
An Implementation of Code Plagiarism Checking
Function for Code Writing Problem in Java
Programming Learning Assistant System

March, 2024

Ei Ei Htet

Graduate School of
Natural Science and Technology

(Doctor’s Course)
Okayama University

Dissertation submitted to
Graduate School of Natural Science and Technology

of
Okayama University

for
partial fulfillment of the requirements

for the degree of
Doctor of Philosophy.

Written under the supervision of

Professor Nobuo Funabiki

and co-supervised by
Professor Satoshi Denno

and
Professor Yasuyuki Nogami

Okayama University, March 2024.

ToWhom ItMay Concern

We hereby certify that this is a typical copy of the original doctor thesis of
EI EI HTET

Signature of Seal of

the Supervisor

Graduate School of

Prof. Nobuo Funabiki Natural Science and Technology

Abstract

As the reliable and portable object-oriented programming language, Java programming has been
extensively used to implement a variety of practical systems. A large number of universities and
professional schools are offering Java programming courses to meet these needs. To assist Java
programming education in schools, we have developed the Web-based Java Programming Learn-
ing Assistant System (JPLAS). JPLAS offers various types of exercise problems at different levels
such that the correctness of any answer from a student is automatically verified. Among them,
the code writing problem (CWP) asks a student to write a source code to pass the given test code
where the correctness is verified by running them on JUnit. Unfortunately, some students copied
the answer source codes made by other students and submitted them to the teacher. This code
plagiarism needs to be found to avoid them.

In this thesis, I implemented the code plagiarism checking function for the code writing prob-
lem (CWP) in Java Programming Learning Assistant System. This function first removes the
whitespace characters and the comments using the regular expressions. Next, it calculates the
Levenshtein distance and similarity score for each pair of source codes from different students in
the class. If the score is larger than a given threshold, they are regarded as plagiarism. Finally, it
outputs the scores as the CSV file with the student IDs. The results confirm the effectiveness of
Code Plagiarism Checking Function in detecting the answers of the students who attempt to solve
CWP problems while studying Java programming after solving many simple JPLAS problems.

Recently, Python programming has gained the popularity for use in various groundbreaking
fields in experiments, prototyping, embedded systems, and data sciences, due to rich libraries and
short coding features. A lot of people in both IT and non-IT fields will start using it to achieve
their needs. Then, high-quality learning tools of Python programming have been highly demanded,
especially for self-study, since many people have no opportunities of taking the courses at schools.

Therefore, in the thesis, I implemented the Grammar-Concept Understanding Problem (GUP)
to be able to understand the basic grammar keywords with their respective definitions for novice
students who are learning Python Programming. A GUP instance asks for the knowledge and
understanding of the keywords with their intended definitions. A GUP instance consists of a source
code and a set of questions describing the definitions of grammar or library keywords appearing
in the code. The correctness of the answer from a student is marked through string matching with
the correct keyword. The goal of GUP is to give students opportunities to profoundly code reading
with a clear understanding of its grammar meaning. The results show that the proposal is effective
in improving the performance of the students who are novices in Python Programming.

In future works, I will apply the code plagiarism checking function to other programming
languages such as C and Python. I will also generate a variety of GUP questions for the advanced
topics, useful libraries and apply them to students.

i

Acknowledgements

It is my great pleasure to thank those people who have supported and encouraged me throughout
this Ph.D. study at Okayama University, Japan. It would not be possible to complete this thesis
without their help. I want to say many things, but I can hardly find the proper words. Therefore, I
will just say that you are the greatest blessing in my life.

I owe my deepest gratitude to my supervisor, Professor Nobuo Funabiki, who has supported
me throughout my thesis with his patience and knowledge. I am greatly indebted to him, whose
encouragement, advice, and support from the beginning to the end enabled me to proceed with this
study, not only in scientific issues but also in life. He gave me wonderful advice, comments, and
guidance when formulating problems, writing papers, and presenting them. Thanks for making me
who I am today.

I am deeply grateful to my co-supervisors, Professor Satoshi Denno and Professor Yasuyuki
Nogami, for their continuous support, guidance, mindful suggestions, and proofreading of this
work.

I also want to express my gratitude to the course teachers during my Ph.D. study for enlight-
ening me with wonderful knowledge. I would like to acknowledge the Monbukagakusho Honors
Scholarship (JASSO Scholarship) for financially supporting my Ph.D. study. I would like to thank
my friends and colleagues who helped me in this study, including Dr. Htoo Htoo Sandy Kyaw, Dr.
San Hay Mar Shwe, Dr. Hein Htet, Ms. Soe Thandar Aung, Ms. Khaing Hsu Wai, Ms. Shune Lae
Aung and Mr. Lynn Htet Aung all the FUNABIKI Lab’s members. Thank you for your support
during my tough time during this study and thank you for sharing the thoughts and experiences
with me.

Finally, I am eternally grateful to my beloved family and teachers, who always encourage
and support me throughout my life. Your support and understanding gave me the strength and
inspiration to overcome any difficulty in my life.

Ei Ei Htet
Okayama, Japan

March 2024

ii

List of Publications

Journal Papers
1. Ei Ei Htet, Khaing Hsu Wai, Soe Thandar Aung, Nobuo Funabiki, Xiqin Lu, Htoo Htoo

Sandi Kyaw, and Wen-Chung Kao, “Code Plagiarism Checking Function and Its Application
for Code Writing Problem in Java Programming Learning Assistant System”, Analytics, vol.
3, no. 1, pp. 46-62, January 2024.

International Conference Papers

2. Ei Ei Htet, San Hay Mar Shwe, Soe Thandar Aung, Nobuo Funabiki, Evianita Dewi Fa-
jrianti, and Sritrusta Sukaridhoto, “A study of grammar-concept understanding problem for
Python programming learning,” 2022 IEEE 4th Global Conference on Life Sciences and
Technologies (LifeTech 2022), pp. 245-246 (Osaka, Japan, 2022).

iv

List of Figures

2.1 Server platform for JPLAS. 5
2.2 Software architecture for JPLAS. 6
2.3 Usage flow of Desktop-version JPLAS. 9
2.4 Operation flow for offline answering function. 10
2.5 MVC model in JPLAS using Node.js. 11

3.1 CWP software architecture. 18
3.2 CWP answer interface. 18
3.3 Example of file structures with folder hierarchy 19
3.4 Results for basic grammar. 24
3.5 Results for data structure. 25
3.6 Results for object oriented programming. 26
3.7 Results for fundamental algorithms. 26
3.8 Results for final examination. 27

4.1 GUP User Interface . 32

v

List of Tables

2.1 Files for distribution. 10

3.1 CWP assignments for evaluations. 23
3.2 Number of student pairs with identical codes. 25
3.3 Number of student pairs with identical codes. 25
3.4 Number of source codes and results in each group. 28

4.1 Students performance for GUP. 33

vii

Contents

Abstract i

Acknowledgements ii

List of Publications iv

List of Figures v

List of Tables vii

1 Introduction 1
1.1 Background . 1
1.2 Contributions . 2
1.3 Contents of This Dissertation . 2

2 Review of Java Programming Learning Assistance System (JPLAS) 4
2.1 JPLAS Overview . 4

2.1.1 Server Platform . 4
2.1.2 Software Architecture . 4
2.1.3 Implemented Problem Types . 5

2.2 Service Functions in JPLAS . 7
2.2.1 Teacher Service Functions . 7
2.2.2 Student Service Functions . 7

2.3 Desktop-version JPLAS . 8
2.4 Offline Answering Functions in JPLAS . 8

2.4.1 Operation Flow . 9
2.4.2 File Generation . 9
2.4.3 Cheating Prevention . 9

2.5 Implementation of JPLAS Platform Using Node.js and Docker 10
2.6 Elaboration of PyPLAS . 11

2.6.1 Problem Types in PyPLAS . 12
2.7 Summary . 13

3 Code Plagiarism Checking Function and Its Application for Code Writing Problem
in Java Programming Learning Assistant System 15
3.1 Introduction . 15
3.2 Previous Works of Code Writing Problem . 15

3.2.1 Code Writing Problem . 15

ix

3.2.2 JUnit for Unit Testing . 16
3.2.3 Example Test Code . 16
3.2.4 CWP Answer Platform for Students . 17
3.2.5 Answer Code Validation Program for Teachers 19

3.3 Code Plagiarism Checking Function . 20
3.3.1 Levenshtein Distance . 20
3.3.2 Procedure of Code Plagiarism Checking Function 20
3.3.3 Example Result . 20
3.3.4 Computational Complexity Analysis of Code Plagiarism Checking Function 21

3.4 Analysis of Application Results . 22
3.4.1 CWP Assignments . 22
3.4.2 Analysis Results of Individual Assignments 24

3.4.2.1 Results for Basic Grammar . 24
3.4.2.2 Results for Data Structure . 24
3.4.2.3 Results for Object Oriented Programming 25
3.4.2.4 Results for Fundamental Algorithms 26
3.4.2.5 Results for Final Examination 27

3.4.3 Analysis Results of Assignment Group 27
3.5 Summary . 28

4 A Study of Grammar-Concept Understanding Problem for Python Programming
Learning 30
4.1 Introduction . 30
4.2 GUP Instance Generation . 30

4.2.1 Input Files . 31
4.2.2 GUP Generation Procedure . 31
4.2.3 User Interface of GUP . 31

4.3 Evaluation . 32
4.3.1 Correct Rate Result . 32
4.3.2 Submission Times Results . 32

4.4 Summary . 33

5 Related Works in Literature 36

6 Conclusion 39

References 40

x

Chapter 1

Introduction

1.1 Background
As the reliable and portable object-oriented programming language, Java programming has been
extensively used to implement a variety of practical systems. The usage of Java has involved
mission-critical systems for both large-scale enterprises and small-sized embedded systems. There-
fore, there have been strong demands in IT companies for the cultivation of Java programming
engineers. A large number of universities and professional schools are offering Java programming
courses to meet these needs.

To assist Java programming education in schools, we have developed the web-based Java pro-
gramming learning assistant system (JPLAS) as a self-study tool for learning Java programming.
The web server of JPLAS adopts Node.js for the web application server, JavaScript, Java, and
Python for application programs. The file system is used for handling the problem data and the
students’ data. The user can access to JPLAS through a web browser. The programs of JPLAS will
be distributed to students using Docker. By installing it in their computers, students can access to
JPLAS even if no Internet access is available.

In JPLAS, there are several types of exercise problems, such as the grammar concept under-
standing problem (GUP) for studying keyword definitions [1], the value trace problem (VTP) for
reading value changes of important variables in the source code [2], the element fill-in-blank prob-
lem (EFP) for studying partial source code writing [3], and the code writing problem (CWP) for
studying full source code writing [4], which can cover various students at different learning levels.
The correctness of any answer is automatically checked in the system, and the result will be auto-
matically returned to the learner so that he/she can instantly correct them. Among them, the code
writing problem (CWP) [4] asks a student to write a source code to pass the given test code where
the correctness is verified by running them on JUnit.

Unfortunately, some students copied the answer source codes made by other students, and
submitted them to the teacher. This code plagiarism needs to be found to avoid them. Previously,
we implemented the answer code validation program in Python to help teachers. It automatically
verifies the source codes for one test code from all the students, and reports the number of passed
test cases by each code in the CSV file. While this program plays a crucial role in checking
the correctness of code behaviors, it cannot detect the code plagiarism that can often happen in
programming courses.

1

1.2 Contributions
In this thesis, as the first contribution of the thesis, I propose the code plagiarism checking function
for the code writing problem in JPLAS. This function first removes the whitespace characters and
the comments using the regular expressions. Next, it calculates the Levenshtein distance between
the two source codes from each pair of the students in the class. Third, it calculates the simi-
larity score from the distance. If the score is larger than a given threshold, they are regarded as
plagiarism. Finally, it outputs the scores in the CSV file with the student IDs.

For evaluations, we applied the proposed function to a total of 877 source codes for 45 CWP
assignments submitted from 9− 39 students and analyzed the results. It was found that 1) CWP
assignments asking for shorter source codes generate higher scores than those for longer codes due
to the use of test codes, 2) proper thresholds are different by assignments, and 3) some students
often copied source codes from certain students.

In the second contribution, I implement the grammar-concept understanding problem (GUP)
for studying basic grammar concepts of Python Programming by novice students. A GUP instance
asks for the knowledge and understanding of the keywords with their intended definitions. A GUP
instance consists of a source code and a set of questions describing the definitions of grammar or
library keywords appearing in the code. The correctness of the answer from a student is marked
through string matching with the correct keyword.

For evaluations, we generate 24 GUP instances with 139 questions and assign them to 9 stu-
dents in Okayama University. The results show that the proposal is effective in revealing the student
understanding levels.

1.3 Contents of This Dissertation
The remaining part of this thesis is organized as follows: Chapter 2 reviews the overview of Java
programming learning assistant system with the server platform, the software architecture, and the
implemented problem types. Chapter 3 presents the code plagiarism checking function for the
code writing problem (CWP) in JPLAS. Chapter 4 presents the grammar-concept understanding
problem (GUP) for Python programming. Chapter 5 reviews relevant works in literature. Finally,
Chapter 6 concludes this thesis with some future works.

2

Chapter 2

Review of Java Programming Learning
Assistance System (JPLAS)

In this chapter, we introduce the outlines of Java Programming Learning Assistant System (JPLAS)
and Python Programming Learning Assistant System (PyPLAS).

2.1 JPLAS Overview
Firstly, we overview the server platform, the software architecture, and the implemented problem
types of JPLAS.

2.1.1 Server Platform
Originally, JPLAS was implemented using JSP with Java 1.6.2 as the web application on a server.
It adopts Ubuntu-Linux 10.04 as the operating system running on VMware for portability. Tomcat
6.0.26 is used as the web application server to run JSP source codes that is a script language with
embedding Java codes within HTML codes. Tomcat returns the dynamically generated web pages
to the client web browser. MySQL 5.0.27 is adopted for managing the data in JPLAS. Figure 2.1
illustrates the server platform of JPLAS [6].

2.1.2 Software Architecture
The software architecture of JPLAS follows the MVC model as the common architecture of the
web application system. It basically uses Java for the Model (M), HTML/CSS/JavaScript for the
View (V), and JSP for the controller (C).

The system implements the logic functions of JPLAS using Java. For the independence from
the view and controller, any input/output to/from the model uses a string or its array that does
not contain HTML tags. Servlet is not used to avoid the possible redundancy that could happen
between Java codes and Servlet codes where the same function may be implemented. A design
pattern called Responsibility Chain is adopted to handle marking functions of the student answers,
and the specific functions for the database access are implemented such that the controller does not
handle them.

The view implements the user interfaces of JPLAS by using a CSS framework to provide in-
tegrated interfaces using Cascading Style Sheet (CSS) in the web standard. The user interface is

4

Figure 2.1: Server platform for JPLAS.

dynamically controlled with Ajax to reduce the number of JSP files.
For the control architecture, the control in JPLAS is implemented by JSP. When it receives

a request from the view, it sends it to Java in the model and requests the corresponding process.
When Java in the model returns the processing results by strings, the control changes the format
for the view use HTML. The procedure is elaborated as follows:

1) to show the assignment list in the view, JSP in the control receives the list with strings in
the two dimensional array, changes them into the table format in HTML, and sends them to
JavaScript in the view,

2) to demonstrate the selected assignment in the view, JSP receives the details with strings,
changes them into the table in HTML, and sends it to JavaScript, and

3) to mark the answers from the student, JSP receives them from JavaScript in the view and
sends them to Java in the model. After completing the marking in the model, JSP receives
the marking results from Java, changes them into the table format in HTML, and sends it to
JavaScript in the view [5].

The overall software architecture in JPLAS can be seen in Figure 2.2.

2.1.3 Implemented Problem Types
Currently, JPLAS has several types of exercise problems to accommodate a variety of students at
difference learning levels. Problem types in JPLAS are as follows:

1) Grammar Concept Understanding Problem (GUP): This problem instance consists of a
source code and a set of questions on grammar concepts or behaviors of the code. Each
answer can be a number, a word, or a short sentence, whose correctness is marked through
string matching with the correct one. The algorithm is implemented to automatically gener-
ate a GUP instance from a given source code by 1) extracting the registered keywords in the
source code, 2) selecting the registered question corresponding to each extracted keyword,
and 3) detecting the data required in the correct answer from the code [1].

5

Figure 2.2: Software architecture for JPLAS.

2) Value Trace Problem (VTP): This problem requires students to trace the actual values of
important variables in a code when it is executed. The correctness of the answers is also
marked by comparing them with their correct ones stored in the server [2].

3) Element Fill-in-blank Problem (EFP): This problem requires students to fill in the blank
elements in a given Java code. The correctness of the answers is marked by comparing
them with their original elements in the code that are stored in the server. The original
elements are expected to be the unique correct answers for the blanks [7]. To help a teacher
to generate a feasible element fill-in-blank problem, the blank element selection algorithm
has been proposed [8].

4) Statement Fill-in-blank Problem (SFP): This problem asks students to fill in the blank state-
ments in a code. The correctness of the code is marked by using the test code on JUnit
that is an open source software for the test-driven development (TDD) method [?]. To help
a teacher select blank statements from a code, the program dependency graph (PDG) has
been used [10].

5) Code Writing Problem (CWP): This problem asks students to write a whole code from
scratch that satisfies the specifications described in the test code [6]. The correctness of
the code of students is also marked by the test code.

6) Code Amendment Problem (CAP): In this problem type, a source code that has several miss-
ing or error elements, called a problem code, is shown to student. A student needs to identify
the locations of missing or error elements in the code, and to fill in them or correct them with
the correct elements. The correctness of any answer will be marked through string matching
of the whole statement with the corresponding original one in the code [11].

7) Code Completion Problem (CCP): In this problem, a source code with several missing ele-
ments is shown to the students without specifying their existences. Then, a student needs to
locate the missing elements in the code and fill in the correct ones there. The correctness of
the answer from a student is verified by applying string matching to each statement in the
answer to the corresponding original statement in the code. Only if the whole statement is
matched, the answer for the statement will become correct. Moreover, merely one incorrect
element will result in the incorrect answer [12].

6

2.2 Service Functions in JPLAS
There are two services functions in JPLAS, namely, teacher service functions, and student service
functions.

2.2.1 Teacher Service Functions
The teacher service functions include the problem generation, the registration and management of
assignments, the creation of projects, and analyzing student performance by checking student’s
answers and viewing the number of submissions for individual problem by each student to eval-
uate the difficulty of assignments, and compressions of students. If most of the students did a
lot of submissions for an assignment, the teacher need to consider that it will be too difficult for
the learners and if it is necessary, the teacher needs to change or replace that problem with easier
one. Sometimes, the teacher can implement hint functions, and recommendation functions for the
assignments to assist the students for better understanding. In addition, the teacher can also create
the references for each topic. On the other hands, if the teacher finds a student who submitted the
answers many times whereas other students did so fewer times, in this case, the teacher needs to
carefully instruct that student and check that student’s performing extraordinarily. Moreover, the
teacher can create the project assignment by summarizing all important concepts that was previ-
ously learned by the students to verify and evaluate the students’ situations about the corresponding
topics.

2.2.2 Student Service Functions
The student service functions include the view of the assignments, solving project assignments,
and the submissions of their answers for the assignments. For code writing problem type, the
student needs to write a source code for an assignment by reading problem statement, and the test
code where the student must use the class/method names, the types, and the other specifications to
satisfy the given test code. The answer from a student is generally processed at the JPLAS by the
following steps:

1) When a student accesses to JPLAS, the list of the assigned problems to the student is dis-
played.

2) When a problem is selected by the student, the corresponding problem text in the database
is displayed.

3) The student writes the answers in the corresponding forms.

4) The answers submitted by the student are marked in the server, and both the answer and the
marking results will be saved in the database.

5) JPLAS offers feeds back to the student.

6) If necessary, the student could repeat the steps from (3).

The utilization procedure for both JPLAS functions by a teacher and a student are given as follows:

1) A teacher generates a new problem, and registers it to the database.

7

2) A teacher generates a new assignment by selecting proper problems in the database and
registers it to the database.

3) A student selects an assignment to be solved.

4) A student selects a problem in the assignment to be solved.

5) A student solves the questions in the problem and submits the answers to the server.

6) The server marks the answers and returns the marking results.

7) A student modifies the incorrect answers and resubmits them to the server, if necessary.

8) A student refers to his/her solution results of the assignments.

9) A teacher refers to the solution results of all the students of the assignments.

2.3 Desktop-version JPLAS
As the previously mentions, JPLAS has been developed as a web application system. However,
it has been found that the online system can be used only in Internet-available environments and
it will be difficult in some areas where the Internet connection can’t access at all or may not be
stable due to the weak network infrastructure and the frequent power shortage, particularly in
developing countries. To avoid those difficulties of the online JPLAS, we have implemented the
offline Desktop-version JPLAS (D-JPLAS) as an efficient solution for schools and homes with the
poor Internet accesses. Unlike to the online JPLAS, D-JPLAS runs on the client PC only, without
the server access through the Internet. It keeps all the programs and data including the problems
and the student answers in the file system of the user’s PC, where it does not use the database.

Basically, the usage flow of offline D-JPLAS can be process through the following steps.
Firstly, the teacher needs to create and assign the programming assignment. After that, he/she
distributes the created assignment problems to the students, who are learning programming lan-
guages for improving their skills. Students can solve the assignments repeatedly on their own PC
on offline until they can get the correct answers. After that, the students need to submit their an-
swer files to the teacher who stores the files in the respective folder for each problem type and the
student. Finally, the teacher will manage and analyze the submitted answers on his/her own PC
using the answer analysis function, and give feedbacks to the students. The file exchange between
the teacher and student will be done through the USB memories, the file servers, or emails if the
Internet is accessible. Figure 2.3 illustrates the usage flow of Desktop-version JPLAS and Section
2.4 will discuss the offline answering functions in JPLAS.

2.4 Offline Answering Functions in JPLAS
As mentioned in Section 2.3, in addition to the online platform, the offline answering function
has been implemented to allow students to answer the problems in JPLAS even if the students
cannot access to the JPLAS server when the Internet is unavailable. Therefore, this function is
very useful and actually inevitable in applying JPLAS. For solving the problem instances in this
offline JPLAS, the problem assignment delivery and answer submission can be accomplished with
a USB. There are three mainly functions: operation flow, file generation, and cheating prevention
in offline JPLAS.

8

Figure 2.3: Usage flow of Desktop-version JPLAS.

2.4.1 Operation Flow
The operation flow of the offline answering function is as follows:

1) Problem instance download: a teacher accesses to the JPLAS server, selects the problem
instances for the assignment, and downloads the required files into the own PC on online.

2) Assignment distribution: the teacher distributes the assignment files to the students by using
a file server or USB memories.

3) Assignment answering: the students receive and install the files on their PCs, and answer the
problem instances in the assignment using Web browsers on offline, where the correctness
of each answer is verified instantly at the browsers using the JavaScript program.

4) Answering result submission: the students submit their final answering results to the teacher
by using a file server or USB memories.

5) Answering result upload: the teacher uploads the answering results from the students to the
JPLAS server to manage them.

2.4.2 File Generation
Table 2.1 shows the necessary files with their specifications for the offline answering function in
JPLAS. These files are designed for the problem view, the answer marking, and the answer storage.

2.4.3 Cheating Prevention
In offline JPLAS, the correct answers need to be distributed to the students so that their answers
can be verified instantly on the browser. To prevent disclosing the correct answers, they will be
distributed after taking hash values using SHA256 [20]. In addition, to avoid generating the same
hash values for the same correct answers, the assignment ID and the problem ID are concatenated

9

with each correct answer before hashing. Then, the same correct answers for different blanks are
converted to different hash values, which ensure the independence among blanks [12].

Figure 2.4: Operation flow for offline answering function.

Table 2.1: Files for distribution.

File name Outline
css CSS file for Web browser

index.html HTML file for Web browser
page.html HTML file for correct answers

jplas2015.js js file for reading the problem list
distinction.js js file for checking the correctness of answer

jquery.js js file for use of jQuery
sha256 js file for use of SHA256

storage.js js file for Web storage

2.5 Implementation of JPLAS Platform Using Node.js and Docker
Besides the online JPLAS and offline JPLAS, we implemented the JPLAS platform with the newly
designed software architecture using Node.js and Docker without the internet connection, to avoid
the redundancy and improve the portability of previous implementations [13].

The students can solve the JPLAS problems without Internet connection by installing all the
system in their PCs. Node.js [14] is adopted as the popular web application server, where applica-
tion programs on both the server and client can be made using JavaScript. Besides, Express.js [15]
is used together as the framework to reduce the implementation cost of this platform. Furthermore,
the user interface is dynamically controlled with EJS that can avoid the complex syntax structure.

To avoid the software version problem on a PC when we distribute the system to the students,
we use Docker which provides the flexibility and portability for running various software in dif-
ferent platforms. Docker [16]is adopted to make students easily install the platform software in
their own PCs, so that they can solve exercises in JPLAS without the Internet connections. Docker
has been designed to make it easier to create, deploy, and run an application program on various

10

platforms using the container. The Docker container [17] allows an application developer to com-
bine all the necessary software required to run the application program, such as the libraries, the
middleware, the parameters, and the other dependencies, into one package file called the container
image, to be shipped out. The Docker container image is a lightweight, standalone, and executable
package of all the software needed to run the application program. It may include the source codes,
the runtime environments, the system tools, the system libraries, and the settings.

As the software architecture, Mac OS is adopted for the operating system in the server platform.
Node.js is used as a web application server together with the Express.js framework. EJS is used
for the template engine. Any database system is not installed for managing the data. JUnit [18] is
used for testing the answer source codes in code writing problemre [6]. Visual Studio Code (VS
Code) IDE is used for editing the source codes as a popular development environment. In our
architecture, Java is used for the model (M) to run JUnit, JS/CSS/JavaScript are for the view (V),
and JavaScript (Node/Express) is for the controller(C). It is a compact web application server and
can create both the client and server side of the application using only JavaScript. It can make
application program is easy, simple and reduce by using a flexible framework as Express.js that
provides ready-made components for a web application. Node.js. The overall architecture can be
seen in Figure 2.5.

Figure 2.5: MVC model in JPLAS using Node.js.

2.6 Elaboration of PyPLAS
In today’s technology landscape, Python becomes a widely used as the highly versatile program-
ming language. It has gained immense popularity and importance in various domains. Python has
the following features:

1. Easy to Learn and Readability

2. Wide Range of Applications

3. Large Standard Library and Third-Party Packages

11

4. Cross-Platform Compatibility

5. Strong Community and Support

6. Data Science and Machine Learning

7. Scripting and Automation

8. Integration and Extensibility

Python has been used by professionals, programmers, and application developers. The follow-
ing list represents a few of the careers where Python is a key skill:

• Back-end developer (server-side)

• Front-end developer (client-side)

• Full-stack developer (both client and server-side)

• Web designer

• Back-end developer (Python developer)

• Machine learning engineer

• Data scientist

• Data analyst

• Data engineer

• DevOps engineer (development operations)

• Software engineer

• Game developer

• Statistician

• SEO specialist

• And more. . . [19]

Due to the Python’s importance, we considered to extend JPLAS to Python programming learn-
ing, called Python Programming Learning Assistant System (PyPLAS).

2.6.1 Problem Types in PyPLAS
Currently, we have implemented various types of problems with automatic marking functions to
cover self-studies of Python programming at different levels by novice students. They include
Grammar Concept Understanding (GUP), Value Trace Problem (VTP), Comment Insertion Prob-
lem (CIP), Code Modification Problem (CMP), and Code Writing Problem (CWP). Among them,
this thesis focuses on GUP. The answers of students are marked by string matching with correct
codes or by unit testing using test codes.

12

2.7 Summary
In this chapter, we reviewed JPLAS, including the functions in JPLAS and desktop versions of
JPLAS. Also, this chapter reviewed tge implementation of the JPLAS platform using Node.js and
Docker, and the elaboration of PyPLAS as the extension of JPLAS.

13

Chapter 3

Code Plagiarism Checking Function and Its
Application for Code Writing Problem in
Java Programming Learning Assistant
System

This chapter presents the code plagiarism checking function and its application for the code writing
problem in Java programming learning assistant system.

3.1 Introduction
To assist Java programming learning of novice students, our group has developed the web-based
Java Programming Learning Assistant System (JPLAS). JPLAS provides various exercise problems
at various levels to cultivate code reading and code writing skills of students. Among them, the
code writing problem (CWP) asks a student to write a source code to pass the given test code where
the correctness is verified by running them on JUnit.

Previously, our group implemented the answer code validation program in Python to help
teachers. It automatically verifies the source codes for one test code from all the students, and
reports the number of passed test cases by each code in the CSV file. While this program plays
a crucial role in checking the correctness of code behaviors, it cannot detect code plagiarism that
can often happen in programming courses.

In this chapter, I present the implementation of the code plagiarism checking function in the
answer code validation program.

3.2 Previous Works of Code Writing Problem
In this section, I discussed an overview of the code writing problem (CWP) and the answer platform
using Node.js in JPLAS.

3.2.1 Code Writing Problem
The code writing problem (CWP) assignment contains a statement accompanying with test code,
both provided by the teacher. Students are tasked with writing a source code that successfully

15

passes all the test cases described in the test code. The correctness of the source code from a student
is validated through code testing, utilizing JUnit to execute the test code with the source code. In
order to write the correct source code, each student should refer to the detailed specifications given
in the test code.

To generate a new assignment for CWP, the teacher needs to perform the following steps:

1. Create the problem statement with specifications for the assignment.

2. Make or collect the model source code for the assignment and prepare the input data.

3. Run the model source code to obtain the expected output data for the prepared input data.

4. Make the test code that has proper test cases using the input and output data, and add mes-
sages there to help implement the source code.

5. Register the test code and the problem statement as the new assignment.

3.2.2 JUnit for Unit Testing
In order to facilitate code testing, an open-source Java framework JUnit that has been designed
with a user-friendly style for Java, is utilized, aligning with the test-driven development (TDD)
approach. JUnit helps the automatic unit test of a source code. Performing a test on JUnit is
simple by using a proper “assert” method in the library. For example, the “assertEquals” method
compares the output by the source code with its expected output for the given input data, and shows
the result in the standard output.

3.2.3 Example Test Code
A test code is written by using the JUnit library. Here, the BubbleSort class in Listing 3.1 [24]
is used to explain how to write the corresponding test code. This BubbleSort class contains the
“sort(int[] a)” method for performing the bubble sort algorithm on the integer input array “a” and
returns the sorted array.

Listing 3.1: source code 1
1 package CWP;
2 p u b l i c c l a s s B u b b l e S o r t {
3 p u b l i c s t a t i c i n t [] s o r t (i n t [] a) {
4 i n t n = a . l e n g t h ;
5 i n t temp = 0 ;
6 f o r (i n t i =0; i < n ; i ++){
7 f o r (i n t j =1; j < (n− i) ; j ++){
8 i f (a [j −1] > a r r [j]) {
9 temp = a [j −1] ;

10 a [j −1] = a [j] ;
11 a [j] = temp ;
12 }

13 }

14 }

15 r e t u r n a ;

16

16 }

17 }

The test code in Listing 3.2 tests the sort method.

Listing 3.2: test code 1
1 package CWP;
2 i m p o r t s t a t i c o rg . j u n i t . A s s e r t . * ;
3 i m p o r t o rg . j u n i t . T e s t ;
4 i m p o r t j a v a . u t i l . A r r a ys ;
5 p u b l i c c l a s s B u b b l e S o r t T e s t {
6 @Test
7 p u b l i c vo id t e s t S o r t () {
8 B u b b l e S o r t b u b b l e S o r t = new B u b b l e S o r t () ;
9 i n t [] c o d e I n p u t 1 = { 7 , 5 , 0 , 4 , 1 , 3 } ;

10 i n t [] codeOutpu t = b u b b l e S o r t . s o r t (c o d e I n p u t 1) ;
11 i n t [] expOutpu t = { 0 , 1 , 3 , 4 , 5 , 7 } ;
12 t r y {

13 a s s e r t E q u a l s (” 1 : One i n p u t c a s e : ” ,
14 A rr ay s . t o S t r i n g (expOutpu t) , A r r ay s . t o S t r i n g (codeOutpu t)) ;
15 } c a t c h (A s s e r t i o n E r r o r ae) {
16 System . o u t . p r i n t l n (ae . ge tMessage ()) ;
17 }

18 }

19 }

This test code includes the three import statements for the JUnit packages at lines 2, 3, and 4.
It also declares the BubbleSortTest class at line 5, which contains one test method annotated with
“@Test” at line 6. This annotation indicates that the following lines represent a test case that will
be executed on JUnit as the following procedure:

1. Generate the bubbleSort object of the BubbleSort class in the source code.

2. Call the sort method of the bubbleSort object with the arguments for the input data.

3. Compare the output codeOutput of the sort method with the expected one expOutput using
the assertEquals method.

3.2.4 CWP Answer Platform for Students
To assist students in solving CWP assignments efficiently, our group has implemented the answer
platform as a web application system using Node.js. Figure 3.1 illustrates the software architecture.
It is noted that OS can be Linux or Windows.

This platform follows the MVC model. For the model (M) part, JUnit is used where Java is
used to implement the programs. The file system is used to manage the data where every data is
provided by a file. For the view (V) part on the browser, Embedded JavaScript (EJS) is used instead
of the default template engine Express.js, to avoid the complex syntax structure. For the control
(C) part, Node.js and Express.js are adopted together, where JavaScript is used to implement the
programs.

17

Figure 3.1: CWP software architecture.

Figure 3.2 illustrates the answer interface to solve a CWP assignment on a web browser. The
right side of the interface shows the test code of the assignment. The left side shows the input form
for a student to write the answer source code. A student needs to write the code to pass all the tests
in the test code while looking at it. After completing the source code, the student needs to submit
it by clicking the “Submit” button. Then, the code testing is immediately conducted by compiling
the source code and running the test code with it on JUnit. The test results will appear at the lower
side of the interface. It is noted that Figure 3.1 and Figure 3.2 are adopted from the previous paper
[21].

Figure 3.2: CWP answer interface.

18

3.2.5 Answer Code Validation Program for Teachers
The implementation of the answer code validation program for CWP in JPLAS has been im-
plemented to help teachers. This program allows automatic testing of all the source codes from
students stored in one folder for one assignment with the same test code by the following proce-
dure:

1. Download the zip file containing the source codes for each assignment using one test code. It
is noted that a teacher usually uses an e-learning system such as Moodle in the programming
course.

2. Unzip the zip file and store the source code files in the appropriate folder under the “stu-
dent codes” folder within the project path.

3. Store the corresponding test code in “addon/test” folder within the project directory.

4. Read each source code in the “student codes” folder, run the test code with the source code
on JUnit, and save the test result in the text file within the “output” folder. This process is
repeated until all the source codes in the folder are tested.

5. Generate the summary of the test results for all the source codes by the CSV file and save
it in the “csv” folder. The example of folder structure and related files are illustrated in
Figure ??, which was adapted from [21].

Figure 3.3: Example of file structures with folder hierarchy

19

3.3 Code Plagiarism Checking Function
In this section, I present the implementation of the code plagiarism checking function in the answer
code validation program for the code writing problem in JPLAS. The current program cannot de-
tect code plagiarism that can often happen in programming courses. The code plagiarism checking
function detects the code duplication or copy by calculating the similarity score using the Leven-
shtein distance for every pair of two source codes from different students.

3.3.1 Levenshtein Distance
The Levenshtein distance, also known as the edit distance, indicates the measure of the similarity
between two strings or their sequences. It represents the minimum number of single-character
edits by insertions, deletions, or substitutions that are required to transform one string into another.
The smaller the Levenshtein distance, the more similar these strings are. Then, the similarity score
is calculated by the following equation:

similarity score =
(
1−

Levenshtein Distance
max(length of string1, length of string2)

)
×100 (3.1)

where max(length of string1, length of string2) represents the larger length between two strings
string1 and string2.

3.3.2 Procedure of Code Plagiarism Checking Function
The code plagiarism checking function that will compare the similarity between pairs of source
code files and generate a CSV file containing the results, will be described in the following proce-
dure.

1. Import the necessary Python libraries to calculate the Levenshtein distance, CSV output, and
regular expressions.

2. Read the two files for source codes, and remove the whitespace characters such as spaces
and tabs and the comment lines using the regular expression to make one string.

3. Calculate the Levenshtein distance using the editops function.

4. Compute the similarity score from the Levenshtein distance.

5. Repeat Steps 2-4 for all the source codes in the folder.

6. Sort the pairs in descending order of similarity scores using the sorted function and output
the results in the CSV file.

3.3.3 Example Result
An example result by the proposed function is shown here using the source codes for HelloWorld
class submitted by student 1 and by student 2. The similarity score for this pair is 83%.

20

by student 1� �
01: package p1;

02: public class HelloWorld{

03: public static void main(String[] args) {

04: System.out.println("Hello World!");

05: }

06: }� �
by student 2� �

01: package p1;

02: public class HelloWorld{

03: public static void main(String[] args){

04: System.out.print ("Hello World!");

05: }

06: }� �
3.3.4 Computational Complexity Analysis of Code Plagiarism Checking Func-

tion
The code plagiarism checking function implemented in this study employs the Levenshtein dis-
tance, which represents a measure of the similarity between two sequences, to detect code dupli-
cations or copying among student submissions. Here, I analyze the computational complexity and
the efficiency of the proposed algorithm.

The core of the code plagiarism checking function is the Levenshtein distance algorithm. This
algorithm calculates the minimum number of single-character edits of insertions, deletions, or
substitutions that are required to change one string into another.

Before computing the Levenshtein distance, this function preprocesses the given source codes.
This preprocessing involves removing the whitespace and comments, accomplished using their
regular expressions. While the time complexity of the preprocessing varies, it generally operates
in linear time relative to the length n of the input string.

Then, the code plagiarism checking function computes the Levenshtein distance between the
strings of each pair of the source codes. The computational complexity of the Levenshtein distance
computation is given by O(nm), where n and m represent the lengths of the two source codes.
Therefore, the complexity of each computation depends on the length of the files being compared.
However, the source codes to be checked were made by the students for the same assignment.
Thus, it is possible to assume that every code has n characters. As a result, the complexity for each
code pair checking would be O(n2).

The number of source code pairs is given by k(k−1)/2 when k students submitted source codes.
Therefore, the final computational complexity of the function is given by O(k2n2).

In addition, in the revised paper, I measure the CPU time for applying the code plagiarism
checking function to all the source codes for each assignment in Section 3.4.1. The PC environ-
ment consists of an Intel® Core™ i5-7500K CPU @ 3.40 GHz with a 64-bit Windows 10 Pro
operating system. The function was implemented by Python 3.9.6.

21

3.4 Analysis of Application Results
In this section, I applied the code plagiarism checking function to a total of 877 source codes that
were submitted from 9-39 students for each of the 45 CWP assignments in a Java programming
course in Okayama University, Japan, and analyzed the results.

3.4.1 CWP Assignments
The 45 CWP assignments can be categorized into five groups, namely, basic grammar, data struc-
ture, object oriented programming, fundamental algorithms, and final examination. Basically, they
have different levels. Table 3.1 shows the group topic, the assignment title, the number of students
who submitted answer source codes, lines of code (LOC) and CPU time for each assignment.

22

Table 3.1: CWP assignments for evaluations.

group topic ID assignment title # of students LOC CPU Time (s)

basic grammar

1 helloworld 33 6 1.13
2 messagedisplay 33 8 0.27
3 codecorrection1 32 11 0.23
4 codecorrection2 32 12 0.25
5 ifandswitch 32 27 0.25
6 escapeusage 32 6 0.23
7 returnandbreak 32 18 0.25
8 octalnumber 32 8 0.23
9 hexadecimal 32 9 1.38

10 maxitem 32 11 1.02
11 minitem 31 11 1.05

data structure

12 arraylistimport 19 35 0.20
13 linkedlistdemo 18 28 0.19
14 hashmapdemo 17 26 0.22
15 treesetdemo 17 32 0.11
16 que 16 17 0.06
17 stack 16 17 0.06

object oriented
programming

18 animal 16 18 0.06
19 animal1 16 20 0.08
20 animalinterfaceusage 16 29 0.41
21 author 16 34 0.13
22 book 16 43 0.55
23 book1 16 24 0.08
24 bookdata 16 40 0.11
25 car 16 21 0.09
26 circle 16 22 0.09
27 gameplayer 16 13 0.27
28 methodoverloading 16 13 0.31
29 physicsteacher 16 25 0.08
30 student 16 17 0.27

fundamental
algorithms

31 binarysearch 12 12 0.16
32 binsort 11 20 0.19
33 bubblesort 11 21 0.22
34 bubblesort1 11 16 0.17
35 divide 11 8 0.09
36 GCD 11 19 0.13
37 LCM 11 18 0.16
38 heapsort 10 38 0.14
39 insertionsort 10 23 0.16
40 shellsort 10 28 0.19
41 quicksort1 9 38 0.28
42 quicksort2 9 25 0.11
43 quicksort3 9 30 0.13

final examination
44 makearray 39 25 0.34
45 primenumber 39 20 0.27

23

3.4.2 Analysis Results of Individual Assignments
First, I analyze the solution results of the individual assignments by the students.

3.4.2.1 Results for Basic Grammar

Figure 3.4 shows the average similarity score and the percentage of pairs whose similarity score is
100% as the identical code pair among all the source code pairs for basic grammar. Assignment
at ID=1 has the high average similarity score of 84.45%. It indicates that the source codes of most
students are similar. Assignments at ID=2 and ID=6 also have relatively high similarity scores,
which are higher than 70%. The reason is that the source codes for the assignments are short and
simple and their class and method names are fixed in the test codes. Thus, variations of source
codes are very limited.

Figure 3.4: Results for basic grammar.

Table 3.2 shows the number of student pairs that had 100% similarity score for each number of
assignments for basic grammar. It suggests that one pair submitted the identical source codes for
all of the 11 assignments, and another pair did for 10 assignments. With the high probability, these
pairs submitted copied source codes. Some students often copied the source codes from certain
students.

3.4.2.2 Results for Data Structure

Figure 3.5 shows the average similarity score and the percentage of pairs whose similarity score is
100% as the identical code pair among all the source code pairs for data structure. Assignment at
ID=15 has the high average similarity score of 51.18%. It indicates that the source codes of most
students are similar. Assignments at ID=17 also have relatively high similarity scores in identical
code pairs. The reason is that as this data structure topic is more advanced than basic grammar,
the assignments were challenging or the students struggled to find unique solutions.

24

Table 3.2: Number of student pairs with identical codes.

of assignments with identical codes # of student pairs
11 1
10 1
6 3
5 8
4 31
3 71
2 132
1 182

Figure 3.5: Results for data structure.

Table 3.3 shows the number of student pairs that had 100% similarity score for each number
of assignments for data structure. It suggests that one pair submitted the identical source codes
for 5 assignments, and another pair did for 4 assignments. With the high probability, these pairs
submitted copied source codes. Some students often copied the source codes from certain students.

Table 3.3: Number of student pairs with identical codes.

of assignment with identical codes # of student pairs
5 1
4 1
1 8

3.4.2.3 Results for Object Oriented Programming

Figure 3.6 shows the average similarity score and the percentage of pairs whose similarity score is
100% as the identical code pair among all the source code pairs for object oriented programming.

25

Assignment at ID=23 has the high average similarity score of 64.57%. It indicates that the source
codes of most students are similar. Assignments at ID=18 and ID=30 also have relatively high
similarity scores, which are higher than 60%. The reason is that a significant portion of students
submitted very similar solutions for these assignments. The absence of identical submissions in
most assignments is a positive sign, that students tried different source codes.

Figure 3.6: Results for object oriented programming.

3.4.2.4 Results for Fundamental Algorithms

Figure 3.7 shows the average similarity score and the percentage of pairs whose similarity score
is 100% as the identical code pair among all the source code pairs for fundamental algorithms.
Assignment at ID=35 has the high average similarity score of 49.58%. It indicates that the source
codes of most students are similar. Although fewer students submitted these assignments, the low
similarity rates and absence of identical submissions in most assignments suggest that students
likely tackled these fundamental algorithm problems independently. These assignments may have
been sufficiently challenging, encouraging diverse solutions.

Figure 3.7: Results for fundamental algorithms.

26

3.4.2.5 Results for Final Examination

Figure 3.8 shows the average similarity score and the percentage of pairs whose similarity score is
100% as the identical code pair among all the source code pairs for final examination. Assignment
at ID=45 has the average similarity score of 26.89%. It indicates that the source codes of most
students are similar. Assignment at ID=44 has a high average similarity score of 21.37%. Both
final examination assignments have relatively low average similarity rates. It indicates that stu-
dents’ solutions to these assignments were not highly similar. Moreover, the 0.0% in the identical
code pair shows that there were no identical submissions for either of these assignments, which is
a positive sign in a final examination.

Figure 3.8: Results for final examination.

3.4.3 Analysis Results of Assignment Group
Next, I analyze the solution results by each group. Table 3.4 shows the total number of source
code submissions, the total number of assignments, the average similarity score, and the identical
code percentage among all the student pairs in each group. It indicates that basic grammar has
the highest average similarity score of 57.17%, and final examination has the lowest one. The
assignments in basic grammar ask for short and simple source codes. The assignments in final
examination ask for more complex and long source codes.

Fortunately, the rate of identical source codes is very low in the four groups other than basic
grammar. It becomes zero in final examination, which suggests no cheating was made in this on-
line examination. Basically, most of the students seriously solved the assignments by themselves.

When the source codes among the assignments are compared, it can be found that the ones with
high similarity scores do not need to use conditions or loops. Since the class names, the method
names, and the data types are basically fixed by the given test codes, the answer source codes can
be identical or highly similar to each other. Therefore, for the automatic detection of the code
plagiarism by the proposed function, the threshold needs to be adjusted properly by considering
the feature of each assignment. The formula will be in future works.

27

The CPU time for each group will be also discussed in Table 3.4. The CPU time for each
section seems to correlate more with the number of submissions and assignments rather than the
complexity of the tasks themselves. This suggests that the volume of data plays a significant role
in the computational resources required for plagiarism detection and analysis in this study.

Table 3.4: Number of source codes and results in each group.

group # of # of ave. 100% CPU Time
topic source codes assignments similarity score pair rate (s)

basic grammar 353 11 57.17 15.29 6.29
data structure 103 6 42.96 2.15 0.84

object oriented
208 13 50.46 2.69 2.53

programming
fundamental

135 13 25.79 1.08 2.13
algorithms
final exam 78 2 24.13 0.00 0.61

3.5 Summary
In this chapter, I presented the code plagiarism checking function in the code validation program. It
removes the whitespace characters and the comment lines using regular expressions, and calculates
the similarity score from the Levenshtein distance between every pair of two source codes from
students. If the score is larger than a given threshold, they are regarded as plagiarism. The results
are output in the CSV file. For evaluations, I applied the proposal to a total of 877 source codes
for 45 CWP assignments from 9− 39 students and analyzed the results. The results confirm the
validity and effectiveness of the proposal.

28

Chapter 4

A Study of Grammar-Concept
Understanding Problem for Python
Programming Learning

In this chapter, I present the grammar-concept understanding problem for the Python programming
learning assistance system.

4.1 Introduction
Recently, Python programming has gained the popularity for use in various groundbreaking fields
in experiments, prototyping, embedded systems, and data sciences, due to rich libraries and short
coding features. A lot of people in both IT (information technology) and non-IT fields will start
using it to achieve their needs. However, a lot of students are suffering from studying it due to
the formality nature in programming. To assist self-studies of Python programming, our group has
developed Python Programming Learning Assistant System (PPLAS) that offers several types of
exercise problems with different levels, by extending our works of JPLAS for Java programming
[23].

To learn programming effectively, it is suggested that students should firstly solve simple prob-
lems on grammar concepts while reading source codes. Then, they can solve harder problems
step-by-step before practicing code writing from scratch. In JPLAS, our group proposed the
Grammar-concept Understanding Problem (GUP) as the first-step problem for novice students
[24]. A GUP instance consists of a source code, a set of questions, and the correct answers. Each
question describes a basic grammar concept in Java programing in the source code, and requests
to answer the corresponding keyword in the code. Any answer is marked by string matching with
the correct one. The GUP generation algorithm is implemented to automatically generate a GUP
instance from a given code to help teachers.

4.2 GUP Instance Generation
In this section, I review the GUP instance generation algorithm to assist a teacher to generate a
new GUP instance among the selected source code.

30

4.2.1 Input Files
To use the algorithm, a teacher needs to prepare the file of the source code that covers the grammar
concepts to be studied by students through solving the GUP instance. Then, the algorithm will read
this source code file, and generate the GUP instance file through the procedure in Section 4.2.2.

For this algorithm, the list of the keywords and the corresponding questions needs to be pre-
pared beforehand. For the GUP instance generation, some of the questions are given as follows.

1) Which keyword can make the program jump out of the most inner block of statements?
(break).

2) Which keyword is used for skipping the certain statements that are inside the loop? (con-
tinue).

3) Which keyword is used to mark the start of the function header? (def).

4) Which keyword is used for returning a value when exiting the function? (return)

5) Which keyword indicates the following lines may cause errors? (try).

This list should include any keyword that represents the basic grammar concept to be studied
through solving GUP instances. The question to each keyword can describe the definition of the
corresponding keyword, which can be unique. By reading the questions and replying the answer
keywords, students are expected to study basic grammar concepts in Python programming.

4.2.2 GUP Generation Procedure
A GUP instance file is generated through the following procedure:

1) Read a Python source code file.

2) Extract the keywords in the keyword list from the source code.

3) Select the question in the question list that corresponds to each extracted keyword.

3-1) If multiple questions are registered in the question list for the keyword, one of them is
randomly selected.

3-2) If the question needs to find the line number of the source code for the keyword, it is
found and included in the question.

4) Find the element as the correct answer from the source code.

5) If the same pair of the question and the correct answer is selected, discard them as the
duplicated question.

6) Output the GUP instance file of the source code, the questions, and the correct answers.

4.2.3 User Interface of GUP
Figure 4.1 illustrates the user interface for this instance. After filling in the answer form, the
student clicks the ”Answer” button. If the answer is correct, the background color will stay in
white. Otherwise, it will become red. The student can submit answer repeatedly until their answers
are satisfied.

31

Figure 4.1: GUP User Interface

4.3 Evaluation
In this section, I evaluate the GUP for PPLAS through applications to 9 students in Okayama
University. I generated 24 GUP instances with the total of 139 questions from source codes that
cover basic grammar topics of the keywords. Then, the students solved them using the interface in
[22]. Table 4.1 shows the average correct rate and submission times of the students.

4.3.1 Correct Rate Result
As shown in Table 4.1, all of the 9 students achieved 100% correct answer rates. It means that all
of the students correctly understand the basic grammar concepts for Python programming. They
are likely to well understand the further steps of Python programming language.

4.3.2 Submission Times Results
As more details of the solution results in Table 4.1, the students are divided into three groups
according to their submission time ranges. First of all, it can be clearly seen that there are two
students in group I who got 100% accuracy with the one time attempt. It means those two stu-
dents may have either background programming knowledge or have studied Python Programming.
Secondly, there are 6 students who submitted their answer with 2.54% average submission times
until to get 100% accuracy. It is clear that these students learned and solved our GUP problems
repeatedly to get the correct answer. Finally, in group III , one student submitted the answer again
and again. Eventually, he got 100% correctness. By reviewing this student, he has no background
knowledge of Python. With the help of grammar concept in our GUP problems, he got 100%
correctness. It means he had understood the basic Python grammar concept in the end.

32

Table 4.1: Students performance for GUP.

Group
Average

Correct Rate
Submission
Time Range

of
Students

I 100% 24 2
II 100% 31-92 6
III 100% 127 1

4.4 Summary
This chapter presented the grammar-concept understanding problem (GUP) for PPLAS for the
first-step study of Python programming by novice students. For evaluations, 24 GUP instances
with 139 questions covering the keywords for basic grammar concepts were generated. The results
confirmed that the proposal is effective in revealing the understanding levels. Their application
results to 9 students in Okayama University confirmed the effectiveness of them, where every
student achieved 100% correctness.

33

Chapter 5

Related Works in Literature

In this section, we introduce related works to this thesis.
In [25][26], the authors suggested common problems among programming novices, along with

existing efforts and discussions of current methods used in teaching programming. Several tools
have been proposed to help students to solve programming learning difficulties. Among them,
ToolPetcha is the example tool that acts as an automated assistant in matters of programming [27].

In [28], the authors proposed a game-based learning environment to assist beginner students in
learning programming. It uses game creation tasks to make basic programming easier to under-
stand and includes idea visualization approaches to let students manipulate game objects to learn
important programming concepts.

In [29], the authors developed a collaborative learning environment based on the problems
powered by the technology for dynamic webs to investigate students’ perceptions of the learning
environment. This research was planned as a qualitative study. A semi-structured interview format
was created to get the opinions of students about the learning environment that was supported
by technologies for dynamic webs and was used for collaboratively solving issues. Their findings
implied that collaborative learning techniques can focus on problems and the learning environment
at a community college can benefit from technologies for dynamic web pages.

In [30], the authors made comparative evaluations of several online platforms for teaching
programming and chose engaging assignments from the site used to educate students, named
hackerrank.com. They investigated user experiences with online coding platforms (OCP) and
contrasted features of various online platforms that should be utilized to teach programming to
aspiring computer scientists and programmers via distance learning. In addition, they suggested
the use of online programming simulators to enhance computer science instructions, taking into
account functionality, as well as students’ preparation levels and expected results of learning.

In [31], the authors presented and evaluated a web-based tool providing drills and practices
for Java programming called CodeWrite. Students are responsible for developing exercises that
will be shared among classmates. Because the tool does not adopt a testing tool such as JUnit,
validations by program testing are limited.

In [32], the authors proposed a graph-based grading system for introductory Java programming
courses called eGrader. The dynamic analysis of each submitted program is conducted on JUnit,
and the static analysis is on the graph representation of the program. The accuracy was confirmed
through experiments.

These initiatives span a wide spectrum, encompassing innovative solutions such as ToolPetcha
[27], an automated programming assistant aiming to aid learners in navigating programming com-
plexities. Additionally, researchers propose game-based learning environments [28], leveraging

36

engaging tasks to simplify fundamental programming concepts. Collaborative learning environ-
ments powered by dynamic web technologies [29] offer a communal approach to problem-solving,
enhancing students’ understanding through collective efforts. Alongside these, platforms like hack-
errank.com [30] serve as hubs for practical assignments, enhancing learning experiences through
engaging coding challenges. Complementing these platforms are web-based tools like CodeWrite
[31] and novel grading systems such as eGrader [32], each tailored to provide targeted exercises
and structured assessments, contributing to a multifaceted landscape of educational aids and plat-
forms in programming educations.

Another cluster of research concentrates on advancing plagiarism detection and assessment
tools within programming educations.

In [33], the authors reviewed recent developments of automatic assessment tools for program-
ming exercises and discussed their major features and approaches, including programming lan-
guages, learning management systems, testing tools, limitations on resubmissions, manual assess-
ments, security, distributions, and specialties.

In [34], the authors proposed various source code similarity detection systems, including the
source code similarity detection system (SCSDS). They were evaluated in abilities to detect plagia-
rism despite complex modifications. SCSDS stands out due to its customizable algorithm weights,
providing users with flexibility. While promising results were observed, concerns about processing
speed were noted. This study emphasizes the importance of considering code context in plagia-
rism detection. Future researches should focus on optimizing processing speed and improving user
interfaces while exploring the impact of code contexts on detection accuracy.

In [35], the authors investigated the degree of agreement among the three popular plagiarism
detection tools, namely, Jplay, MOSS, and Sim upon the students’ C++ program source codes in a
data structure and algorithms course. SIM has the higher precision than the other two tools. It was
found that integrating SIM and MOSS will be more effective for dealing with the code similarity.

In [36], the authors reviewed plagiarism detection tools and analyzed the effectiveness of each
tool using comparison metrics and obfuscation methods with data sets for quantitative analysis and
categorizations. It is described that the results will be helpful for teachers finding the right tools
for similarity detection and also useful for researchers for improvements and future research.

In [37], the authors discussed the way to improve the accuracy of code similarity detection by
excluding the code segments that are unlikely to indicate plagiarism. By analyzing and identifying
the code segments that can be excluded from various programming assignments, this paper aimed
to enhance the accuracy of plagiarism detection in programming assignments.

In [38], the authors proposed Deimos as a tool to detect plagiarism in programming assign-
ments. Its innovative approach combines tokenization and the Running Karp-Rabin Greedy String
Tiling algorithm, providing instructors with an efficient and language-independent tool. Deimos
not only detects plagiarism but also contributes to improving programming education.

37

Chapter 6

Conclusion

In this thesis, firstly, I presented the code plagiarism checking function in the code validation
program for Java. It removes the whitespace characters and the comment lines using regular
expressions, and calculates the similarity score from the Levenshtein distance between every pair
of two source codes from students. If the score is larger than a given threshold, they are regarded
as plagiarism. The results are output in the CSV file. For evaluations, I applied the proposal to a
total of 877 source codes for 45 CWP assignments from 9−39 students and analyzed the results.
The results confirm the validity and effectiveness of the proposal.

Secondly, I presented the grammar-concept understanding problem (GUP) for Python as the
first-step study of Python programming by novice students. For evaluations, 24 GUP instances
with 139 questions covering the keywords for basic grammar concepts were generated. The results
confirmed that the proposal is effective in revealing the understanding levels. Their application
results to 9 students in Okayama University confirmed the effectiveness of them, where every
student achieved 100% correctness.

In future works, I will apply the code plagiarism checking function to other programming
languages such as C and Python. I will also generate a variety of GUP questions for the advanced
topics, useful libraries and apply them to students.

39

Bibliography

[1] S. T. Aung, N. Funabiki, Y. W. Syaifuddin, H. H. S. Kyaw, “A Proposal of Grammar-concept
Understanding Problem in Java Programming Learning Assistant System,” J. Adv. Inf. Tech.,
vol. 12, no. 4, pp. 342-350, November 2021.

[2] K. K. Zaw, N. Funabiki, and W.-C. Kao, “A proposal of value trace problem for algorithm
code reading in Java programming learning assistant system,” Inform. Eng. Exp., vol. 1, no.3,
pp. 9-18, Sep. 2015

[3] N. Funabiki, Y. Matsushima, T. Nakanishi, and N. Amano,“A Java programming learning
assistant system using test-driven development method,” IAENG Int. J. Computer Science,
vol. 40, no. 1, pp. 38-46, February 2013

[4] N. Funabiki, H. Masaoka, N. Ishihara, I-W. Lai, and W-C. Kao,“Offline answering function
for fill-in-blank problems in Java programming learning assistant system,” in Proc. IEEE
ICCE-Taiwan, pp. 324-325, 2016.

[5] N. Ishihara, N. Funabiki, M. Kuribayashi, and W.-C. Kao, “A software architecture for Java
programming learning assistant system,” J. Comp. Soft. Eng., vol. 2, no. 1, Sept. 2017.

[6] N. Funabiki, Y. Matsushim, T. Nakanishi, K. Watanabe, and N. Amano, “A Java programming
learning assistant system using test-driven development method,” IAENG Int. J. Comput.
Sci., vol. 40, no. 1, pp. 38-46, Feb. 2013.

[7] N. Funabiki, H. Masaoka, N. Ishihara, I-W. Lai, and W.-C. Kao,”Offline answering function
for fill-in-blank problems in Java programming learning assistant system,” in Proc. ICCE TW,
pp. 324-325, May 2016.

[8] N. Funabiki, Tana, K.K. Zaw, N. Ishihara, and W.-C. Kao, ”A graph- based blank element
selection algorithm for fill-in-blank problems in Java programming learning assistant system.
IAENG Int J Computer Science 44: 2.

[9] K. Beck, Test-driven development: by example, Addison-Wesley,2002.

[10] N. Ishihara, N. Funabiki, and W.-C. Kao, “A proposal of statement fill-in-blank problem using
program dependence graph in Java programming learning assistant system,” Info. Engr. Exp.,
vol. 1, no. 3, pp. 19-28, Sept. 2015.

[11] H.H.S. Kyaw, N. Funabiki, and W.-C. Kao, “A proposal of code amendment problem in Java
programming learning assistant system,” International Journal of Information and Education
Technology (IJIET), vol. 10, No. 10, pp. 751-756, Oct. 2020.

40

[12] H.H.S. Kyaw, S.S. Wint, N. Funabiki, and W.-C. Kao, “A code completion problem in Java
programming learning assistant system,” IAENG International Journal of Computer Science
(IJCS), vol. 47, No. 3, pp. 350-359, Sept. 2020.

[13] S. T. Aung, N. Funabiki, L. H. Aung, H. Htet, H. H. S. Kyaw, and S. Sugawara, ” An
Implementation of Java Programming Learning Assistant System Platform Using Node.js,”
ICIET International Conference of Information and Education Technology (ICIET), pp. 47-
52, Apr.2022.

[14] D. Herron, Node.js web development, Birmingham, UK, 2016.

[15] “Express,” Internet: https://expressjs.com/., Access June 20, 2023.

[16] R. McKendrick, Monitoring Docker, United Kingdom, 2015.

[17] A. Mouat, Using Docker: developing and deploying software with containers, USA, 2015.

[18] “JUnit 5,” Internet: https://junit.org/junit5/, Access June 20, 2023.

[19] “What is Python The most versatile programming language,” Internet: https://www.
datacamp.com/blog/all-about-python-the-most-versatile-programming language/, Access
June 20, 2023.

[20] “SHA-256 Cryptographic Hash Algorithm,” Internet: http://www.movable discretionary-
type.co.uk/scripts/sha256. html/, Access June 20, 2023.

[21] Wai, K. H.; Funabiki, N.; Aung, S. T.; Mon, K. T.; Kyaw, H. H. S.; Kao, W.-C. An Implemen-
tation of Answer Code Validation Program for Code Writing Problem in Java Programming
Learning Assistant System, In Proceedings of International Conference on Information and
Education Technology, Japan, 18-20 March 2023; pp. 193-198.

[22] N. Funabiki, H. Masaoka, N. Ishihara, I.-W. Lai, and W.-C. Kao, “Offline answering function
for fill-in-blank problems in Java programming learning assistant system,” in Proc. IEEE
ICCE-TW 2016, pp. 324-325, May 2016.

[23] S. l. Ao et al. ed., IAENG Transactions on Engineering Sciences - Special Issue for the
International Association of Engineers Conferences 2016 (Volume II), World Sci. Pub., pp.
517-530, 2018.

[24] S. T. Aung, N. Funabiki, Y. W. Syaifudin, and M. Kuribayashi, ”A study of grammar-concept
understanding problem for Java programming learning assistant system,” IEICE Tech. Rep.,
ET2020-15, pp. 29-34, Sept. 2020.

[25] Ala-Mutka, K.; Problems in Learning and Teaching Programming. A literature study for
developing visualizations in the Codewitz-Minerva project. 2004; pp. 1-13.

[26] Konecki, M.; Problems in programming education and means of their improvement.
DAAAM Int. Sci. Book, 2014; pp. 459-470.

[27] Queiros, R. A.; Peixoto, L.; Paulo, J. PETCHA - a programming exercises teaching assistant,
In Proceedings of ACM annual conference on Innovation and technology in computer science
education, Haifa, Israel, 3-5 July 2012; pp. 192-197.

41

[28] Li, F. W.-B.; Watson, C.; Game-based concept visualization for learning programming. In
Proceedings of ACM workshop on Multimedia technologies for distance learning, Scottsdale
Arizona, USA, 1 December 2011; pp. 37-42.

[29] Ünal, E.; Çakir, H.; Students’ views about the problem based collaborative learning environ-
ment supported by dynamic web technologies. Malaysian Online J. Edu. Tech. 2017, 5(2),
1-19.

[30] Zinovieva, I. S.; Artemchuk, V. O.; Iatsyshyn, A. V.; Popov, O. O.; Kovach, V. O.; Iatsyshyn,
A. V.; Romanenko, Y. O.; Radchenko, O. V. The use of online coding platforms as additional
distance tools in programming education. J. Phys.: Conf. Ser. 2021, 1840.

[31] Denny, P.; Luxton-Reilly, A.; Tempero, E.; Hendrickx, J. CodeWrite: supporting student-
driven practice of Java. In Proceedings of ACM Technical Symposium on Computer Science
Education, Dallas, USA, 9-12 March, 2011; pp. 471-476.

[32] Shamsi, F. A.; Elnagar, A.; An intelligent assessment tool for student’s Java submission in
introductory programming courses. J. Intelli. Learn. Syst. Appl. 2012, 4, 59-69.

[33] Ihantola, P.; Ahoniemi, T.; Karavirta, V.; Seppälä, O. Review of recent systems for automatic
assessment of programming assignments. In Proceedings of Koli Calling, 2010; pp. 86–93.

[34] Duric, Z.; Gasevic, D.; A source code similarity system for plagiarism detection. The Com-
puter Journal 2013, 56(1), 70-86.

[35] Ahadi, A.; Mathieson, L.; A comparison of three popular source code similarity detecting
student plagiarism. In Proceedings of the Twenty-First Australasian Computing Education
Conference, 2019; pp. 112-117.

[36] Novak, M.; Joy, M.; KERMEK, D.; Source-code similarity detection and detection tools used
in academia: a systematic review. ACM Trans. on Comp. Edu. 2019, 19(3), 1-37.

[37] S.; Karnalim, O.; Sheard, J.; Dema, I.; Karkare, A.; Leinonen, J.; Liut, M.; McCauley,
R.; Choosing code segments to exclude from code similarity detection. In Proceedings of
the Working Group Reports on Innovation and Technology in Computer Science Education,
Trondheim, Norway, 17–18 June 2020; pp. 1-19.

[38] Kustanto, C.; Liem, I. Automatic source code plagiarism detection. In Proceedings of the
10th ACIS International Conference on Software Engineering, Artificial Intelligences, Net-
working and Parallel/Distributed Computing, Daegu, South Korea, May 2009; pp. 481-486.

[39] Bubble Sort. Available online: https://www.javatpoint.com/bubble-sort-in-java

42

https://www.javatpoint.com/bubble-sort-in-java

	Abstract
	Acknowledgements
	List of Publications
	List of Figures
	List of Tables
	Introduction
	Background
	Contributions
	Contents of This Dissertation

	Review of Java Programming Learning Assistance System (JPLAS)
	JPLAS Overview
	Server Platform
	Software Architecture
	Implemented Problem Types

	Service Functions in JPLAS
	Teacher Service Functions
	Student Service Functions

	Desktop-version JPLAS
	Offline Answering Functions in JPLAS
	Operation Flow
	File Generation
	Cheating Prevention

	Implementation of JPLAS Platform Using Node.js and Docker
	Elaboration of PyPLAS
	Problem Types in PyPLAS

	Summary

	Code Plagiarism Checking Function and Its Application for Code Writing Problem in Java Programming Learning Assistant System
	Introduction
	Previous Works of Code Writing Problem
	Code Writing Problem
	JUnit for Unit Testing
	Example Test Code
	CWP Answer Platform for Students
	Answer Code Validation Program for Teachers

	Code Plagiarism Checking Function
	Levenshtein Distance
	Procedure of Code Plagiarism Checking Function
	Example Result
	Computational Complexity Analysis of Code Plagiarism Checking Function

	Analysis of Application Results
	CWP Assignments
	Analysis Results of Individual Assignments
	Results for Basic Grammar
	Results for Data Structure
	Results for Object Oriented Programming
	Results for Fundamental Algorithms
	Results for Final Examination

	Analysis Results of Assignment Group

	Summary

	A Study of Grammar-Concept Understanding Problem for Python Programming Learning
	Introduction
	GUP Instance Generation
	Input Files
	GUP Generation Procedure
	User Interface of GUP

	Evaluation
	Correct Rate Result
	Submission Times Results

	Summary

	Related Works in Literature
	Conclusion
	References

