
techniques in Flutter development.

Upon completing their projects, students must submit their source codes to the teacher
for evaluation. This assessment process involves the manual execution of the source
code and the manual inspection of the user interface (UI) output by the code. Since the
teacher must repeat the process for every source code from many students, it is very
time-consuming. Moreover, this manual checking of multiple projects in large classes can
be particularly challenging for the teacher, potentially leading to delays or mistakes in
feedback and grading. As the demand for digital skills education grows, developing more
efficient assessment methods in FPLAS will be crucial to support educators and students,
ensuring timely and compelling learning experiences.

This paper presents an image-based user interface (UI) testing method designed to automate
the testing of UIs generated by students’ answer codes using the Flask framework. This method
involves executing the answer code on Flask, capturing the UI image by the code, and comparing
this image with the corresponding UI image generated by the model code for the assignment.
To perform this comparison, we employ the ORB (Oriented FAST and Rotated BRIEF) and
SIFT (Scale-Invariant Feature Transform) algorithms available in the OpenCV library. These
algorithms are used to detect and describe local features in the images, allowing for a robust
comparison that can identify similarities and differences with high precision. By automating the
UI testing process, our method significantly reduces the work required in grading, enhances the
accuracy of the assessment, and provides timely feedback to students.

For evaluations of the proposal, we assigned five Flutter exercise projects to primarily
fourth-year bachelor and first-year master students of engineering at Okayama University
in Japan and applied the proposed method to their submitted source codes. This study
involved these students to evaluate the system’s effectiveness in an educational setting.
These exercise projects were designed to cover a range of fundamental concepts and
techniques in Flutter development, ensuring a comprehensive assessment of both the
students’ understanding and the system’s capabilities. The results of this evaluation
confirmed the effectiveness of our proposed method, demonstrating that the automated UI
testing method significantly reduces the time and effort required in manual grading while
maintaining high accuracy in the assessment process.

The rest of this paper is organized as follows: Section 2 introduces related works in
the literature. Section 3 introduces adopted open-source software. Section 4 reviews the
FPLAS platform. Section 5 presents the image-based UI testing method for FPLAS. Section 6
evaluates the proposal through applications to answer codes from novice students in five
Flutter projects. Section 7 concludes this paper with future works.

2. Literature Review

In this section, we review the literature relevant to the topics discussed in our paper.
We organize the section into three main themes: programming education, UI testing, and
image detection algorithms.

Information 2024, 15, 464 3 of 17

2.1. Programming Education

In [7], Khan et al. addressed the educational challenges in Pakistan and the global
shift towards online learning due to COVID-19. Their study focuses on bridging the gap
between tutees and tutors to enhance academic achievement and character development.
They promote peer tutoring, highlighting its benefits for both tutees and tutors. Their
study emphasizes the positive impact of peer tutoring on education in Pakistan and
supports its integration into educational platforms, suggesting further research to enhance
its effectiveness.

In [8], Boada et al. introduced a web-based tool to enhance introductory programming
courses, benefiting both teachers and students. For teachers, it enhances traditional teaching
methods by reinforcing lectures and laboratory sessions, enabling personalized student
attention, assessing student participation, and conducting continuous progress assessments.
The tool offers a learning framework with help and correction environments to students,
facilitating their work and increasing motivation for programming.

In [9], Crow et al. analyzed computer programming education, mainly the systems
developed for tertiary courses. While these systems address difficulties faced by novices,
they vary widely in design and offer diverse supplementary features such as interactive
exercises, plans, quizzes, and worked solutions. This review highlights the need to support a
broader range of supplementary features in intelligent programming tutors to enhance their
effectiveness.

In [10], Keuning et al. conducted a systematic literature review on feedback in pro-
gramming exercise tools, examining feedback content, generation techniques, adaptability,
and tool evaluations. They analyzed 101 tools, finding that feedback often focuses on
identifying mistakes rather than fixing them or guiding students forward. Tools vary in
their abilities to adapt to teachers’ needs, with limited diversity in feedback types. However,
newer tools show promising trends in offering more diverse feedback. Various techniques,
including data-driven approaches, are used for feedback generation, though challenges
remain in evaluating tool effectiveness and facilitating teacher adaptation.

2.2. UI Testing

In [11], Sun et al. discussed the challenges in mobile application testing, particularly in
locating UI components on screenshots. They proposed an app UI component recognition system
based on image understanding. By analyzing Android UI component information and using
image understanding techniques, they extracted component images from screenshots. They
designed and implemented a convolutional neural network (CNN) [12] to classify these images,
achieving a classification accuracy of 96.97%. Their approach extracts component information
from screenshots, offering new solutions for challenging application scenarios.

In [13], Khaliq et al. employed AI in software testing to automate test case gener-
ations directly from UI element descriptions, reducing reliance on manual extractions.
They utilized object detection algorithms and text-generation transformers to translate UI
descriptions into executable test scripts. Their examinations of 30 e-commerce applications
showed a high accuracy rate in generated test cases (up to 98.08%) and a significant decrease
in test flakiness (average reduction of 96.05%).

In [14], Wang et al. discussed the existing Android UI testing tools for industrial apps
and introduced TOLLER as an infrastructure-enhanced solution. It directly accesses run-
time memory, notably reducing time spent on UI operations compared to UIAutomator [15].
The integration of TOLLER enhances existing UI testing tools, leading to substantial im-
provements in code coverage and crash detection capabilities. These findings emphasize
the importance of infrastructure support in advancing Android testing tools.

2.3. Image Detection Algorithms

In [16], Tareen et al. thoroughly compared SIFT, SURF, KAZE, AKAZE, ORB, and BRISK
algorithms for feature-based image registration, emphasizing the scale, rotation, and
viewpoint invariance. Experiments involve matching scaled, rotated, and perspective-

Information 2024, 15, 464 4 of 17

transformed images with originals from diverse datasets. SIFT and BRISK are the most
accurate, while ORB and BRISK demonstrate the highest efficiency, aiming to establish a
benchmark for vision-based applications.

In [17], Zhong et al. proposed an improved SIFT algorithm to enhance image feature
point acquisition by addressing multi-scale variations, noise, light intensity, and rotation
issues. They used a Difference of Gaussians (DOG) pyramid to identify feature points. They
replaced traditional descriptor construction with the BRISK algorithm, which generates
faster, more unique binary descriptors using concentric circles in uniform sampling. Their
group matching method finds the shortest Hamming distance between images, significantly
reducing matching time and improving efficiency.

In [18], Gupta et al. addressed object recognition accuracy for applications like image
classifications and surveillance, focusing on hand-crafted features. They used ORB and SIFT
descriptors, with SIFT being particularly effective for images with varying orientations and
scales. The study employed the Locality Preserving Projection (LPP) algorithm to reduce the
dimensionality of the image feature vector. Testing on an 8000-sample, 100-class dataset
with k-NN, decision tree, and random forest classifiers showed precision rates of 69.8%
with ORB, 76.9% with SIFT, and 85.6% when combined.

In [19], Andrianova et al. introduced a four-stage approach for matching medical
images using SIFT and ORB algorithms. Initially, key points and descriptors were identified,
followed by clustering to determine optimal clusters and exclude outliers. “Good” matches
were identified through Lowe’s ratio test and the homography method, with noise rejected.
A practical medical diagnostics example validated the effectiveness of this method.

In [20], Chhabra et al. introduced a content-based image retrieval (CBIR) system utilizing
ORB and SIFT feature descriptors. They applied K-means clustering and Locality-preserving
projection for dimensionality reduction. The evaluation of the Wang and Corel databases
demonstrated a precision rate of 99.53% and 86.20%, respectively, when combining ORB
and SIFT feature vectors.

3. Adopted Software Tools

This section introduces the software tools adopted in this paper for completeness
and readability. For implementation details, we specifically describe the adopted soft-
ware and their versions as follows: Flask (3.0.2), Python (3.11.8), Flutter (3.22.0), and
OpenCV (4.9.0).

3.1. Flask

Flask [21] is a lightweight and flexible web framework for Python designed to simplify
the development of web applications with minimal complexity. Its modular design allows
developers to select the necessary components and easily extend functionality with third-
party libraries. Despite its simplicity, Flask supports essential features such as routing, request
handling, and templating, making it suitable for small-scale projects and large web applica-
tions. Its ease of use and straightforward approach make it a popular choice for beginners,
while its scalability and the ability to customize make it favored by experienced developers.
Flask’s active community and extensive documentation further enhance its appeal, ensuring
developers have the resources and support to build robust web applications efficiently.

3.2. OpenCV

OpenCV (Open Source Computer Vision Library) [22] is an open-source software library
that specializes in computer vision and machine learning. Designed to provide a common
infrastructure for computer vision applications, it supports a wide range of functionalities,
including image processing, object detection, facial recognition, and motion tracking. OpenCV
is written in C++ and has interfaces for Python, Java, and MATLAB , making it accessible to a
broad audience of developers and researchers. Its comprehensive tools and algorithms enable
the fast development of real-time vision applications, from fundamental image transforma-
tions to complex video analytics. Widely used in academia and industry, OpenCV benefits

Information 2024, 15, 464 5 of 17

from a strong community that contributes to its extensive documentation and continuous
improvement, ensuring it remains at the forefront of computer vision technology.

3.2.1. ORB

ORB (Oriented FAST and Rotated BRIEF) [23] is a robust feature detector and descriptor
used in computer vision for tasks such as image matching, object recognition, and 3D
reconstruction. Developed to provide a fast and efficient alternative to the well-known
SIFT and SURF algorithms, ORB combines the FAST keypoint detector and the BRIEF
descriptor while adding rotation invariance and noise resistance. It excels in real-time
applications due to its computational efficiency and has been widely adopted in various
fields, including robotics and augmented reality (AR). ORB’s ability to maintain high
performance even under varying lighting conditions and perspectives makes it a popular
choice for feature extraction in diverse computer vision applications.

3.2.2. SIFT

SIFT (Scale-Invariant Feature Transform) [24] is a powerful and widely used algorithm
in computer vision for detecting and describing local features in images. SIFT identifies dis-
tinctive key points and generates invariant descriptors for scale and rotation, and partially
invariant descriptors for affine transformations and illumination changes. This robustness
makes SIFT highly effective for image stitching, object recognition, and 3D reconstruction
tasks. By extracting stable and reliable features, SIFT enables accurate matching between
different views of the same scene or object, facilitating various applications in academic
research and industry. Despite being computationally intensive, its precision and reliability
have made it a cornerstone in feature extraction and matching.

3.3. GitHub

GitHub [25], a web-based platform for version control, plays a pivotal role for develop-
ers globally. Utilizing Git, an open-source version control system, GitHub facilitates hosting
both open-source and private repositories. Its comprehensive suite of tools enables collabo-
rations, allowing developers to efficiently manage and track changes in their code bases.
Through features like pull requests, issues, and wikis, GitHub encourages a collaborative
environment where users can host, review, and manage projects effortlessly.

3.4. Moodle

Moodle [26] is a widely used open-source learning management system (LMS) that facilitates
online learning and course management. With its user-friendly interface and extensive
features, Moodle allows educators to create dynamic online courses, manage content, track
student progress, and facilitate communication and collaboration. Its modular architecture and
plugin system enable customization to suit various educational needs and preferences. Used
by academic institutions, businesses, and organizations worldwide, Moodle provides a flexible
and scalable platform for delivering engaging and interactive online learning experiences.

4. Review of FPLAS Platform

This section reviews the FPLAS platform developed in our previous work [5].

4.1. Overview of FPLAS

FPLAS is a Docker-based Flutter development environment system designed for novice
students to initiate mobile application development while avoiding the complexities of
environment setups. Figure 1 shows the overview. It includes preparing a Docker container
image with system startup files on Docker Hub. Additionally, two system startup files for
different operating systems were added to GitHub. Sample Flutter projects are provided as
code modification exercises to guide students in this environment. Additionally, compre-
hensive instructions on GitHub were provided to assist students in effectively utilizing the
system, including steps for installing Docker [27] and VSCode [28], downloading the Docker

Information 2024, 15, 464 6 of 17

image, connecting to the container, accessing the exercise projects, and submitting answer
files to the teacher.

Figure 1. Overview of Docker-based Flutter development environment.

4.2. Usage Procedure and Access Exercises by Student

To install and initiate the Flutter project environment in the Docker container, students
need to follow these steps, with instructions provided on GitHub:

1. Install Docker and VSCode based on the student’s PC operating system.
2. Import the three extensions for Flutter, Remote Development, and Docker in VSCode.
3. Obtain the Docker container image for FPLAS.
4. Download the GitHub project containing the essential files, or clone the project if

students have already installed Git on their PCs.
5. Open the downloaded project in VSCode, initiate the containerized development to

access the remote development, and activate the FPLAS development environment in
the Docker container.

After connecting to the FPLAS development environment in the Docker container,
students can start solving the three exercises included in the container by following the
steps below:

1. Transfer each exercise to the designated workspace in the container.
2. Access to the exercise directory. This allows students to navigate to the specific

exercise folder, where they can modify the source codes according to the provided
modification guidance.

3. Initiate the Flutter web server by executing “flutter run -d web-server”.
4. Preview the output generated by the source code by navigating to the local web server

address using “http://localhost:port” in the web browser.

After completing the modifications for each exercise, students must submit the modified
source code files through the provided folder on Moodle. Then, the teacher must manually assess
their code files by executing them and checking their output user interfaces (UIs) individually.

5. Proposal of Image-Based UI Testing Method

In this section, we present the image-based UI testing method for FPLAS.

5.1. Software Architecture

Figure 2 shows the overview of the proposed image-based UI testing method. Firstly,
this method utilizes Flask, a Python web framework, to create a user-friendly interface for

http://localhost:port

Information 2024, 15, 464 7 of 17

selecting exercises and analyzing corresponding UI designs. The process retrieves the
exercise and answer images from designated folders upon user selection.

Figure 2. Overview of image-based UI testing method.

Next, the method employs image processing techniques to calculate the similarity
between expected and actual UI images. This involves resizing images to a standard
resolution, detecting key points, computing descriptors, and matching features, using the
SIFT (Scale-Invariant Feature Transform) algorithm for images of the exact resolution and
ORB (Oriented FAST and Rotated BRIEF) algorithm for images of different resolutions.

Different image resolutions were considered because the proposed method might be
used by various teachers using different PCs with other specifications. Consequently, the
resolution of the images can vary. To accommodate such situations, SIFT is used for images
of the same size, and ORB is used for images that need resizing. Additionally, the method
highlights differences between images by generating overlays that accentuate discrepancies,
aiding in quick identification and analysis.

5.2. Data Pre-Processing for UI Testing

Before starting the process of the UI testing method, we need to collect the “main.dart”
answer code files submitted by the students and preprocess them. This preprocessing
consists of the following two steps.

5.2.1. UI Image Capture Step

To automate the UI image screenshot capture, this step needs to define the paths
to the directories for the necessary resources: (1) the directory containing the individual
“main.dart” files for each Flutter project, (2) the directory for the template Flutter project,
and (3) the directory where the screenshots will be saved. Then, it utilizes Python libraries
such as os [29], shutil [30], subprocess [31], time, xdotool [32], and pyautogui [33] to handle
path manipulation and file operations, execute terminal commands, manage delays, and
capture screenshots automatically.

First, this step copies the “main.dart” file into the template project directory. Second,
it runs the Flutter application using the source code. This Flutter application is launched
using the command “flutter run -d chrome”, which directs Flutter to run the application in
a Chrome browser window. This process waits for the application to be fully loaded and
searches for the specific Chrome window where the application is running. Once found, the
window is activated and maximized to ensure the entire application interface is visible.

Information 2024, 15, 464 8 of 17

Third, it captures the window’s geometry and uses this information to take a screenshot of
the specified region. Fourth, it saves the screenshot in the predefined directory. Finally, it
terminates the Flutter process.

By iterating over each “main.dart” file, the step extracts the student ID from the
filename to uniquely identify and save the corresponding screenshot. It is noted that
each filename contains the student ID. Each screenshot is saved with the filename that
corresponds to the student ID, facilitating easy identification and further analysis. This
preprocessing step is essential in the image-based UI testing method, as it ensures that all
necessary UI images are captured accurately and consistently across multiple applications,
providing a reliable dataset for subsequent image-based analysis and validation.

5.2.2. Black Border Removal Step

After capturing the screenshots as part of the UI testing process, the next preprocessing
step involves refining these images to ensure accuracy in the subsequent analysis. Here,
any screenshot image contains a black border created by the Flutter code in the provided
exercise project. The unnecessary black borders that may appear around the UI elements
are eliminated in the screenshots.

To automate this step, we utilize the OpenCV library, systematically processing each image
in the designated input folder. By converting the images to grayscale and identifying the most
prominent contour, the step accurately determines the bounding box of the UI elements. The
region within this bounding box is then cropped to produce a refined image free from excess
borders. This step is essential to analyze the UI components by eliminating any background
noise that could distort the results. The cropped images are saved in the specified output folder,
which will serve as the input parameter in the next step, ensuring a structured and organized
workflow. This preprocessing method enhances the accuracy of the image-based UI testing
method by providing precise and uniform images for further evaluation.

5.3. Image-Based UI Testing

After the data pre-processing, we implemented the UI testing method using Flask.
OpenCV is used for advanced image processing and manipulations, PIL (Python Imaging Li-
brary) [34] is used for handling image data, numpy [35] is used for numerical operations,
and pytesseract [36] is used for optical character recognition (OCR). The implemented method
performs the following procedures to compare the expected UI image with the generated
UI images by students’ source codes and to highlight differences by integrating the image
comparison algorithms, such as SIFT and ORB.

• Directory Path: The paths to specific directories are defined for hosting the images
and results. They include the “exercise” directory for the correct images of the exer-
cises, the “answer” directory for the corresponding answer images received from the
preprocessing steps, the “result” directory for the processed results, and the “difference”
directory for the images that highlight differences between correct images and answer
images. These paths can ensure efficient file management and operations.

• Image Size and Similarity Check: The check_image_size_similarity function ensures
that both correct and answer images have the exact matching dimensions. It calculates
similarity percentages using either the SIFT or ORB algorithm, depending on whether
the size is the same. Both methods detect vital key points and compute descriptors to
match features between images, ultimately providing a similarity score that quantifies
how closely the images match.

• Similarity Calculation by SIFT: SIFT is used when images have the same size, provid-
ing robust feature matching. It detects key points and computes descriptors in both
images, and then matches them using a FLANN-based matcher [37]. Good matches
are filtered to calculate the similarity percentage, offering an accurate measurement
based on key point matching.

• Similarity Calculation by ORB: ORB is used when images need resizing, offering
a faster alternative with lower computational complexity. The resize_image function

Information 2024, 15, 464 9 of 17

standardizes image dimensions, ensuring consistency and enhancing similarity calcu-
lations. ORB detects vital key points and computes descriptors, matches them using
BFMatcher [38], and calculates similarity based on good matches, providing an efficient
method for image comparison.

• Image Difference Highlighting: The results are sorted and saved in a CSV file, provid-
ing comprehensive analysis of image similarities. Then, to identify and highlight the
differences in the images, the highlight_image_difference function computes the absolute
difference between the images, applies a threshold to create a binary mask, and dilates
this mask to enhance visibility. The differences are highlighted in red on the original
image, and the result is saved for the user or teacher review.

Web Interface

The web interface sets up routes to handle HTTP requests and enable user interaction
with the application. The ‘/’ route is the main page, allowing users to select the exercise
and submit its UI images. Upon submission, the application process contains the following
procedures:

• Image Retrieval: Upon receiving the request, the application fetches the selected
correct and answer images from the specified folders and prepares the paths for
storing and accessing the result files.

• Comparison Process: The application checks whether the CSV file containing the
similarity results exists for the selected exercise, and if not, it computes the image
similarities using the defined functions and saves the results in a CSV file for future
reference.

• Data Presentation: Once the comparison process is completed, the web interface dis-
plays the reference and student answer images for the selected exercise and provides
an option to view detailed similarity results through a downloadable CSV file.

Finally, the Flask application runs the development server to host the web interface,
allowing users to access the functionality through a web browser. Figure 3 shows the
highlighting differences with similarity results in UI testing.

Figure 3. Highlighting differences with similarity result in UI testing.

Information 2024, 15, 464 10 of 17

6. Evaluation

In this section, we evaluate the proposed image-based UI testing method for FPLAS
through applications to answer codes from novice students in five Flutter exercise projects.

6.1. Participant Overview and Methodology

The participants in this study were drawn from two engineering classes at Okayama
University. One class consisted of 24 students who were assigned three programming exer-
cises, while the other class consisted of 20 students who were assigned five programming
exercises. The gender distribution in both classes was predominantly male (80%), with a
minority of female students (20%). Despite their diverse academic backgrounds, none had
prior experience with Flutter, though they were familiar with programming languages such
as C, C++, and Java.

Our evaluation aimed to observe how these students adapted to learning mobile
application developments using Flutter. With the support of a teaching assistant, the
students set up the environment and completed the exercises either in the classroom or
at home, submitting their answer code via Moodle. The research methodology involved a
structured series of exercises and projects conducted in three weeks. Detailed procedures
included the selection criteria for participants, the instructional design, and the data
collection and analysis methods.

Participation in the study was mandatory, meaning that the students were required to
engage in the study activities as part of the course requirements. This ensured full involvement
from the whole class, providing a complete set of data for analysis. Consequently, the findings
represented the entire class, which is critical for the validity of the study’s outcomes. It also
meant that all the students had to interact with the Flutter Programming Learning Assistant
System (FPLAS), ensuring consistent feedback on its usability and effectiveness.

Beyond the gender distribution, other demographic characteristics such as the age
range, prior experiences with programming, and familiarity with Flutter could provide
deeper insights into the study’s context. For instance, the age range of participants was
between 20 and 25 years. Most students had prior programming experiences but varied in
their familiarity with programming.

This study was conducted over two to three weeks. Initially, students were introduced
to the Flutter Programming Learning Assistant System (FPLAS) and instructed on how to use
it. They were then assigned the exercises. Each exercise was designed to cover specific
programming skills and the use of Flutter. The teaching assistant supported the exercises,
ensuring students could effectively use the system and resolve technical issues.

6.2. Five Flutter Projects for Exercises

The five Flutter projects are prepared for novice students aiming to initiate mobile
application development in Dart programming. They provide basic learning experiences,
covering essential Flutter widgets and components crucial for creating dynamic and inter-
active user interfaces. Each project offers hands-on practice and modification guidance.
These exercise projects include: (1) Dynamic UIs: Widgets and State; (2) App Structure:
Material and Scaffold; (3) App Navigation: AppBar and BottomNavigationBar; (4) UI Styling:
Container, Text, and Buttons; (5) User Interactions: FloatingActionButton, TextFields, and
Dialogs. Table 1 lists the objective and essential items as the guidance for the successful
completion of the five exercise projects. Figure 4 shows the UI interfaces for creating a
Simple To-do List application for Exercise-5.

Information 2024, 15, 464 11 of 17

Table 1. Five projects and their modification guidance.

Exercise Objective Modification Guidance

Exercise-1
Container widget as a fundamental UI element used to
encapsulate other widgets.

• box size (400 × 400), box color (yellow)
• box shade (pink), box text (50)

Exercise-2
ListView displays scrollable lists of widgets and
manipulates their functionality.

• show the list in descending order
• modify arrow direction

Exercise-3
AlertDialog widget for displaying critical information
and interacting with users. • icon color (red), button text, button style (outlined)

Exercise-4
BottomNavigationBar, layout widgets, text input,
conditional UI updates, and asset management.

• maintain Page 1 and its original logic
• Add Page 2 with similar logic to check for the word

“cat”
• Both pages have their respective text fields and check

buttons

Exercise-5
Create a simple to-do list app with custom widget and
state management, input dialog, list display and
management, item addition, basic layout, and styling.

• Add floatingActionButton
• Background color (blue)
• Use the “add” icon text, Add AlertDialog,
• Title, Textfield, ElevatedButton (Add)
• Use ListTile, Tile color (red), Font size (18)

Figure 4. To-do list project in Exercise-5.

6.3. Results of Five Exercises

Next, we discuss the application results of the proposed method to answer codes in
five exercises from students. As shown in Figure 5, the similarity score results are depicted
using bar graphs for all the images obtained from students’ source codes. The color of each
bar graph represents the result that is similar to the correct image. Here, green represents the
answer image with a 100% similarity score, blue represents an intermediate score between
20% and 99%, and pink represents the image with a low score of less than 20%.

Information 2024, 15, 464 12 of 17

Figure 5. Similarity scores for all images of five exercises.

6.3.1. Results of Exercise-1 and Exercise-2

Figure 6 shows the application results for answer codes in Exercise-1 (left) and Exercise-2
(right). In both exercises, the majority of images (ID 1 to ID 38 in Exercise-1 and ID 1 to ID 39
in Exercise-2) exhibit the highest similarity scores of 100%, indicating the robust performance
of the proposal. However, a noticeable decline in the score is observed from image ID 39
onwards in Exercise-1 and ID 40 onwards in Exercise-2. The lowest scores were recorded
for the last three images, highlighted by pink to indicate a low score of less than 20%. For
reference, we show one UI image among them in Figure 6.

Figure 6. Results for Exercise-1 and Exercise-2.

6.3.2. Result of Exercise-3

Exercise-3 requests to make two different user interfaces, labeled as Exercise-3 (a) and
Exercise-3 (b). Figure 7 shows the application results. For Exercise-3 (a), the images with IDs
from 1 to 31 have the highest similarity score of 100%, showing the consistent performance
of the proposal. However, from IDs 32 to 40, the score drops to an intermediate level. For
Exercise-3 (b), the images with IDs from 1 to 28 also have 100% similarity scores. From ID 29
onwards, the score gradually declines, although no low scores are less than 20%.

Information 2024, 15, 464 13 of 17

Figure 7. Results for Exercise-3.

6.3.3. Result of Exercise-4

Exercise-4 also requests to make two different user interfaces, labeled as Exercise-4 (a)
and Exercise-4 (b). Figure 8 shows the application results. In both graphs, every image has
the highest similarity score of 100%. This consistent result suggests that the proposed image
comparison method is highly effective, robust, and precise.

Figure 8. Results for Exercise-4.

6.3.4. Result of Exercise-5

Exercise-5 requests to make three different user interfaces, labeled as Exercise-5 (a),
Exercise-5 (b), and Exercise-5 (c). Figure 9 shows the application results. In Exercise-5 (a),
the first 17 images achieved 100% similarity score. However, the score of the last image was
very low. In Exercise-5 (b), the first 11 images achieved 100% similarity score. However, the
scores of the last three images were low. In Exercise-5 (c), the first 13 images achieved 100%
similarity score. However, the score of the last image was very low. For reference, we show
the corresponding image with the lowest score in each interface in Figure 9. We observed
that the student for image ID 19 did not modify answer code. These results indicate that our
proposed method works correctly and efficiently for various answer codes from students.

6.4. Discussion

In this section, we discuss the key findings of this study, the automation process,
limitations, future works, and the advantages for university teachers.

6.4.1. Findings

The evaluation results of the image-based UI testing method using Flask, ORB, and SIFT
algorithms have demonstrated significant advantages in automating the assessment of
students’ source codes for Flutter programming exercises. This method will provide an
efficient and consistent means of assessing a lot of work from students. These findings
are consistent with the research conducted by Muuli et al. [39], who also reported that the

Information 2024, 15, 464 14 of 17

automated assessment using image recognition can significantly reduce grading workloads
and provide timely feedback to students.

Figure 9. Results for Exercise-5.

Similar studies, such as those by Combefis et al. [40], have explored automated code
assessment systems and their impact on educational settings. They found that automated
systems can effectively handle large volumes of code submissions, providing quick and
relevant feedback to learners. This aligns with our findings that the Flutter Programming
Learning Assistant System (FPLAS) offers efficient and accurate feedback, enhancing the
educational experience.

Another study by Mozgovoy et al. [41], which involved a case study of a mobile tennis
game project developed in Unity, demonstrated the practical applicability of using the image-
matching capabilities of the OpenCV library in Appium-supported functional tests. This
approach built a reliable automated QA pipeline for nonstandard GUI applications like games.
The study highlights the challenges and solutions of automated smoke testing in such contexts,
which is relevant using the image-based UI testing method for Flutter applications.

Several commercial tools reflect the effectiveness of automated UI testing. For instance,
Rainforest QA uses automated UI testing with features like the screenshot comparison
and visual regression testing, which are essential for verifying UI changes and ensuring
a consistent user experience [42]. Similarly, Applitools Eyes offers a robust solution for
visual validation through its cloud-based image comparison API, integrating well with
popular test automation frameworks like Selenium and JUnit [43]. Screenster combines
visual regression testing with screenshot comparison to automate UI testing, supporting
testing across multiple browsers and web applications [44].

However, there are some differences in the approaches and tools used. For instance,
the study in [39] focused on image recognition for graphical outputs in programming tasks,
whereas our approach integrates multiple UI elements and interactions specific to Flutter
applications. This broader scope allows FPLAS to be more versatile and applicable to
various programming exercises.

Our study contributes to the field by demonstrating the integration of multiple algo-
rithms, such as ORB and SIFT, to automate the assessment of multiple UI interactions in
Flutter applications. This approach offers a comprehensive solution for evaluating various
aspects of student submissions, beyond simple code correctness. Additionally, the FPLAS’s
ability to provide quick and accurate feedback distinguishes it from other automated
assessment tools, emphasizing its potential to improve learning outcomes.

Information 2024, 15, 464 15 of 17

In conclusion, our findings support the results of similar studies, underscoring the
importance of automated assessment tools in modern education. By comparing our research
with those of other authors, we highlighted the common benefits and unique contributions
of FPLAS, setting the stage for further advancements in this field.

6.4.2. Automation of Multiple UI Screenshots

One notable aspect of our current implementation is the necessity to capture multiple
UI screenshots through page transitions by user input actions for Exercise-3, Exercise-4, and
Exercise-5. It is crucial to accurately detect the changes in UI elements caused by user actions.
To enhance its automation, we have integrated functionalities for capturing screenshots
upon detecting changes by user actions. The provided UI image capture step is designed
to automate taking screenshots based on user input actions such as button clicks and text
field inputs. While the script can calculate offsets from the window’s bounds to trigger
UI updates and document the resulting changes in the UI, the user input actions must be
performed manually. After each input action, the script pauses to refresh the UI before
taking subsequent screenshots.

6.4.3. Limitations and Future Work

A limitation of this study is the sample size, which consisted of 44 fourth-year bachelor
or first-year engineering master students in Okayama University, Japan. While the results
are promising, this relatively small sample size may limit the generalizability of the findings.
Future research should involve a larger and more diverse group of participants to validate
the effectiveness of FPLAS across different educational contexts.

Furthermore, the limitation of the current implementation is the manual user input
actions for screen transitions. In future works, we will automate the user actions by
exploring various approaches. One option is integrating Flutter’s built-in testing framework
using the flutter driver [45]. Another is using web scraping technology such as Appium [46]
and Selenium WebDriver [47]. They also offer benefits in allowing to programmatically
define and execute user actions within the app, further streamlining the testing process and
minimizing the need for manual interventions.

Our future works will also enhance the algorithms supporting the image-based UI testing
method. We aim to strengthen its reliability across a broader spectrum of UI designs and user
interactions by optimizing the algorithmic performances and expanding the method’s capabilities.
Additionally, we plan to introduce new hands-on Flutter project exercises that explore more
advanced concepts of Dart and Flutter applications. These exercises will incorporate real-world
scenarios, challenging students to apply their knowledge in practical settings and deepen their
understanding of Flutter programming principles.

6.4.4. Advantages for University Teachers

The Flutter Programming Learning Assistant System (FPLAS) offers significant advan-
tages for university teachers. By automating the assessments of student projects, FPLAS
reduces the manual grading workloads, allowing teachers to focus more on interactive
and engaging teaching methods. Additionally, the system provides quick and accurate
feedback to students, which enhances the overall learning experience and supports effective
education in lectures and exercises.

In conclusion, this research contributes to improving educational experiences for both
students and teachers by providing a robust framework for automating evaluations of Flutter
programming exercises. The positive outcomes observed in our evaluations with 44 engineer-
ing students at Okayama University validate the effectiveness of this solution in supporting
Flutter programming education. Through ongoing refinements and expansions, we will aspire
to establish effective and scalable methods in UI testing within educational contexts.

Information 2024, 15, 464 16 of 17

7. Conclusions

In this paper, we presented the implementation of an Image-based UI testing method
using the Flask framework, along with ORB and SIFT algorithms from the OpenCV library,
to automate the assessment of students’ code submissions. This contribution not only
provides a conducive learning environment for Flutter programming but also simplifies
the evaluation process, thereby enhancing the educational experiences for both students
and instructors. For evaluations, we applied the proposed method to assess the students’
solutions, executing their answer code files for five Flutter exercise projects of students at
Okayama University, Japan. The positive outcomes underscore our approach’s effective-
ness, validating our solution’s practicality and efficacy in supporting Flutter programming
education. In future works, we will enhance the Flutter Programming Learning Assistant System
(FPLAS) functionalities and the image-based UI testing method to better support students and teach-
ers. Developments will include advanced analytics features to track student progress, adaptive
learning pathways, refined algorithms, and expanded capabilities of the UI testing method. We
will also introduce new hands-on Flutter project exercises covering more advanced concepts of
Dart and Flutter applications. By incorporating real-world scenarios, we aim to deepen students’
understanding of Flutter programming. Moreover, the successful implementation and positive
outcomes observed at Okayama University in Japan will provide a model that can be replicated
and customized for use at other universities.

Author Contributions: Conceptualization, S.T.A. and N.F.; Methodology, S.T.A.; Software, S.T.A.,
L.H.A., S.A.K., K.H.W. and M.M.; Investigation, S.T.A. and L.H.A.; Writing—original draft, S.T.A.;
Writing—review & editing, S.T.A. and N.F.; Visualization, S.T.A., L.H.A., S.A.K., K.H.W. and M.M.;
Supervision, N.F.All authors have read and agreed to the published version of the manuscript

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding authors.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Criollo-C, S.; Guerrero-Arias, A.; Jaramillo-Alcázar, Á.; Luján-Mora, S. Mobile Learning Technologies for Education: Benefits and

Pending Issues. Appl. Sci. 2021, 11, 4111. [CrossRef]
2. McQuiggan, S.; Kosturko, L.; McQuiggan, J.; Sabourin, J. Mobile Learning: A Handbook for Developers, Educators, and Learners; Wiley:

Hoboken, NJ, USA, 2015.
3. Flutter. Available online: https://docs.flutter.dev/ (accessed on 1 June 2024).
4. Dart. Available online: https://dart.dev/overview/ (accessed on 1 June 2024).
5. Aung, S.T.; Funabiki, N.; Aung, L.H.; Kinari, S.A.; Mentari, M.; Wai, K.H. A Study of Learning Environment for Initiating Flutter

App Development Using Docker. Information 2024, 15, 191. [CrossRef]
6. Jackson, S.; Wurst, K.R. Teaching with VS code DevContainers: Conference workshop. J. Comput. Sci. Coll. 2022, 37, 81–82.
7. Khan, S.; Usman, R.; Haider, W.; Haider, S.M.; Lal, A.; Kohari, A.Q. E-Education Application using Flutter: Concepts and Methods.

In Proceedings of the 2023 Global Conference on Wireless and Optical Technologies (GCWOT), Malaga, Spain, 24–27 January
2023; pp. 1–10. [CrossRef]

8. Boada, I.; Soler, J.; Prados, F.; Poch, J. A teaching/learning support tool for introductory programming courses. In Proceedings of
the Information Technology Based Proceedings of the Fifth International Conference on Higher Education and Training (ITHET),
Istanbul, Turkey, 31 May–2 June 2004; pp. 604–609. [CrossRef]

9. Crow, T.; Luxton-Reilly, A.; Wuensche, B. Intelligent Tutoring Systems for Programming Education: A Systematic Review.
In Proceedings of the 20th Australasian Computing Education Conference, Brisbane, Australia, 30 January–2 February 2018;
pp. 53–62. [CrossRef]

10. Keuning, H.; Jeuring, J.; Heeren, B. A Systematic Literature Review of Automated Feedback Generation for Programming
Exercises. ACM Trans. Comput. Educ. 2018, 19, 1–43. [CrossRef]

http://doi.org/10.3390/app11094111
https://docs.flutter.dev/
https://dart.dev/overview/
http://dx.doi.org/10.3390/info15040191
http://dx.doi.org/10.1109/GCWOT57803.2023.10064660
http://dx.doi.org/10.1109/ITHET.2004.1358243
http://dx.doi.org/10.1145/3160489.3160492
http://dx.doi.org/10.1145/3231711

Information 2024, 15, 464 17 of 17

11. Sun, X.; Li, T.; Xu, J. UI Components Recognition System Based On Image Understanding. In Proceedings of the 2020 IEEE 20th
International Conference on Software Quality, Reliability and Security Companion (QRS-C), Macau, China, 11–14 December 2020;
pp. 65–71. [CrossRef]

12. CNN. Available online: https://en.wikipedia.org/wiki/Convolutional_neural_network (accessed on 1 June 2024).
13. Khaliq, Z.; Farooq, S.U.; Khan, D.A. A Deep Learning-based Automated Framework for Functional User Interface Testing. Inf.

Softw. Technol. 2022, 150, 13. [CrossRef]
14. Wang, W.; Lam, W.; Xie, T. An infrastructure approach to improving effectiveness of Android UI testing tools. In Proceedings of

the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA), Virtual, Denmark, 11–17 July 2021;
pp. 165–176. [CrossRef]

15. UIAutomator. Available online: https://developer.android.com/training/testing/other-components/ui-automator (accessed on
1 June 2024).

16. Tareen, S.A.K.; Saleem, Z. A comparative analysis of SIFT, SURF, KAZE, AKAZE, ORB, and BRISK. In Proceedings of the
2018 International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), Sukkur, Pakistan, 3–4
March 2018; pp. 1–10. [CrossRef]

17. Zhong, B.; Li, Y. Image Feature Point Matching Based on Improved SIFT Algorithm. In Proceedings of the 2019 IEEE 4th
International Conference on Image, Vision and Computing (ICIVC), Xiamen, China, 5–7 July 2019; pp. 489–493. [CrossRef]

18. Gupta, S.; Kumar, M.; Garg, A. Improved object recognition results using SIFT and ORB feature detector. Multimed. Tool. Appl.
2019, 78, 34157–34171. [CrossRef]

19. Andrianova, E.G.; Demidova, L.A. An Approach to Image Matching Based on SIFT and ORB Algorithms. In Proceedings of the
2021 3rd International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency (SUMMA),
Lipetsk, Russian Federation, 10–12 November 2021; pp. 534–539. [CrossRef]

20. Chhabra, P.; Garg, N.K.; Kumar, M. Content-based image retrieval system using ORB and SIFT features. Neur. Comput. Applic.
2020, 32, 2725–2733. [CrossRef]

21. Flask. Available online: https://flask.palletsprojects.com/en/3.0.x/ (accessed on 1 June 2024).
22. OpenCV. Available online: https://docs.opencv.org/4.x/ (accessed on 1 June 2024).
23. ORB. Available online: https://docs.opencv.org/3.4/d1/d89/tutorial_py_orb.html (accessed on 1 June 2024).
24. SIFT. Available online: https://docs.opencv.org/4.x/da/df5/tutorial_py_sift_intro.html (accessed on 1 June 2024).
25. GitHub. Available online: https://docs.github.com/en (accessed on 1 June 2024).
26. Moodle. Available online: https://moodle.org/ (accessed on 1 June 2024).
27. Docker. Available online: https://docs.docker.com/get-started/overview/ (accessed on 1 June 2024).
28. Visual Studio Code. Available online: https://code.visualstudio.com/docs (accessed on 1 June 2024).
29. OS. Available online: https://docs.python.org/3/library/os.html (accessed on 1 June 2024).
30. Shutil. Available online: https://docs.python.org/3/library/shutil.html (accessed on 1 June 2024).
31. Subprocess. Available online: https://docs.python.org/3/library/subprocess.html (accessed on 1 June 2024).
32. Xdotool. Available online: https://pypi.org/project/xdotool/ (accessed on 1 June 2024).
33. PyAutoGUI. Available online: https://pypi.org/project/PyAutoGUI/ (accessed on 1 June 2024).
34. PIL. Available online: https://pillow.readthedocs.io/en/stable/ (accessed on 1 June 2024).
35. Numpy. Available online: https://numpy.org/ (accessed on 1 June 2024).
36. Pytesseract. Available online: https://pypi.org/project/pytesseract/ (accessed on 1 June 2024).
37. FLANN. Available online: https://docs.opencv.org/3.4/d5/d6f/tutorial_feature_flann_matcher.html (accessed on 1 June 2024).
38. BFMatcher. Available online: https://docs.opencv.org/3.4/dc/dc3/tutorial_py_matcher.html (accessed on 1 June 2024).
39. Muuli, E.; Tonisson, E.; Lepp, M.; Luik, P.; Palts, T.; Suviste, R.; Papli, K.; Sade, M. Using Image Recognition to Automatically

Assess Programming Tasks with Graphical Output. Educ. Inf. Technol. 2020, 25, 5185–5203. [CrossRef]
40. Combefis, S. Automated Code Assessment for Education: Review, Classification and Perspectives on Techniques and Tools.

Software 2022, 1, 3–30. [CrossRef]
41. Mozgovoy, M.; Pyshkin, E. Unity Application Testing Automation with Appium and Image Recognition. Commun. Comput. Inf.

Sci. 2018, 779, 139–150. [CrossRef]
42. Rainforest QA. Available online: https://www.rainforestqa.com/blog/ui-testing-tools (accessed on 20 July 2024).
43. Applitools Eyes. Available online: https://applitools.com/platform/eyes/ (accessed on 20 July 2024).
44. Screenster. Available online: https://www.screenster.io/ui-testing-automation-tools-and-frameworks/ (accessed on 20 July

2024).
45. Flutter Drive. Available online: https://fig.io/manual/flutter/drive (accessed on 1 June 2024).
46. Appium. Available online: https://appium.io/docs/en/latest/ (accessed on 1 June 2024).
47. Selenium WebDriver. Available online: https://www.selenium.dev/documentation/webdriver/ (accessed on 1 June 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/QRS-C51114.2020.00022
https://en.wikipedia.org/wiki/Convolutional_neural_network
http://dx.doi.org/10.1016/j.infsof.2022.106969
http://dx.doi.org/10.1145/3460319.3464828
https://developer.android.com/training/testing/other-components/ui-automator
http://dx.doi.org/10.1109/ICOMET.2018.8346440
http://dx.doi.org/10.1109/ICIVC47709.2019.8981329
http://dx.doi.org/10.1007/s11042-019-08232-6
http://dx.doi.org/10.1109/SUMMA53307.2021.9632214
http://dx.doi.org/10.1007/s00521-018-3677-9
https://flask.palletsprojects.com/en/3.0.x/
https://docs.opencv.org/4.x/
https://docs.opencv.org/3.4/d1/d89/tutorial_py_orb.html
https://docs.opencv.org/4.x/da/df5/tutorial_py_sift_intro.html
https://docs.github.com/en
https://moodle.org/
https://docs.docker.com/get-started/overview/
https://code.visualstudio.com/docs
https://docs.python.org/3/library/os.html
https://docs.python.org/3/library/shutil.html
https://docs.python.org/3/library/subprocess.html
https://pypi.org/project/xdotool/
https://pypi.org/project/PyAutoGUI/
https://pillow.readthedocs.io/en/stable/
https://numpy.org/
https://pypi.org/project/pytesseract/
https://docs.opencv.org/3.4/d5/d6f/tutorial_feature_flann_matcher.html
https://docs.opencv.org/3.4/dc/dc3/tutorial_py_matcher.html
http://dx.doi.org/10.1007/s10639-020-10218-z
http://dx.doi.org/10.3390/software1010002
http://dx.doi.org/10.1007/978-3-319-71734-0_12
https://www.rainforestqa.com/blog/ui-testing-tools
https://applitools.com/platform/eyes/
https://www.screenster.io/ui-testing-automation-tools-and-frameworks/
https://fig.io/manual/flutter/drive
https://appium.io/docs/en/latest/
https://www.selenium.dev/documentation/webdriver/

	Introduction
	Literature Review
	Programming Education
	UI Testing
	Image Detection Algorithms

	Adopted Software Tools
	Flask
	OpenCV
	ORB
	SIFT

	GitHub
	Moodle

	Review of FPLAS Platform
	Overview of FPLAS
	Usage Procedure and Access Exercises by Student

	Proposal of Image-Based UI Testing Method
	Software Architecture
	Data Pre-Processing for UI Testing
	UI Image Capture Step
	Black Border Removal Step

	Image-Based UI Testing

	Evaluation
	Participant Overview and Methodology
	Five Flutter Projects for Exercises
	Results of Five Exercises
	Results of Exercise-1 and Exercise-2
	Result of Exercise-3
	Result of Exercise-4
	Result of Exercise-5

	Discussion
	Findings
	Automation of Multiple UI Screenshots
	Limitations and Future Work
	Advantages for University Teachers

	Conclusions
	References

