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Abstract

In this paper, we derive the generalized hypergeometric functions used in mirror computation of
degree k hypersurface in C PV ! as generating functions of intersection numbers of the moduli space
of quasimaps from C'P! with two marked points to CPN 1.

1 Introduction

In this paper, we discuss the following two (intersection) numbers defined as values of residue integrals.
Definition 1
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In the above formulas, e*(z,w) is given by H?ZO(jz + (k — j)w), and the operation ﬁ $. dz; means

taking residues at z; = 0 for i = 0,d and at z; = 0, % fori=1,...,d—1. Residue integral is
taken in ascending order with respect to the subscript of z;’s

In the above definition, we assume that the integer j can take any non-negative integers.

The first one, ’LU(U(N kydti—1(Opv—2-3)Opo)o,2, is given as an intersection number of the moduli
space of quasimaps Mp0 5(N,d) from C'P! with two marked points 0,00 € CP! to CPN~1! [4, 6, 12], if
0<j<N-2 ! In this case, we can express the intersection number by using elements of Chow ring of
M Po,z(N ) d)-
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In the above formula, we interpret # as [[,_,(iH;—1 + (k — i)H;) and Hy, Hy,...,Hq are

generators of Chow ring of ]\//.7}/90’2 (N, d) that satisfy the following relations [12]:
(Ho)™ =0, (H;)™(2H; — Hj—y — Hj11) =0 (j=1,2,....d 1), (Ha)" =0. (1.4)

The factor Hf;ll m in (1.1) and (1.2) comes from the second relation (H;)™ (2H; — Hj_; —
Hjp1) =0. If j > N — 2, we can no longer express w(o(n—)d+j—1(Opv—2-7)Opo)o2 in terms of Chow
ring because negative power of Hj appears. But the residue integral representation (1.1) may give us
non-vanishing rational number even in this case.

The second one, w(o;(Opn-2-3)O0p-1-0—wa|(Op) FTE=Nd)o o1 1 4 n)q is more exotic. The symbol
“R” originally means hyperplane class in H%!(CPN~1 C), but in notation of the intersecion number,
negative power of h appears. It is formally interpreted as a 2+ (14 (k— N)d) pointed intersection number
of the moduli space of quasimaps mO,Q\(l +(k—N)a) (IV; d) constructed in [10]. By allowing negative power
of h formally, this intersection number can alternatively be represented as follows:
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In the above formula, we assumed Hori’s equation [2] for 2 + m pointed intersection numbers:
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and applied it iteratively. This equation is proved in the case of m = 1 in [9]. By allowing the following
“formal” expression:
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we reach the formula (1.2). w(0;(Opn-2-3)Op-1-k-nya|(Op) FE=ND) g 5111 (1 nya may also turn out to
be non-vanishing for any non-negative integer j.
In this paper, we prove the following two theorems on these numbers.

Theorem 1 If N > k > 1, the following equality holds.
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1The symbol o; means the j-th power of Mumford Morita class defined as the first Chern class of the line bundle on
Mp072(N, d) whose fiber is given as the cotangent space of C P! at the first marked point 0 € C'P*.



Theorem 2 If2 < N <k, the following equality holds.
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These two theorems are extentions of our former result given in [8], which realized generalized hypergeo-
metric series used in mirror computation of genus 0 Gromov- Witten invariants of Calabi-Yau hypersurface
in CPN~! as a generating function of the intersection number w(o;(Opn-2-5)Op-1)0,q of Mpy »(N, d), to
the case of degree k hypersurface in C PNV ~!. Theorem 1 corresponds to Fano (k < N) case, and Theorem
2 corresponds to Calabi-Yau and general type (k > N) cases.

In Fano case, Givental considered the following differential equation:
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Linear independent solutions of the above equation are given as follows.
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In [1], Givental computed gravitational Gromov-Witten invariant (o(n_gya+j—1(Opn-2-3)Oro)0,a, Which

(j=0,1,...,N —2). (1.11)

e=0

is defined as intersection number of moduli space of stable maps Mg 2(C PN =1 d), by using localization
technique invented by Kontsevich [11], and proved the following theorem:

Theorem 3 (Givental, Theorem 9.1 in [1])? If N — k > 2 (k > 1), the following equality holds.
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Therefore, Theorem 1 corresponds to quasimap version of Theorem 3. Since we are treating the moduli
space of quasimaps Mp, 5(N,d), the equality (1.8) holds in the N —k = 1 case. Origin of this difference
is expalined in [5]. In contrast to complexity of the proof of Theorem 3, due to complicated combinatorial
structure of boundaries of the moduli space of stable maps, our proof of Theorem 1 is quite straghtforward
and simple.

In the general type case, we can still consider the differential equation (1.10) and the series given in
(1.11) are still formal solutions. But as was suggested in [3], convergence radii of these series are equal to
0. Therefore, Theorem 2 should be regarded as a “formal” result. Exotic characteristics of the intersection
number w(o;(Opn-2-3)Op1-x—na|(Op) TE=ND) (o L (1~ n)a may come from this formality. Theorem
2 can be interpreted as a kind of completion of the equality observed in [5]:

(kd)!
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In closing this section, we mention new feature of the proof of the main thoerems, presented in Subsection
2.1. This technique drastically simplifies computational processes of the proof. Hence the proof given in
Subsections 2.2 and 2.3 can be regarded as simplification of the proof given in our former literature [8].

Acknowledgment We would like to thank Prof. G. Ishikawa and Prof. A. Tsuchida for kind encour-
agement. Our research is partially supported by JSPS grant No. 22K03289.

2 Proof of the Main Theorems

2.1 The “Infinitesimal Displacement” of a Pole

In this subsection, in order to compute the residue integrals (1.1) and (1.2) effectively, we introduce
technique of reduction of order of a pole in the residue integrals. Let a be any complex constant. Let

2To be precise, the theorem given here is arranged by the authors from Givental’s original statement.



f(z,w) be a complex function of two variables that has the form:

f(zw) = %- (2.14)

In (2.14), g(z,w) is a holomorphic function on the open subset

By = {(z,w) € C*; |2] < 2r, 2w — 2 — o] < 213} (2.15)

for some positive real constants r1,rs satisfying 0 < vy < 2ro — r1. Moreover, let C'(0) and C’(Zga) be
contours z(t) := ry exp(2mv/—1t) (r1 > 0; 0 < ¢ < 1) on z-plane and w(t) := 5% +rg exp(2my/—1t) (rg >
0; 0 <t <1)on w-plane, respectively.

We consider the following residue integral:

w—z

Ijzzm Cocffcmdwf(z,w)( . )j (Gj=0,1,...), (2.16)

where ﬁ 5500 dz and r\l/jl fcm dw are the operations of taking residue at z = 0 and w =
2

Z;"‘, respectively. We remark here that these are realized as contour integrals #\/jl fo(o) dz and
%7\1/_71 fC( sty dw. In (2.16), residue integrals are done from left to right in accordance with the no-

tation used in Definition 1. Hence we integrate the z-variable first. The integrand in (2.16) have a higher
order pole at z = 0. In such case, we have to compute higher derivatives with respect to the variable z. In
order to avoid computing higher derivatives, we introduce the generating function of I;’s (this operation
leads to “infinitesimal displacement” of the pole at z = 0). Then we can reduce our computation to
taking residue of a simple pole of the z-variable. Let F'(¢) be the generating function of I; (j =0,1,...)
given as follows:
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where ¢ is a small parameter. The part of z-integration of the above generating funcion:
1 dz w—2z\’
Gi(w;e) := — f(z,w €
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is holomorphic for w on By, := {w € C; r; < [2w — a| < 2ry — r1}.2 By using Weierstrass M-test, we
can easily see that we can exchange order of integration and summation in (2.17):

F(e) = (27“/1—1)2}2(0) o j{(zw) = 25(_zzw_)a (wz_za)J
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3If w € By, then 2w — 71?2V~ —q| < 2w —a| + 71 < (2r2 —71) + 71 = 272 (ie., (r1e>™V~1* w) € By, ) and
|211J7T‘1627TV T _a|>2w—a|l—ry >r1 —r1 =0.
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for all €’s that satisfy
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Note that this condition ensures convergence of the series Z;io (%E)j in (2.19). Since

lim
e—0

w| =0 2.21

1+e ’ (2.21)
holds and w is a point belonging to the open subset By, ,,, we can take some positive constant r (< m)
such that $S-w is contained in the interior of the contour C(0) if |¢[ < r. Moreover, the numerator
g(z,w) of the integrand in (2.19) is holomorphic on B,, ., that contains C(0) x C(25%). Thus we can
apply Cauchy’s integral theorem to the z-integral in (2.19):

1 (z,w) 1
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Then we only have to take residue at w = éiia:
L 9 (5w w)
F(e) = . dw ————+, (2.23)
24¢ 2my/-1 C%EQ w—é—iza
where —— F fcl dw is the operator of taking residue at w = %%044.
With these dlSCUbSIOHb we have proved the following lemma:
Lemma 1 Let f(z,w) be a complex function of the form
flzw) = _olew) (2.24)
2w—-—z—-«a

and assume that g(z,w) is holomorphic on some open subset of C? that contains By, ,, for some r1,7.
Then we can choose some constant r(> 0) such that the following equality:
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holds for all €’s that satisfy || < r. In particular, the generating function F(e) of the integral I; is
holomorphic at € = 0.

2.2 Proof of Theorem 1

In this section, we prove Theorem 1 by using Lemma 1. By Definition 1, w(o(n—g)d+;—1(Opv-2-5)Opo)o,2
is given by
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ek (z,w) = k—j)z+jw) (N—k>1) (2.27)
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is a degree (k + 1) polynomial and %\% fCi dz; (i=0,...,d) is the operation of taking residue(s) at

{zizo (i=0,d), (228)

2 =0,2=1050 (j=1,...,d-1).

Note that e (z,w) is divisible by z and w (and therefore ¢¥(z,0) = 0). In order to prove our assertion,
we introduce the generating function of the above integrals:
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where fo(z0,...,24) is defined by
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With this set-up, we have only to prove the following equality:
kd
k
Fo(e) =k - w (for any sufficiently small €). (2.31)
Hr:l(T + E)N
Note that since e*(z;_1, z;) is divisible by z; 1, fo(20, ..., 2q) is holomorphic at the point (zp, ..., zq4) such
that
221‘—2’,‘,1—Zi+1750 (i=2,...,d—1), 2:1750. (2.32)
fo(z0,--+524)

Thus we can apply Lemma 1 for by taking some constant ro(> 0). Then we obtain
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where ﬁ fcm dz (a € C) is the operation of taking residue at z; = «. For later use, we also deonote

by ﬁ me dz;j (o € C) the operation of taking residue at z; = a. Since

M:k<ﬁ(r+ke>> (1i6>k¢o (2:34)

Tte~l

r=1
and
- (N—k)d—1 1 (N—k)d—1
— = 0 2.35
(Zl 1+521) <1+521) #0, (2.35)
the 1st term of (2.33) is
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and it is holomorphic at the point (z1,..., z4) such that
2Zi+1 — Z; — Zi42 #0 (Z: 1,...,d—2). (238)

On the other hand, we can compute the 2nd term of (2.33) in the same way as in the discussion in

Subsection 2.1:
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Here, we take the integral contour of fc dz as z1(t) = ryexp(2nv/—1t) (r1 > 0,0 <t < 1) and assume

that 2o satisfies the condition: r; < |2+5H22| ® Therefore we obtain

k 15, (7 + ke)
Fo(e) = L Fi(e) (le] < 2.40
) = T RE g rs iy e (e<r) (2.40)
5Later, we impose analogous conditions on z3, - - - , z4 in evaluating ij o dz; (j = 3,---d) in order to guarantee vanishing

of the terms arising from §Cv o dz;.
7,



where we set

. 1 . dzo dzq fl(zl,..., d)
Fi(e) := (QWF) ji - d 1}502 )N 721 CGaN 2 — L, (2.41)
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Next, we consider the following integration of fL(Ziz2d),
zZ1— 2Te zZ2
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In the same way as the discussion in Subsection 2.1, the 1st term of (2.42) is computed as follows:

1 f dz % dZQ fl(zla"'azd)
e o 1
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Then the function fa(z2,...,24) is holomorphic at the point (z9,...,z4) where the following conditions
are satisfied:
2Zi+1 — Z; — Ri42 750 (i:2,...,d—2). (245)

On the other hand, the 2nd term of (2.42) vanishes in the same way as the computation in (2.39):
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=0. (2.46)

Here, we take the integral contour of fc dze as z(t) = roexp(2my/—1t) (r2 > 0,0 <t < 1) and assume

that ro and z3 satisfiy the conditions: r1 < |2+€ Ira, 2 < |3+5|\23|, respectively. Hence we have

(1+e)N-m@-D-1 % (r + ke)

Fi(e) = 2+ 6)(1\/—Ic)(d—2)—2(3 +e¢) (2 + 5)

FQ(E) (|€| <T1), (247)

where
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By repeating the procedures so far, we reach the following expression:

F()(E) = Zw(J(N_k)d+j_1(OhN—ij)OhO)O,Q Ej

7=0
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_ Fy f fRiciently small £),  (2.49
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where
1 dzg (del)(N_k)'l_l ek(Zd,th)
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o ey, T I GO - B R
Then we can easily evaluate this integral as
d—1 (N=k)-1-1 fi _ T+ ke
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(d+e)1 (d+e)N
In this way, we finally obtain
kd
k
Fo(e) = k- M (for any sufficiently small ¢), (2.52)
[[—i(r+e)¥
which completes the proof of Theorem 1. [
2.3 Proof of Theorem 2
As was done in the proof of Theorem 1, we consider the generating function:
Gole) == > w(oj(Opv-2-1)Op-1--ma| (On) T )0 o114 (1 wya €7 (2.53)

=0

By using (1.2) in Definition 1, Gy(e) is given as the following residue integral:

1 > dzo dzs dzq  go(zo,---,24) (21— 20\
Gole) = — 2 7{7]4 dz]{ ]{ &, (251
o) (2my/—1)dHt gz:;) oo o Joo Joy @)Y Jo, Ga)N 25—z -2\ 2 (2.54)

where we set go(zo, ..., 24) as
1+(k—N)d
go(20,. -, 24) 1= (le)N.(d+ZIZ_()ZO) (k—=N) .W
. d_l;[7:2 Clivz) 1w (2.55)
[ici Rzig1 — zig2 — 21) [l kzi
Since go(2o, - - -, 24) is holomorphic at the point (2, ..., zq) such that
22— 21— 21 #£0 (1=2,...,d—1), 2z1#0, z4#0, (2.56)

we can apply Lemma 1 and the remaining processes go in the same way as the proof of Theorem 1. [J
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