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Chapter 1

General Introduction

I BACKGROUND

Water is one of the most familiar substances for us and is an indispensable chemical compound

for the vital activity of living organisms and heat circulation on the earth. The earth’s surface

is 70% covered by water. Of that, approximately 97% is salt water and only 3% is fresh water.

In other words, most of the water on our planet contains electrolytes. Furthermore, water is the

most abundant substance in living organisms, accounting for 70 ∼ 80%, most of which contains

electrolytes. Understanding the physical properties of aqueous electrolyte solutions is itself an

important topic in physical chemistry and contributes to the development of a wide range of

sciences and technologies such as biochemistry, pharmacology, colloid chemistry, oceanography,

and industrial sciences.

Water molecules have a strong ability to form hydrogen bonds with each other and with

other polar molecules. Hydrogen bonding is one of the key factors that give water its unique

or less common properties, e.g., the temperature of maximum density in its liquid state and

the higher melting and boiling points and the higher viscosity compared to those of other low

molecular weight compounds. Another important property of water is the ability to dissolve

a wide variety of electrolytes as well as polar and amphiphilic molecules. The addition of

electrolytes to water changes a variety of physical properties such as the solubility of gases,

the cloud point of protein and polymer solutions, the viscosity, and the surface tension. The

important fact is that the magnitude of the effect depends on ionic species of cations and that of

anions: the salt effect is ion specific. Ion specificity refers to salt effects that cannot be explained

by standard theories of electrolyte solutions[1, 2, 3]. That is, the magnitude (and the direction)
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of a given salt effect is different for different electrolytes even if the valence of ions and the salt

concentration are the same for different solutions. A striking consequence of the ion specific

effect is that replacing one specific ion with another in a living organism leads to malfunction or

death. Since Hofmeister’s pioneering work in the late 19th century, there have been extensive

experimental and theoretical studies on the ion specific effect for various physical properties of

aqueous solutions [4, 5, 6, 7, 8, 9, 3, 10, 11].

II HOFMEISTER SERIES

Many studies have been conducted to date on the ion-specificity of numerous physical properties

of aqueous electrolyte solutions, e.g., the salt activity coefficient[6, 9], solution density[12, 13],

surface tension[14, 15, 16], solute solubility[17, 18, 19], viscosity[20, 21], and protein cloud

point[22, 23]. Among various ion specific effects, the Hofmeister series, a series of ions or-

dered by the strength of salting out proteins proposed by Hofmeister in 1888[24], is one of the

most significant and representative examples. In this section, therefore, we shall describe the

history of studies on the Hofmeister series, or the Hofmeister effect, from birth to the present.

Franz Hofmeister[24] quantified the specific effects of salt on the egg white protein precipi-

tation. The anion order on a common cation and the cation order on a common anion in terms

of the efficiency in precipitating proteins, i.e., the strength of the salting-out, were reported by

Hofmeister (in Figure 1.1).

Hofmeister series

Salting-out Salting-in
SO2−4 > HPO2−4 > F− > CH3COO− > Cl− > Br− > NO−3 > I− > ClO−4 > SCN−

(CH3)4N+ > NH+
4 > Cs+ > Rb+ > K+ > Na+ > Li+ > Mg2+ > Ca2+

Figure 1.1: The ordering of anions and cations according to the original Hofmeister series. The
left side shows the stronger salting-out effect and the right side shows the stronger salting-in
effect on proteins in water.

It was significant to understand the mechanism of the order of the Hofmeister series because

it was thought that the series is common not only for the solubility of protein, but also for

conformational changes in biopolymers such as DNA, for micelle formations of surfactants, and

even for properties of systems without protein such as the surface tension of salt solutions.

Although it is now known that the ion series depends on the subject physical quantity, the
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study of the Hofmeister series has been conducted because of the many similarities with the ion

series for the other physical quantities. In this section, we shall convey the importance of the

Hofmeister series by introducing some ion species dependences of physical quantities.

Viscosity.

Jones and Dole[20] pointed out that in the salt concentration range of 5.0 × 10−3 ∼ 1 M at a

given temperature, the ratio of the viscosity η of aqueous solution to η0 of pure water can be

fitted to

η

η0
= 1 + ac1/2 + bc, (1.1)

where c is the concentration of the salt, a and b are parameters given for each salt species,

with the term containing b being particularly dominant at high concentrations. At constant salt

concentration (0.4 M), the ranking of the viscosity, or more specifically b-coefficient, for sodium

salts is[21, 25, 8]

PO4
3− > HPO2−

4 > SO2−
4 > H2PO4

− > OH− > Cl− > NO−
3 ≃ Br− > ClO−

4 > I−.

Partial Molar Volume of Salt.

The partial molar volume V̄s of salt is the solution volume change when one mole of salt is

added to the solution, which is defined by V̄s = (∂V/∂ns)T,p,{Ni}i̸=s
with ns the amount of salt

substance, V the system volume, and Ni the particle number of species i. When salt species

Xν+-Yν− dissociates into ν+X
z+ and ν−Y

z− (zi is the ion valence), it is known that the partial

molar volume of electrolyte at the infinite dilution is additive, i.e., V̄s = ν+V̄++ν−V̄− due to the

disappearance of ion-ion interactions[26, 27]; V̄+ and V̄− are the partial molar volumes of cation

and anion, respectively, whose magnitudes depend on the ion species. It has been carried out in

earlier experimental studies[28, 29, 30, 31] that many partial molar volumes V̄s of electrolytes

are measured and individual partial molar volumes V̄± of ions (cation or anion) are guessed.

Only Takenaka and Arakata[32] directly and experimentally measured individual partial molar

volumes of a variety of simple monovalent ions at infinite dilution with high precision using the

method proposed by Zana and Yeager[33, 34]. The order of anions according to the magnitude

of V̄− at infinite dilution at 298 K is[29, 26, 32]

ClO−
4 > I− > SCN− > H2PO4

− ≃ NO−
3 > Br− > Cl− > SO2−

4 > HPO2−
4 > F− > OH−.
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and that of cations is

(CH3)4N
+ > Cs+ > NH+

4 > Rb+ > K+ > Li+ > Na+ > Ca2+ > Mg2+,

where the ranks of Li+ and Na+ depend on the temperature and are reversed at higher temper-

atures.

Solubility of Solute and Interfacial Tension.

The Hofmeister series in the present notation sequences ions concerning their ability to pre-

cipitate proteins and colloids, as shown in Figure 1.1. For the halide in the anion series, the

smaller the anion size, the stronger the salting effect (F− > Cl− > Br− > I−), while, for the

alkali metal ions in the cation series, the larger the cation size, the stronger the salting effect

(Cs+ > Rb+ > K+ > Na+ > Li+). The asymmetry of those orders is because the Hofmeis-

ter series is arranged concerning a spherical protein with a net negative charge. In fact, the

ionic ranking of the salting-out effect depends on the properties of the solute: it has been

reported[35, 36, 37, 38, 39, 22] that the order follows Figure 1.1 for the solubility of negatively

charged proteins, but the order of both cations and anions is reversed for the solubility of posi-

tively charged proteins. Furthermore, those series are maintained not only for proteins but also

for colloids[40, 1, 41, 3].

The regularity of the salt addition effect on the solubility of solutes with no net charge in

aqueous solutions has also been studied extensively[42, 43, 44, 45, 46, 18]. Bergen and Long[47]

evaluated measures of salt effects on the solubility of solutes such as benzoic acid, benzene,

and benzylamine in aqueous solution from the Setschenow coefficient Ks (defined by eq. 3.1

in Chapter 3) and examined the ionic species dependence of Ks for acidic, neutral, and basic

solutes: the positive value of Ks indicates salting-out and negative that indicates and salting-in.

For neutral solutes, e.g., hydrocarbons and noble gases, each order of anions and cations for the

strength of the salting out is[46]

PO3−
4 > HPO4

2− > SO2−
4 > F− > OH− > SCN− > ClO−

4 > Cl− > Br− > NO−
3 > I−,

Ca2+ > Mg2+ > Na+ > K+ > Rb+ > Cs+ ≃ Li+ > NH+
4 .

The cation order of Ks for the three acidic solutes, benzoic acid, phthalic acid, and salicylic
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acid, in aqueous solutions of the common anion Cl− and alkali metal ions are[47]

Li+ > Na+ > K+ > Rb+ > Cs+.

Similarly, for the basic solute, aniline, the order of alkali metal ions is

Na+ > K+ > Rb+ > Li+ > Cs+.

However, for a different basic solute, benzylamine, the sequence is maximal for K+ rather than

Na+. Therefore, for solutes with no net charge, the larger the ion is generally, the smaller

the salting-out effect is in both cases of cation and anion. In other words, the cation series

is similar to that for positively charged solutes, while the anion series is similar to that for

negatively charged solutes. However, the salting-out effect of Li+ for neutral and basic solutes

is exceptionally small. As shown in this section, ionic series for the solubility of solutes with

various properties are presented, while it is remarkable that those ionic series are consistent

with those of the interfacial tension for interfaces with similar properties, as demonstrated in

the earlier study[16]

We presented several rankings of ions for the physical properties of aqueous solutions. Note

that not all of the ion series are in full agreement with the Hofmeister series shown in Figure

1.1, but rather are partially altered or reversed. Nevertheless, since those sequences, especially

those for ion size, are similar on the whole, it is highly significant to understand the mechanism

of expression of the Hofmeister series.

Around fifteen years ago, it was the most popular idea that since the Hofmeister series is

maintained according to the properties of aqueous electrolyte solutions without proteins or col-

loids, the ionic arrangements are due to the effect of ions on the structure of the surrounding

water molecules[25]: ions making the structure of water (kosmotropes), i.e., ordering the hy-

drogen bonding network in water through strong hydration, decrease the solubility of proteins,

while ions breaking the structure of water (chaotropes), i.e., disordering the hydrogen bonding

network in water, increase the solubility of proteins. However, it has been revealed that the

ions, in terms of hydrogen bond configurations, affect only water molecules in the first hydra-

tion sphere of the ions even the strongly hydrated ion[48, 49]. Hence, ions do not affect the

hydrogen bond network in the bulk water and there is no direct correlation between the effect

of ions on the water structure and the effect of ions on the protein stability[50]. On the other
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hand, ions specifically affect direct interactions with hydrophilic/hydrophobic groups of proteins

and configurations of the hydrated water molecules on the protein surface[51, 52]. Therefore,

the current opinion is that the properties of proteins in aqueous electrolyte solutions, e.g., the

stability and the conformational change, are determined by complex interplays of ion-specific

interactions among ions, water, and proteins[53, 54].

III THE KIRKWOOD-BUFF INTEGRAL OF SOLUTIONS

In thermodynamics, thermodynamic quantities such as temperature T , volume V , entropy S,

and chemical potential µ are constant in equilibrium, independent of time. However, for finite

systems or for focusing on a part of infinite systems, each thermodynamic quantity fluctuates

around the mean value. For homogeneous and isotropic fluids, it is well-known that the quanti-

tative relationship between the Kirkwood-Buff integral (KBI), Gij , and the fluctuations of the

particle number Ni of species i in the T, V, {µi} ensemble, that is, in the open system is provided

as[55, 56]

Gij =

∫
[gij (r)− 1] dr =

V ⟨δρiδρj⟩
ρiρj

− δij
ρi

, (1.2)

where the symbol ⟨⟩ stands for an average in the grand canonical ensemble, δij is the Kronecker’s

delta, and gij (r) is the radial distribution function. In eq. 1.2, ρi = ⟨Ni⟩ /V is the average

number density of particles of species i, and δρi = Ni/V − ⟨Ni⟩ /V . The Kirkwood-Buff (KB)

theory of solutions, published in 1951[57] derived that a variety of thermodynamic quantities are

expressed using KBIs. This implies a coupling between the microscopic (the radial distribution

function) and macroscopic (the thermodynamic quantity) properties of solutions. The KB theory

is the most general and most powerful theory of solutions since the radial distribution function

is not only experimentally observed from X-ray and neutron scattering but also calculated from

molecular dynamics (MD) simulations.

Consider a subsystem of a massive homogeneous thermodynamic system isolated from its

surroundings. The subsystem is in thermodynamic equilibrium with the rest of the system. The

probability distribution function P of the fluctuation is given by[56]

P ∝ exp [δSt/kB] , (1.3)
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where δSt is the entropy change of the total system due to the fluctuation and kB is the Boltz-

mann constant. In an m-component system, given the particle numbers {Ni}, volume V , and

energy E in the total system remain constant, then

δSt = δS +
1

T

(
−δU − pδV +

∑
i

µiδNi

)
, (1.4)

where δS, δV , δNi, and δU are the changes of the entropy, volume, particle number of species

i, and thermodynamic internal energy in the subsystem, respectively. The second term on the

right-hand side corresponds to the entropy change of the system without the subsystem. Since

the fluctuations are very small, replacing δU by an expansion in powers of δS and δNi truncated

at the second order yields

δU ∼ TδS − pδV +
∑
i

µδNi +
1

2

(
δTδS − δpδV +

∑
i

δµδNi

)
. (1.5)

Substituting eqs. 1.4 and 1.5 into eq. 1.3, and further considering the subsystem as a constant

domain, i.e., δV = 0, we obtain

P ∝ exp

[
− 1

2kBT

(
δSδT +

∑
i

δNiδµi

)]
. (1.6)

Only m+1 of the remaining 2m+2 variables S, T , {µi}, and {Ni} are independent. Choosing T

and {Ni} as independent variables and expressing S and {µi} in terms of T and {Ni}, eq. 1.6

is written as

P ∝ exp

−1

2

 CV

kBT 2
δT 2 + V −1

∑
i

∑
j

IijδNiδNj




= exp

−1

2

 CV

kBT 2
δT 2 + V

∑
i

∑
j

Iijδρiδρj


 , (1.7)

where CV is the heat capacity at constant volume, ρi is the number density of species i in the

subsystem, and

Iij =
1

kBT

(
∂µi

∂ρj

)
T,{ρk}k ̸=j

. (1.8)

From eq. 1.7, we obtain the mean-square fluctuations of the density as

⟨δρiδρj⟩ = V −1Iij , (1.9)
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where Iij is the inverse matrix of Iij and is given by

Iij ≡ kBT

(
∂ρi
∂µj

)
T,{µk}k ̸=j

. (1.10)

Therefore, from eqs. 1.2 and 1.9, the KBI is written as

Iij = ρiρjGij + ρiδij . (1.11)

Using eq. 1.11, several physical properties of solutions can be expressed in terms of the KBIs.

Then, we shall specifically present the relationship between several physical properties and the

KBIs.

Two-component Systems.

Consider two-component systems of solvent w + solute A. Then, the matrix of Iij is

(Iij) =


ρ2wGww + ρw ρwρAGwA

ρwρAGwA ρ2AGAA + ρA

 , (1.12)

where ρw is the water density and ρA is the solute density. Thus, computing the inverse matrix

yields

(
Iij
)
=

1

(ρ2wGww + ρw)
(
ρ2AGAA + ρA

)
− ρ2wρ

2
AG

2
wA


ρ2AGAA + ρA −ρwρAGwA

−ρwρAGwA ρ2wGww + ρw.

 . (1.13)

Using eq. 1.13, the isothermal compressibility χT ≡ −V −1 (∂V/∂p)T,{Ni}, in combination with

χ−1
T = kBT

∑
i,j=w,A ρiρjI

ij , whose relationship corresponds to eq. 4.10 in the two-component

system, is given as

kBTχT =
1 + ρwGww + ρAGAA + ρwρA

(
GwwGAA −G2

wA

)
ρw + ρA + ρwρA (Gww +GAA − 2GwA)

. (1.14)

Similarly, the partial molecular volume v̄A = (∂V/∂NA)T,p,Nw
of solute, in combination with

eqs. 1.13, 1.14, and v̄A = kBTχT
∑

j=w,A IAjρj , whose relationship corresponds to eq. 4.17 in

the two-component system, is given as

v̄A =
1 + ρw (Gww −GwA)

ρw + ρA + ρwρA (Gww +GAA − 2GwA)
. (1.15)
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Using eqs. 1.14 and 1.15, the partial molecular volume of solute at the infinite dilution limit of

solute is given by

v̄A = −GwA − kBTχw (ρA → 0), (1.16)

where χw is the isothermal compressibility in pure water with χw = limρA→0 χT .

Three-component Systems.

We consider a three-component system of water (w) + ions (I) + hydrophobic solute (A), which

is the simplest system for expressing the solubility of solute at the infinite dilution in dilute

electrolyte aqueous solutions; for salt species Xν+-Yν− dissociates into ν+X
z+ and ν−Y

z− (zi is

the ion valence), the total ion density ρI = ρ+ + ρ− = (ν+ + ν−) ρs with ρ+, ρ−, and ρs the

densities of cation, anion, and salt, respectively. In general, the Helmholtz free energy density

of the system f expanded in powers of ρI and ρA is given by

f (ρw, ρI, ρA) = fw (ρw) + kBTρI{ln
(

ρI
ν+ + ν−

Λ3
I

)
− 1}+ µ∗

I (ρw) ρI

+kBTρA{ln
(
ρAΛ

3
A

)
− 1}+ µ∗

A (ρw) ρA

−kBT

12π
κ3 +

1

2

∑
i,j=I,A

Uij (ρw) ρiρj + · · · , (1.17)

where the logarithmic term is singular at ρI = 0 or ρA = 0, so it has not been expanded. f0 is

the Helmholtz free energy density of water without ions and solute, ΛI and ΛA are the thermal

de Broglie lengths of ions and solute, respectively; Λ3
I =

{(
ν+Λ

3
+

)ν+ (ν−Λ3
−
)ν−}1/(ν++ν−)

with

Λ+ and Λ− are the thermal de Broglie lengths of cation and anion. µ∗
I (ρw) and µ∗

A (ρw) are the

solvation free energies of ions and solute, respectively, at the infinite dilution limit of ions and

solute;

µ∗
I (ρw) =

ν+µ
∗
+ (ρw) + ν−µ

∗
− (ρw)

ν+ + ν−
(1.18)

with µ∗
+ (ρw) and µ∗

− (ρw) the solvation free energies of cation and anion at the infinite dilution

limit of ions and solute. Uij (ρw) is the coefficient of ρiρj ;

UAI =
ν+UA+ + ν−UA−

ν+ + ν−

UII =
ν2+U++ + 2ν+ν−U+− + ν2−U−−

(ν+ + ν−)
2 , (1.19)

where A is solute, + is cation, and − is anion in the subscripts of Uij . The sixth term on the right-
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hand side in eq. 1.17 is the Debye-Hückel free energy in the limit of the low ion densities[58, 59],

with the inverse of the Debye length

κ =

√
|z+z−| e2
ϵ (ρw) kBT

ρI, (1.20)

where ϵ (ρw) is the dielectric constant in pure water and e is the elementary charge. Then, the

solvation free energy µ∗
A (ρw, ρI) of solute at the infinite dilution limit only of solute is given

using eq. 1.17 as

µ∗
A (ρw, ρI) = µA − kBT ln

(
ρAΛ

3
A

)
=

(
∂f

∂ρA

)
T,{ρk}k ̸=A

− kBT ln
(
ρAΛ

3
A

)
= µ∗

A (ρw) + UIAρI +O (ρA) . (1.21)

Under the constant pressure condition, the addition of salt changes the density of the solvent,

whereby ρw is written as

ρw = ρw,0 +

(
∂ρw
∂ρI

)
T,p,Nw

∣∣∣∣∣
ρw=ρw,0

ρI +O
(
ρ2I
)

= ρw,0 − v̄Iρw,0ρI +O
(
ρ2I
)
, (1.22)

where ρw,0 is the number density of water in pure water. Using eq. 1.22, we obtain

µ∗
A (ρw) = µ∗

A (ρw,0)− µ∗′
A (ρw,0) v̄Iρw,0ρI + · · · (1.23)

with µ∗′
i (ρw,0) = (∂µ∗

i (ρw) /∂ρw)T,{ρj}j ̸=w

∣∣∣
ρw=ρw,0

.

From χ−1
T = kBT

∑
i,j=w,I,A ρiρjI

ij (in eq. 4.10), the isothermal compressibility χw in pure

water is given as

χ−1
w = kBT lim

ρI,ρA→0
ρ2wI

ww = ρ2w,0f
′′
0 (1.24)

with f
′′
0 =

(
∂2f0 (ρw) /∂ρ

2
w

)
T
. At the infinite dilution limit of ions and solute, substituting

v̄i = kBTχT
∑

j=w,I,A Iijρj for i = w, I,A (in eq. 4.17) into eq. 1.8 and using eq. 1.17, the excess

partial molecular volume v̄∗i ≡ v̄i − kBTχT for i = I,A is written as

v̄∗i = χwρw,0µ
∗′
i (ρw,0) (i = I,A), (ρI → 0, ρA → 0). (1.25)
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Then, substituting eq. 1.23 into eq. 1.21, we obtain

µ∗
A (ρw, ρI) = µ∗

A (ρw,0) +
[
UIA − µ∗′

A (ρw,0) v̄Iρw,0

]
ρI + · · ·

= µ∗
A (ρw,0) +

[
UIA −

v̄∗I v̄
∗
A

χw
− kBT v̄

∗
A

]
ρI + · · · (ρA → 0), (1.26)

where eq. 1.25 is used to derive the last equality.

At a low salt concentration, the salt addition effect on the solubility of a hydrophobic solute

is measured by the Setschenow coefficient Ks. In the present notation, it is given by

Ks = lim
ρs→0

(
∂µ∗

A (ρw, ρI) /kBT

∂ρs

)
T,p

. (1.27)

Substituting eq. 1.26 into eq. 1.27, we obtain

Ks = (ν+ + ν−) lim
ρI→0

(
∂µ∗

A (ρw, ρI) /kBT

∂ρI

)
T,p

= (ν+ + ν−)

(
UIA

kBT
−

v̄∗I v̄
∗
A

kBTχw
− v̄∗A

)
(ρI → 0, ρA → 0). (1.28)

Here, from eq. 1.11, the ions-solute KBI is written as

GIA =
1

ρIρA
IIA

= − 1

ρIρA

1

det{Iij}

∣∣∣∣∣∣∣∣∣∣
Iww IwI

IwA IIA

∣∣∣∣∣∣∣∣∣∣
. (1.29)

where∣∣∣∣∣∣∣∣∣∣
Iww IwI

IwA IIA

∣∣∣∣∣∣∣∣∣∣
=

f
′′
0 UIA

(kBT )
2 −

µ∗′
I (ρw)µ

∗′
A (ρw)

(kBT )
2 + · · · (1.30)

ρIρA det{Iij} =
f

′′
0

kBT
− f

′′
0 κ

3

16πkBTρI
+

f
′′
0 UII − µ∗′

I (ρw)
2

(kBT )
2 ρI

+
f

′′
0 UAA − µ∗′

A (ρw)
2

(kBT )
2 ρA + · · · (1.31)

Thus, substituting eqs. 1.24 and 1.25 into eq. 1.29, GIA at the infinite dilution limit of ions and
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solute is given by

GIA = − UIA

kBT
+

µ∗′
I (ρw,0)µ

∗′
A (ρw,0)

kBTf
′′
0

= − UIA

kBT
+

v̄∗I v̄
∗
A

kBTχw
(ρI → 0, ρA → 0). (1.32)

Using eqs. 1.16, 1.28, and 1.32, the Setschenow coefficient is expressed in the KBIs as

Ks = (ν+ + ν−) (GwA −GIA) (ρI → 0, ρA → 0), (1.33)

Here, substituting eqs. 1.18 and 1.19 into eq. 1.32, it is clear that

GIA =
ν+GA+ + ν−GA−

ν+ + ν−
, (1.34)

where + is cation and − is anion in the subscripts of the KBI.

IV OUTLINE OF THESIS

In the present study, using molecular dynamics (MD) simulations, we develop a new force field

of monovalent ions and examine the partial molar volume of ions and the salt effects on the

solubility of nonpolar and polar solutes and on the hydrophobic interactions between solute

molecules. The present paper consists of three chapters as follows:

In Chapter 2, we shall develop a force field of ions to study the ion effect on the physical

properties of aqueous solutions using MD simulations. The force field of the ions sets the ionic

charge scaled by a factor of 0.75 to account for the electronic polarization effect of the solvent,

and the other parameters are determined so that the density of aqueous solutions consisting

of the TIP4P/2005 [60] water and the model ions is in accord with the experimental data.

Furthermore, it is verified that the developed force field reproduces the solubility of methane in

aqueous electrolyte solutions and the partial molar volume of salt at the infinite dilution limit.

In Chapter 3, we shall discuss the microscopic origin of ion size effects on the solubility of

hydrophobic solutes in aqueous electrolyte solutions through analyses of correlation function

integrals, packing fractions of solvation spheres of different radii centered at an ion, orientations

of water molecules in the solvation spheres, and the solute-ion potential of mean force. In

particular, we discuss the origin of the exceptionally small salting-out effect of Li+ (the strength

of the salting-out effect: Na+ > K+ > Cs+ ≃ Li+).
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In Chapter 4, we examine the relationship between the ion-specific effect on the solubility

of a solute and that on the effective interaction between solute molecules in aqueous solutions.

The ion-specific effect on the solubility is measured by the Setschenow coefficient Ks. Recently,

Okamoto and Koga proposed the salt-enhanced-association (SEA) coefficient defined by CI =

− limρs→0 (∂B/∂ρs)T,p, where B is the osmotic second virial coefficient and ρs the density of

a salt in aqueous solutions of electrolytes (Xν+-Yν−), as a measure of the ion-specific effect on

the effective interaction between solute molecules and derived an approximate relation CI ≃

K2
s /2 (ν+ + ν−). We calculate both CI and Ks for various sets of ions and solutes by performing

MD simulations. The numerical results of CI andKs are in good agreement with the approximate

relation when Ks is positive (when solutes are salted out).
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Chapter 2

Development and Validation of

Charge Scaling Force Field of Ions:

Solution Density, Solubility of

Hydrophobic Solute, and Partial

Molar Volume of Salt

Abstract

Model ions described by conventional nonpolarizable force fields overestimate the solubility of

solutes in aqueous electrolyte solutions. We then propose a force field of ions whose charges

are scaled by a factor of 0.75 to account for the electronic polarization effects of the solvent.

Since the solubility of a given solute in aqueous electrolyte solutions is strongly correlated with

the density of solutions, we optimized the force field parameters of ions to be consistent with

experimental data of the density of aqueous electrolyte solutions by performing molecular dy-

namics simulations of aqueous electrolyte solutions of TIP4P/2005 water. Furthermore, using

the charge scaling force fields of ions proposed in the present study and earlier studies, the

Setschenow coefficient Ks for methane in salt solutions and the partial molar volume v̄s of the

electrolytes at the infinite dilution limit were calculated. It is confirmed that the calculation

results for Ks and v̄s obtained from using those force fields are in good agreement with the exper-

imental values. Thus, it is now established that the ionic charge scaling method, despite being
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very simple, highly improves the nonpolarizable force field in terms of the ability to reproduce

both the density of solutions and the salt effect on the solubility of solutes.

I INTRODUCTION

Water is the most abundant substance in living organisms, accounting for 70 ∼ 80%, most of

which contains electrolytes. It is then one of the most significant fields for clarifying organism

phenomena to study the physical properties of aqueous electrolyte solutions. In particular, the

pH, the concentration of H3O
+ and OH− in an aqueous electrolyte solution, is an essential

element for biochemistry study to closely relate to proton transfer in the chemical reaction and

the structural change and precipitation of protein[61, 62]. Therefore, experimental and computer

simulation studies are actively conducted about the ion addition effect on the physical properties

of aqueous solutions[63, 64, 65, 66, 67, 68, 69].

Computer simulation, especially molecular dynamics (MD) simulation, is an effective tool for

analyzing the microscopic structure around ions in an aqueous electrolyte solution or investigat-

ing a wide range of pressure, temperature, and salt concentration. Here, it is necessary for study-

ing aqueous electrolyte solutions using MD simulations to set a force field of water molecules and

ions that can accurately reproduce experimental results for some physical quantities, such as the

solute solubility, the interface tension, the solution density, and the radial distribution function.

Nonpolarizable force fields, such as AMBER[70], CHARMM[71, 72, 73], GROMOS[74, 75], and

OPLS[76, 77] are used in the majority of MD simulations, especially for large systems and long

computation times. For conventional nonpolarizable force fields, the electrostatic interactions of

ions are described by their original integer charges[70, 72, 75, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87].

These force fields of ions directly apply ionic charges in vacuum, which overestimate the electro-

static interaction of ions because of ignoring the screening effect of solvent electronic polarization.

It is known that the salt addition effect on the solubility of a hydrophobic solute in aqueous

electrolyte solutions of the nonpolarizable model ions is overestimated[88, 89, 19]. Leontyev and

Stuchebrukhov[90, 91, 92, 93, 94, 95] proposed scaling the ionic charge in an aqueous electrolyte

solution by qscaled = q/
√
ϵel instead of the integer value as one solution to this problem (ϵel is

the electronic dielectric of water, ϵel ∼ 1.78). They argued that the nonpolarizable force fields of

ions take into account the electronic screening of the solvent by the simple charge scaling, the so-

called electronic continuum correction (ECC) or molecular dynamics in an electronic continuum
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(MDEC). Although it is clear that polarizable force fields can improve the above problems, in

practice they are both difficult and computationally expensive to fully reproduce electronic po-

larization of the solvent[96, 97, 98, 99]. Therefore, it is very interesting to try to develop charge

scaling force fields of ions that take into account the polarization effect in aqueous solutions.

Leontyev and Stuchebrukhov result in the scaled charges for monovalent ions of about ±0.75.

The force field of Li+, Na+, and Cl− with qscaled = ±0.75 was proposed by Jungwirth et al. and

is called the ECCR (Electronic Continuum Correction with Rescaling) force field[100, 101, 102,

103]. This force field represents a readjustment of the LJ parameter to match the experimental

results of neutron scattering and viscosity after scaling the charge. Since then, charge scaling

force fields of a variety of ions have been developed[99, 104, 105, 106, 107]. It has been pointed

out in earlier computational studies[19, 108, 109] that charge scaling force fields of ions are much

improved over nonpolarizable force fields employing integer ionic charges for many structural

and dynamic properties of aqueous solution, such as gas solubility, solution density, and radial

distribution functions. Similarly, Carlos Vega et al.[110, 111, 112, 113, 114] developed force

fields of NaCl using |qscaled| = 0.75 (Madrid-Transport model), 0.80, 0.85 (Madrid-2019 model),

and 0.92 (Madrid-Interfacial model), especially in the Madrid-2019 model, developed that of a

variety of monovalent and divalent ions. The Madrid-2019 force field reproduces well the salt

concentration and temperature dependences of the experimental solution density, including the

temperature of maximum density[115, 116].

In the present study, we develop a new force field of five ions, Cs+, F−, I−, H3O
+, and

OH− with each total charge scaled to ±0.75. In the development of a proton force field, it

is inevitable to consider the properties of a proton in aqueous solution. Protons do not exist

on their own in aqueous solution, and form chemical bonds with surrounding water molecules,

such as the hydronium ion, H3O
+, and the Zundel cation, H5O

+
2 (the proton shared by two

water molecules)[117]. Furthermore, it is known that the proton forms a variety of protonated

water clusters, and it has been debated to date whether the simplest hydrated cluster, H9O
+
4 is

the Eigen form [H3O
+ (H2O)3][118, 119], the Zundel form

[
H5O

+
2 (H2O)2

]
or a mixture of the

two[120, 121, 122, 123]. It is impossible to describe such complex properties of the proton in

water by the classical MD, and quantum mechanical ideas are required. We assume that the

physical properties of aqueous solution are described by treating the protons in the solution

only with H3O
+, i.e., by neglecting other multi-body effects. In other words, it is not necessary

that the properties of our proposed force field of H3O
+, such as the polarizability, be in perfect
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agreement with the results of quantum chemical calculations of the hydronium[124, 125].

We develop a charge scaling force field of Cs+, F−, and I− using the ion model proposed

by Joung and Cheatham[83] as a starting point. We also propose a charge scaling force field of

H3O
+ and OH−, starting from the force field of those developed by Bonthuis, Mamatkukov, and

Netz[87] with each total charge of ±1. The target property used to develop the new force field

of ions is solution density. In addition, in the ionic force field developed in this work, that of

the ECCR, and that of the Madrid-2019, the reproducibilities of the experimental data for the

solubility of hydrophobic solutes in aqueous electrolyte solutions and the partial molar volume

of electrolyte at the infinite dilution limit of electrolyte are verified.

II THEORETICAL BACKGROUND

The force field of the ions proposed in the present study is denoted as the Koga model. We

assume a pairwise approximation where the total energy of the system is given by the sum of the

potential energies between the molecules/ions in the system. The interaction between any pair

of atoms i, j in the system is given by the sum of the Coulomb potential and the Lennard-Jones

(LJ) potential;

V (rij) =
1

4πϵ0

qiqj
rij

+ 4ϵij

[(
σij
rij

)12

−
(
σij
rij

)6
]
, (2.1)

where ϵ0 is the dielectric constant in vacuum, qi is the charge of atom species i, and ϵij and σij

are the depth of the potential well and the LJ diameter between atoms i, j, respectively. We

abbreviate σii = σi for homogeneous atoms.

A Charge Scaling Force Field of Point Charge Ions

Jungwirth et al. developed the force field of several point charge ions with charges scaled to 0.75

times their original integer values to describe the behavior of ions in aqueous electrolyte solutions,

with the electronic polarization effect of the solvent taken into account.[100, 101, 102, 103, 107].

We also developed a force field of Cs+, F−, and I− with charge scaling to ±0.75 which straightly

followed the suggestion of Leontyev and Stuchebrukhov, introducing the idea of Jungwirth et al.

However, we set the solution density as the target property and our objective is to reproduce
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the experimental data up to high salt concentration. The force field of point charge ions was

developed by the following procedure.

(1) The nonpolarizable force field parameters (JC model) with charge ±1.0 proposed by Joung

and Cheatham[83] were used as a reference, scaling the charge to ±0.75.

(2) We performed NpT -ensemble MD simulations of six aqueous solutions, LiI, NaF, NaI, CsF,

CsCl, and CsI for several salt concentrations at 1 bar and 298 K. The ECCR model was used for

Li+, Na+, and Cl−. The LJ size parameters σ of Cs+, F−, and I− were determined so that the

salt concentration dependence of the density d of each aqueous salt solution is in good agreement

with the experimental data. The experimental density d kg/m3 of an aqueous electrolyte solution

is expressed as a function of temperature T (≥ 273 K) and salt molarity c mol/L[12];

d = dw +Ac+BcT +CcT 2 +Dc3/2 + Ec3/2T + Fc3/2T 2

dw = 999.65 + 2.0438× 10−1T − 6.174× 10−2T 3/2 (2.2)

where dw is the density of pure water, and A, B, C, D, E, and F are the coefficients given for

each salt type. The force field parameters determined in the above procedures are listed in Table

2.1.

Table 2.1: LJ parameters σ, ϵ of ions, and scaled charge q. The ECCR force field is proposed
by Jungwirth et al.

Model Sites σ (nm) ϵ (kJ/mol) q

ECCR[100] Li+ 0.180000 0.0764700 +0.75

ECCR[103] Na+ 0.211500 0.5442840 +0.75

ECCR[102] Cl− 0.410000 0.4928000 −0.75

This work Cs+ 0.360101 0.3759584 +0.75

This work F− 0.361937 0.0309636 −0.75

This work I− 0.468096 0.1790101 −0.75

This work O (H3O
+) 0.265 0.8 −1.05

This work H (H3O
+) 0 0 +0.60

This work O (OH−) 0.36 0.05 −0.75

This work H (OH−) 0 0 0
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(3) We calculated the Setschenow coefficient Ks, which represents a measure of the salt addition

effect on the solubility of the solute, and the partial molar volume V̄s of salt at the infinite

dilution limit using the ionic parameters determined in this work, and compared them with

experimental values.

B Charge Scaling Force Field of Hydronium Ion And Hydroxide Ion

We developed force fields of H3O
+ and OH− that effectively account for the electronic polar-

ization effect of the solvent by a simple scaling of the charges. In particular, the charge scaling

force field of H3O
+ has not been developed before and is very interesting to develop and verify.

The force field of those was developed by the following procedure.

(1) The nonpolarizable force field parameters with the total charge ±1 proposed by Bonthuis,

Mamatkukov, and Netz were used as a reference[87], scaling the total charge to ±0.75 by mul-

tiplying the charge of each site in the model molecule by 0.75. The hydronium ion model is

triangular pyramidal as shown in Figure 2.1, with the H-O-H angle θHOH being 111.4◦ and the

O-H bond length bOH being 0.98 Å. The hydroxide ion model is linear, and the O-H bond length

bOH is 1.0 Å.

O
H

HH θHOH

bOH O H
bOH

Figure 2.1: Definition of bond lengths bOH and angle θHOH.

(2) We performed NpT -ensemble MD simulations of HCl and NaOH aqueous solutions for

several temperature and salt concentrations at 1 bar. The LJ size parameter σO of the oxygen

atom in each model molecule was determined so that the temperature and salt concentration

dependences of the solution density d fit the experimental data. The force field parameters

determined in the above procedures are listed in Table 2.1.

(3) As in the case of point charge ions, we verified the Setschenow coefficient Ks and the partial

molar volume V̄s of salt for agreement with experimental values.
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C Setschenow Coefficient Ks

The salt addition to water decreases the solubility of solutes, the so-called salting-out effect,

and is applied to the separation of proteins, low molecular weight organic compounds, metal

complexes, and ion pairs that cannot be separated by filtration or centrifugation. However,

there are ion species that denote the opposite salt addition effect and are called the salting-in.

At a low salt concentration, the salt addition effect on the solubility of a hydrophobic solute is

measured by the Setschenow coefficient Ks;

Ks = − lim
ρs→0

(
∂ lnλA

∂ρs

)
T,p

≃ − 1

ρs
ln

(
λA

λ0
A

)
(ρs → 0) , (2.3)

where λA and λ0
A are the Ostwald absorption coefficients of the gas in aqueous solution and in

pure water, respectively, and ρs is the number density of the electrolyte. The second line in

eq. 2.3 was derived by a linear approximation. The Ostwald absorption coefficient λA is the

ratio of the solute density ρA in solution to that ρgasA in the gas phase when the solution is in

equilibrium with the gas phase. The value of λA denotes the the solute solubility and is written

using the solvation free energy (SFE) µ∗
A of a solute in an aqueous electrolyte solution at the

infinite dilution limit of solute as

λA = lim
ρA→0

ρA
ρgasA

= e−µ∗
A/kBT . (2.4)

Using eq. 2.4, eq. 2.3 is written as

Ks = lim
ρs→0

(
∂µ∗

A/kBT

∂ρs

)
T,p

≃
µ∗
A − µ∗

A,0

ρskBT
, (2.5)

where µ∗
A,0 is the solvation free energy of a solute in pure water at the infinite dilution limit

of solute, and the second line was derived by a linear approximation. The Setschenow coef-

ficient Ks obtained from eq. 2.3 depends on the solute and the salt species. The Setschenow

coefficients for many combinations of ion and solute species have been obtained from experi-

mental data[42, 45, 126, 46, 127, 128], and Ks > 0 indicates salting-out, and Ks < 0 indicates
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salting-in. In other words, the larger the Ks, the stronger the salting-out effect. Therefore,

we performed MD simulations to calculate Ks for methane in a variety of aqueous electrolyte

solutions using the ionic force field developed in the present study and compared them with

experimental values. In the earlier references, the Setschenow coefficient is often defined with

kscc = − limρs→0 (∂ log10 λA/∂ρs)T,p = Ks/ ln 10, so we use the ordinary logarithm in the calcu-

lation result of this paper.

As explained in Chapter 1, when salt species Xν+-Yν− dissociates into ν+X
z+ and ν−Y

z− (zi

is the ion valence), the Setschenow coefficient is also written as

Ks = (ν+ + ν−) (GAw −GAs) (ρs → 0) (2.6)

with

GAs =
ν+GA+ + ν−GA−

ν+ + ν−
, (2.7)

where the Kirkwood-Buff integral (KBI) Gij is a measure of the fluctuation in the molecular

number of species i and j, and the subscripts A, w, s, +, and − denote the solute, the solvent,

the salt, and the positively and negatively charged ionic species. Using the radial distribution

function gij (r), the KBI is defined as

Gij =

∫
[gij (r)− 1] dτ , (2.8)

where dτ is the volume prime. Thus, it is found that Ks is obtained from two routes, the

SFE and the KBI. Then, we performed MD simulations of aqueous solutions using the ionic

force field developed in this chapter and compared the Setschenow coefficients obtained from

eqs. 2.5 and 2.6, respectively, with the experimental values and those obtained using conventional

nonpolarizable force fields.

D Partial Molar Volume of Electrolytes

The partial molecule volume v̄i of species i is defined as the volume change of a solution when one

molecule of species i is added to the solution, i.e., v̄i = (∂V/∂Ni)T,p,{Nj}j ̸=i
with the solution

volume V and the particle number Ni. The partial molecule volume is expressed as V̄i =

NAv̄i by the partial molar volume V̄i and the Avogadro constant NA, which the former is

defined as the volume change of a solution when one mole of molecule species i is added to
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the solution and is often used in earlier studies. As shown in eqs. 1.14 and 1.15 in Chapter 1,

the partial molecular volume and the isothermal compressibility χT ≡ −V −1 (∂V/∂p)T,{Ni} in a

two-component system are expressed using the KBIs as

v̄2 =
1 + ρ1 (G11 −G12)

ρ1 + ρ2 + ρ1ρ2 (G11 +G22 − 2G12)
(2.9)

kBTχT =
1 + ρ1G11 + ρ2G22 + ρ1ρ2

(
G11G22 −G2

12

)
ρ1 + ρ2 + ρ1ρ2 (G11 +G22 − 2G12)

. (2.10)

Using eqs. 2.9 and 2.10 in the limit ρ2 → 0, we obtain

v̄2 = −G12 + kBTχw (ρ2 → 0) , (2.11)

where χw = limρ2→0 χT is the isothermal compressibility for pure water.

It is known that the partial molecular volume of electrolyte at the infinite dilution is additive,

i.e., v̄s = ν+v̄+ + ν−v̄− due to the disappearance of ion-ion interactions[26, 27]; v̄+ and v̄−

are the partial molecular volume of a cation and an anion, respectively. In other words, the

partial molar volume of an electrolyte is relatively easy to obtain experimentally and is very

useful in understanding the ion-solvent interaction. Therefore, it has been carried out in earlier

experimental studies[28, 29, 30, 31] that partial molar volumes V̄s of many electrolytes are

measured, and partial molar volumes V̄± of individual ions (cation or anion) are estimated.

However, the serious problem is difficult to directly determine the magnitude of individual V̄±

although the relative values of those is easily obtained. As an example, formally based on

the partial molar volume V̄H+ of proton, the differences V̄± − V̄H+ for a variety of ions have

been determined in Refs. [29, 26]. Therefore, it is essential to obtain an exact partial molar

volume of a proton for determining individual V̄±, but many different values have been estimated

experimentally in the range from −7.6 to −2.7 cm3/mol in water at 298 K[129, 130, 131, 132, 133,

134, 135, 136, 33, 34, 137, 138, 139], making it difficult to exactly obtain partial molar volumes

V̄± of ions from the experimental data. Only the method proposed by Zana and Yeager[33, 34]

has directly and experimentally determined V̄± of a variety of simple monovalent ions, including

a proton, from ionic vibration potential measurements and density data. Furthermore, Takenaka

and Arakata[32] succeeded in determining individual partial molar volumes of ions at infinite

dilution with greater precision using their method.

The partial molecular volume of electrolyte in solution of water + electrolyte at the infinite
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dilute limit of electrolyte is given from eq. 2.11 by

lim
ρs→0

v̄s = ν+v̄+ + ν−v̄− = (ν+ + ν−) (−Gws + kBTχw) (2.12)

with

Gws =
ν+Gw+ + ν−Gw−

ν+ + ν−
, χw = lim

ρs→0
χT =

1 + ρwGww

kBTρw
(2.13)

Equation 2.12 indicates that the salt species dependence of the partial molecular volume v̄s of

salt is internalized in Gw+ and Gw−. Here, it is known that the relation Gw+ = Gw− holds

for the KBI in an opened system by the charge neutrality condition[140]. However, at a salt

concentration low enough that the cation and anion can be considered independent of each other,

which means that there is no solvent molecule affected by both a cation or an anion in solution,

the charge neutrality condition is no longer valid, Gw+ ̸= Gw−. In this case, Gw+ and Gw−

have unique values for individual ions, regardless of each counter-ion species. That is, individual

partial molar volumes of ions at the infinite dilution of salt can be obtained from eq. 2.11 using

MD simulations if we even have a force field that accurately describes the behavior of ions in

aqueous solutions. Therefore, at a low salt concentration where the charge neutrality condition

does not hold, we performed MD simulations of aqueous salt solutions using charge scaling force

fields of ions and compared obtained partial molar volumes V̄s of salt with the experimental

data.

III COMPUTATIONAL DETAILS

We performed NpT ensemble MD simulations using the program package GROMACS2018[141]

to develop and validate a new charge scaling force field of several monovalent ions in the study

of Chapter 2. All of the MD simulations were performed in a cubic cell system with three-

dimensional periodic boundary conditions at 1 bar and a time step of 1 fs. The Parrinello-

Rahman method and the Nosé-Hoover method were used for pressure and temperature control,

respectively. The duration of the production run ranges from 10 to 450 ns depending on struc-

tural properties to be calculated, after the equilibrium run of 5 ns. Configurations in the

production run are sampled every 50 steps.

First, we performed MD simulations at the temperature of 298 K and salt concentration in

a range from 1 to 4 mol/kg for eight aqueous model electrolyte solutions, LiI, NaF, NaI, CsF,
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CsCl, CsI, HCl, and NaOH for 10 ns to calculate each solution density d. We even performed

MD simulations at the temperature in a range from 265 to 298 K and salt concentration of 1

mol/kg for HCl and NaOH solutions for 10 ns. Each solution was prepared with 36, 72, 108,

and 144 pairs of monovalent cations and anions added to 2000 water molecules. However, since

a hydronium ion, which is the most common form of H+ in the aqueous solution, consists of

one water molecule and one proton, the total number of hydronium ions and water molecules

was set to 2000 instead of setting 2000 water molecules in HCl solutions. Second, we performed

MD simulations for four kinds of model systems to obtain the Setschenow coefficient Ks for

methane: pure water, aqueous solutions of salt, those of methane, and those of salt + methane.

Each system contains 4000 water molecules. The aqueous salt solutions contain the additional

72 pairs of monovalent cations and anions to give a salt concentration of 1 mol/kg, and a

solute solution contains 48 molecules. Each system contains 4000 water molecules. The aqueous

salt solutions contain the additional 72 pairs of monovalent cations and anions to give a salt

concentration of 1 mol/kg, and even a solution adding 48 methane molecules is prepared. For

the solutions of salt and methane, the same number of ions and methane as above are added.

Finally, we prepared 8000 water molecules, added one cation and anion 3 nm apart, fixed their

positions, and performed MD simulations for 150 ns to calculate the partial molar volumes of

electrolytes at the infinite dilute limit. The model electrolyte solutions of HCl, LiCl, NaF, NaCl,

NaI, NaOH, CsF, CsCl, and CsI are prepared. The box size is about 6 nm on each system, which

satisfies the cation-anion distance of 3 nm even when the periodic boundary condition is taken

into account.

The potential function for the intermolecular interactions of water molecules is of TIP4P/2005 [60].

The ionic force field parameters are shown in Table 2.1. The methane molecule was used the

OPLS force field[142], a spherical monatomic LJ particle model; σA=0.373 nm, ϵAA=1.2301kJ/mol.

The LJ parameters between heterogeneous particles were basically determined by

σ12 =
√
σ1σ2, ϵ12 =

√
ϵ1ϵ2. (2.14)

However, the methane-water LJ parameters were used σAw = 0.34445 nm and ϵAw = 1.043

kJ/mol[143], and the Na+−OH− LJ diameter parameter were used σNa+OH− = 1.134 nm. The

methane-methane and interaction was replaced by the repulsive part of the Weeks-Anderson-

Chandler (WCA) potential[144] to prevent solute aggregation. The original methane-methane

radial distribution function gAA (r) is transformed from the methane-methane gsimAA (r) obtained
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from the MD simulations using the WCA repulsive potential[145, 146]. The LJ potential part of

all of the intermolecular pair potentials was truncated at 0.9 nm, and the long-range Coulomb

part of those was calculated by the Ewald sum with the same cutoff distance as the LJ part

in the real space. However, the cutoff distance was changed to 1.2 nm to calculate the partial

molar volume instead of 0.9nm.

The solvation free energy µ∗
A of methane was calculated from the Widom test-particle inser-

tion (TPI) method[147] to evaluate the Setschenow coefficient Ks from the second line in eq. 2.5.

We performed MD simulations of pure water and salt solutions for 150 ns and inserted test par-

ticles 2 × 105 times into the equilibrium configuration at 50 fs intervals. Ks for methane was

even evaluated from eq. 2.6. The KBIs in eq. 2.6, GAw and GAs were obtained from numerical

integration of the corresponding pair correlation function. MD simulations of methane solution

and salt + methane solutions were performed for 450 ns. Any hij(r) obtained from MD simula-

tion at a closed system does not converge to zero at large distances due to the finite-size effect.

We shifted the entire hij(r) so that the average of hij(r) in a certain range at large distances

becomes zero. Furthermore, we evaluated the KBI in the thermodynamic limit by applying the

following method proposed by Krüger et al.[148, 149] to the KBI obtained for the finite systems:

The KBI for the molecule models with multiple interaction sites such as the hydronuim ion was

obtained by averaging the KBIs between all the pairs of sites on the molecules[150].

IV RESULT AND DISCUSSION

A Point Charge Ions

We obtained the density d of aqueous electrolyte solutions at several salt concentrations from

MD calculations using the charge scaling force field of point charge ions developed in the present

study at 1 bar and 298 K. The molality dependences of these results and the experimental data

are shown in Figure 2.2. For many electrolytes, the calculated solution densities are in good

agreement with the experimental data up to the high salt concentration, but for CsF and CsI

solutions, the densities are overestimated at the high salt concentration. The deviations for CsF

and CsI at the high salt concentration are attributed to ion-ion interactions in the used force

field since the solution densities reproduce the experimental data well in the range of up to 1

mol/kg.
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Figure 2.2: Density d vs molality for (a) LiI, NaF, NaI aqueous solutions and (b) CsF, CsCl,
CsI aqueous solutions. Red circles are the result from MD simulation, and the black line are
the experimental data in eq.2.2. The density for LiI and CsCl are plotted with the vertical axis
shifted by +0.2 in the notation unit. Similarly, the density for NaI and CsI are plotted with the
vertical axis shifted by +0.3.
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B Hydronium Ion And Hydroxide Ion

Next, the molality and temperature dependences of the solution density d of HCl and NaOH

solutions were verified from MD calculations using the new force field for H3O
+ and OH−, and

compared with experimental values. Figure 2.3 shows the molality dependence of the density

d of aqueous HCl and NaOH solutions calculated from MD simulations at 1 bar and 298 K. In

both HCl and NaOH solutions, the densities are in very good agreement with the experimental

data, from low to high salt concentration of at least 4 mol/kg.

Figure 2.4 shows the temperature dependence of the density of aqueous HCl and NaOH

solutions calculated from MD simulations at 1 bar and the molality of 1 mol/kg for a total of

seven temperatures, every 5 K from 260 to 285 K, plus 298 K. It is highly significant to verify

the temperature dependence of the solution density to confirm the usefulness of the ionic force

field since the temperature of the maximum density of an aqueous electrolyte solution depends

on the salt species and it is known that TIP4P/2005 water reproduces well the temperature

of the density maximum. In addition, the experimental values of density from the two routes

using eq. 2.2 are plotted in Figure 2.4. The blue triangles are the solution density d obtained

by substituting the salt concentration c from the numerical results at each temperature into

eq. 2.2. The solid black line plots eq. 2.2 as a function only of temperature, fixed c at the

molar concentration of salt at 298 K, assuming that the salt concentration change with the

temperature change is very small. The values from those two routes agree well. For the aqueous

HCl solution (in Figure 2.4a), the density of the numerical results (red circles) agrees well with

the experimental data as a function of temperature, e.g., the density at 298 K being only 0.14%

smaller than the experimental data. The temperature of the density maximum is 275 K for

the MD simulation and 275.1 K for the experimental data, which are almost identical. For the

aqueous NaOH solution (in Figure 2.4b), the numerical results of the density agree well with

the experimental data above 273 K as a function of temperature, e.g., the density is only 0.2%

larger than the experimental value at 275 K, where the difference with the experimental values

is the largest. However, the temperature dependence of d from MD calculations did not show a

maximum in the range of 260 to 298 K.
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C Setschenow Coefficient

The Setschenow coefficient kscc for methane in a variety of aqueous electrolyte solutions, ob-

tained by MD calculations using the charge scaling force field of ions, were compared with the

experimental data to verify the reproducibility of the solute solubility. Figure 2.5 shows the

Setschenow coefficients for methane in aqueous solutions of HCl, LiCl, NaF, NaCl, NaI, NaOH,

CsF, CsCl, and CsI, calculated from force fields scaled to a charge of 0.75 (in Table 2.1) and

nonpolarizable force fields with charge unscaled[83, 87], respectively, along with the experimen-

tal values. Furthermore, we calculated kscc in aqueous LiCl, NaCl, and CsCl solutions using the

Madrid-2019 force field with qscaled = ±0.85[111] and that in the aqueous NaCl solution using

the Madrid-Transport force field with qscaled = ±0.75[114]. The Setschenow coefficients using

the ECCR and Koga models in Table 2.1 were evaluated in two routes, eqs. 2.5 and 2.6. First,

µ∗
A,0 and µ∗

A were calculated by the TPI method, in which one methane was inserted as a test

particle into pure water and salt solutions that do not contain methane, respectively. It has been

pointed out in the earlier study that the µ∗
A,0 calculated using the TIP4P/2005 model water and

methane of a single LJ sphere model is in good agreement with the experimental value[143]. Sec-

ond, we calculated GAw in a methane solution without salt and GAs (i.e. GA+ and GA−) in salt

+ methane solutions, respectively. GAw was calculated at low but finite solute concentrations,

and GAs was similarly calculated at low but finite salt and solute concentrations. However, we

assumed those to be GAw and GAs at the infinite dilution limit. Figure 2.5 shows that, for all

salt solutions, the Setschenow coefficient ksimscc calculated from the SFE route in eq. 2.5 and the

KBI route in eq. 2.6 are in good agreement, and both reproduce the experimental Setschenow

coefficient kexpscc well. Focusing on NaCl as a salt, the computational Setschenow coefficients ksimscc

obtained from the ECCR force field underestimated the experimental value kexpscc by 22% for

the SFE route and 18% for the KBI route, while that from the Madrid-2019 force field is 2.7%

larger than kexpscc and that from the Madrid-Transport force field is 36% smaller than kexpscc . Those

charge scaling model ions are highly improved over the JC model, which overestimates kexpscc by

62%. The Koga model developed in this chapter expresses kexpscc as well as or better than the

ECCR model, and the Madrid-2019 model reproduces that the best. Thus, it is confirmed that

the charge scaled force field of ions improves the nonpolarizable force field very well concerning

the salt addition effect on the solubility of hydrophobic solutes.
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Figure 2.5: The Setschenow coefficient ksimscc for methane from MD calculations in several ionic
force fields vs the experimental kexpscc [46]. Red circles and blue triangles are calculated from the
SFE route (eq. 2.5) and KBI route (eq. 2.6), respectively, using the ionic force fields (ECCR and
Koga models) with qscaled = ±0.75. Green squares, black cross, and orange diamonds are the
results from the SFE routes using the Madrid-2019 force field with qscaled = ±0.85, the Madrid-
Transport force field with qscaled = ±0.75, and nonpolarizable force fields (JC and Bonthuis et
al. models) with q = ±1, respectively.

D Partial Molar Volume of Electrolytes

The partial molar volumes V̄s, V̄+, and V̄− of electrolytes, cations, and anions at the infinite

dilution limit of salt were evaluated from eqs. 2.11 and 2.12 by MD calculations. Here, since a

hydronium ion molecule consists of one molecule each of H+ and H2O, the partial molar volume

of H+ is given by V̄H+ = V̄H3O+ − V̄w = V̄H3O+ − NA/ρw with V̄w the partial molar volume

of water. Table 2.2 shows the V̄ sim
s , V̄+, and V̄− for the ECCR and Koga models in nine salt

solutions and the experimental values V̄ exp
s [29, 26]. As shown in Table 2.2, it is found that

the partial molar volume of the ion has the ion-specific value independent of the counterion,

i.e., Gw+ ̸= Gw−, which represents that the charge neutrality condition is not satisfied at the

simulation condition in the present study. The partial molar volumes of electrolytes from the

charge scaling force field of ions agrees well with the experimental values except for CsF and CsI.

The computational values V̄ sim
s underestimate the experimental values by 9.9 cm3/mol in the
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aqueous CsI solution and by 11.4 cm3/mol in the aqueous CsF solution, which has the largest

deviation. Here, the partial molar volume V̄s of electrolytes is related to the solution density d

by

(
∂d

∂c

)
T,p,Nw

=
∑
i

∂ (NiMi/V )

∂ (Ns/V )
=

1− dV̄s

1− ρsV̄s/NA
, (2.15)

where Mi is the molar mass of molecular species i. Then, in the limit ρs → 0, we obtain

V̄s =
1

d

[
1−

(
∂d

∂c

)
T,p,Nw

]
(ρs → 0) . (2.16)

Equation 2.16 indicates that the partial molar volume of the electrolyte is determined by the

derivative of the solution density with respect to the molar concentration of salt, whereby the

differences between V̄ sim
s and V̄ exp

s are attributed to the deviation of (∂d/∂c)T,p,Nw
from the

experiment. Given the relation 1/m = d/c −Ms between the salt concentration c and the mo-

lality m, the deviation of (∂d/∂c)T,p,Nw
from the experiment depends on that of (∂d/∂m)T,p,Nw

.

Therefore, the validity of the ionic force field for V̄s depends on the slope of the density-molality

figure (e.g. Figures 2.2 and 2.3) in the limit m → 0. As shown in those figures, it is considered

that the slopes of the solution densities with respect to m for CsF and CsI aqueous solutions are

not in accord with the experimental data since the densities of those solutions are overestimated

with increasing m. It is the reason for the large difference between V̄ sim
s and V̄ exp

s for CsF and

CsI solutions.

It is found that the present calculation method of the KBI obtains the partial molar volume

V̄s of electrolyte at the infinite dilution limit, and also obtains the individual partial molar

volume of the ions, which is difficult to directly evaluate from experiments. It is expected that

the discrepancies between V̄ sim
s and V̄ exp

s of CsF and CsI will be improved by redeveloping ionic

force fields that more accurately represent the salt concentration dependence of the solution

density, whereby the individual partial molar volume of the ions will be obtained with sufficient

accuracy in the future.

V CONCLUSIONS

First, we have developed and validated the force field for five monovalent ions, scaling the charge

to qscaled = ±0.75 to take into account the electronic polarization effect of the solvent. The so-

lution densities d at the molality of 1 mol/kg in all aqueous electrolyte solutions consisting of
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Table 2.2: Partial molar volumes V̄+, V̄−, and V̄s of cations, anions, and electrolytes at the
infinite dilution limit of electrolytes, respectively. V̄ sim

s are the results from MD calculations
and V̄ exp

s are experimental values.

Salt V̄+ (cm3mol−1) V̄− (cm3mol−1) V̄ sim
s (cm3mol−1) V̄ exp

s (cm3mol−1)

HCl -10.6129 31.7371 21.1241 17.83

LiCl -7.8459 32.0082 24.1623 16.95

NaF -8.3499 1.6524 -6.6975 -2.37

NaCl -8.5143 31.5899 23.0757 16.62

NaI -7.5493 41.2588 33.7094 35.01

NaOH -7.9885 5.4564 -2.5321 -5.25

CsF 6.0013 2.8153 8.8167 20.18

CsCl 6.4959 31.6772 38.1730 39.14

CsI 6.0048 41.5883 47.6363 57.56

this ionic force field and the TIP4P/2005 water are in good agreement with the experimental

values, and these agreements extend to high salt concentrations except for CsF and CsI solu-

tions. The densities of CsF and CsI solutions are overestimated at high salt concentrations,

which are expected to be improved by redetermining individual ion-ion interactions instead of

the combining rules in eq. 2.14. We also examined the temperature dependencies of d for HCl

and NaOH solutions. The HCl solution reproduced the density very well, including the tem-

perature of the density maximum, while for the NaOH solution, d deviated significantly from

the experimental values at low temperatures, and there was no density maximum. One possible

reason for this deviation is that the OH− model has no charge on the H-site. Then, the problem

of the temperature dependence of d is expected to be improved by dividing the charges into O

and H sites as well as the OH− force field proposed by Habibi et al[113].

Next, the Setschenow coefficient, which represents a measure of the salt addition effect on

the gas solubility, for methane in a variety of aqueous model electrolyte solutions was compared

with the experimental values. The ionic charge scaling force field of Koga (this work), ECCR,

Madrid-2019, and Madrid-Transport were all found to be in better agreement with experimental

values than the nonpolarizable force fields (JC and Bonthuis et al. models), which overestimate

those by about 60%. In other words, this result indicates that the salt addition effect on the

solubility of hydrophobic solutes is quantitatively evaluated by ion charge scaling to account for
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the screening effect of solvent electronic polarization, despite being highly more tractable than

polarizable force fields. Furthermore, the Madrid-2019 force field was the most consistent with

the experimental values among these charge scaling force fields.

Then, the partial molar volumes V̄s of the electrolyte at the infinite dilution limit of salt were

compared with the experimental values. We have even succeeded in determining the absolute

partial molar volumes V̄+ and V̄− of cations and anions for each ion by a simple method. Most

of V̄s agreed with the experimental values except for CsF and CsI, which were about 10 cm3/mol

smaller than those. It is seen from eq. 2.16 that this result, including the discrepancy in CsF

and CsI, depends on the reproducibility of the salt concentration dependence of the density at

low salt concentrations. Focusing on the HCl solution, V̄s agrees well with the experimental

data, but the partial molar volume of H+ is −10.6 cm3/mol, which is smaller than the about −6

cm3/mol reported in many earlier experimental studies. In other words, the koga and ECCR

models reproduce V̄s well but do not guarantee to reproduce V̄+ and V̄−, the components of

V̄s according to the first equality in Equation 2.12. The difference in V̄H+ of proton from the

experimental value is attributed to the fact that the ionic LJ parameters of the Koga force field

were determined so that the solution density reproduces the experimental value concerting the

NaCl of the ECCR force field.

Finally, we propose that an ionic charge scaling force field will be developed that ameliorates

the above problems by determining the ionic LJ parameters using the following procedure. (1)

First, the LJ parameters of the ions, including NaCl, are determined such that the partial molar

volume of the ions reproduces the experimental values at the infinite dilution limit of salt. This

is because, at the infinite dilution, solely ion-water interactions are taken into considerations as

salt species-dependent factors while the ion-ion correlations can be ignored. (2) Determine the

ion-ion LJ parameters so that the solution density d agrees with the experimental data in the

high salt concentration region.
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Chapter 3

Microscopic Origins of Ion Size

Dependences of Gas Solubility in

Aqueous Electrolyte Solutions:

Reversed Order of Sodium and

Lithium Ions

Abstract

It is known that the magnitude of the salting-out effect of ions on hydrophobic solutes in aqueous

solution depends on the ion species, and in general the smaller the ion size, the larger the

effect. At low salt concentrations, the magnitude of the salting-out effect is determined by the

hydrophobic solute and the salt. The magnitude of the salting-out effect of alkali metal ions on a

common hydrophobic solute (experimental Sechenov coefficients [46]) is in the order Na+ > K+

> Cs+ ≃ Li+, with the smallest ion, Li+, deviating from the general trend. To clarify the cause

of the reversed order in the cation series, we considered the Lennard-Jones (LJ) parameter σ of

an ion as a continuous variable and varied its value (σ+ or σ−) for cation or anion in the range

of 0.16 nm to 0.50 nm, and then performed molecular dynamics (MD) simulations of an aqueous

electrolyte solution for each ion diameter. The study in this Chapter revealed that the ion size

dependence of the magnitude of the salting-out effect in aqueous solutions of relatively small

hydrophobic solutes such as methane is correlated with the ion size dependence of the packing
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fraction η of the aqueous solution, as observed in earlier studies, and also correlated with those of

the partial molar volume of an ion. Analyses of correlation function integrals, packing fractions

of solvation spheres of different radii centered at an ion, and orientations of water molecules

in the solvation spheres reveal the key differences in microscopic properties between the cation

and anion series, which give rise to the reversed order in the cation series of the partial molar

volumes of ions and ultimately that of the Setschenow coefficients. Furthermore, for analyzing

cation-methane potentials of mean force in the cation series, it is found that the exceptional

behavior of Li+ for the Setschenow coefficients is caused by the water-cation potential at the

distance contacting methane with the first solvation sphere of a cation. The cation size effect

on the Setschenow coefficient for the amphiphilic solute (methanol) instead of methane was

similarly examined.

I INTRODUCTION

Most of the water on our planet contains electrolytes. It has been extensively studied the salt

addition effect on a variety of the physical properties of aqueous solution, such as the solu-

tion density[12, 13], partial molar volume[26, 34] surface tension[14, 151], viscosity[21], and gas

solubility[17]. Many of the ion species dependences on those physical properties are common,

and the order of the ions is called the Hofmeister series. The Hofmeister series was origi-

nally introduced as the ordering of ions in the magnitude of ion addition effects on protein

aggregation[24]. Recently, it has been understood in experimental and computational studies

that the Hofmeister series results from a complex interplay of the ion-water and ion-protein inter-

actions in aqueous solution, thereby promoting a molecular-level understanding of the Hofmeister

series,[152, 153, 8, 154], whereas the detailed mechanism remains unclear.

The addition of salt to water often enhances the hydrophobic effect, thereby further de-

creasing the solubilities of gases and hydrocarbons in water or making otherwise perfectly

miscible components partially miscible. This phenomenon is called the salting-out: some

ionic species induce the opposite effect, called the salting-in. Whether or not the salting-

out or salting-in effect appears and its strength depends on the ion and solute species: Ex-

perimental data are reported for combinations of common ions and relatively simple solute

species[42, 45, 126, 46, 127, 128]. Molecular theory has not yet been developed to understand

the laws of the salting-out effect[53]. Since the hydrophobic and hydrophilic moieties of biologi-
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cal molecules are the two major determinants of their solubility, the elucidation of independently

ion-specific effects on each group should also provide a necessary basis to fully understand the

Hofmeister series. In this chapter, we focus on the ion size effect on the solubility of small,

nonpolar molecules, e.g., methane, in aqueous solution, which has been the subject of earlier

theoretical studies[88, 155, 63, 89, 156, 157, 18] but remains not fully understood. In general,

it is known that for a common solute and counter ion, the smaller the ion size, the larger the

salting-out effect.

In 1889, Setschenow (Sechenov)[158] proposed and verified the relationship between the salt

concentration and the solubility of a gas in aqueous electrolyte solution, which

λ

λ0
= e−Ksρs (3.1)

in the present notation, where λ and λ0 are the Ostwald absorption coefficients of the gas

in aqueous solution and pure water, respectively, ρs is the number density of the electrolyte.

Ks, which is called the Setschenow coefficient, is a measure of the salting-out/salting-in effect

and depends on the salt and solute species: the positive value of kscc indicates salting-out and

negative that indicates and salting-in. Commonly used today is kscc = − (1/cs) log10 [λ/λ0]

with cs the molar concentration of salt. The experimental data of kscc for methane in aqueous

solutions of alkali metal chlorides (LiCl, NaCl, KCl, RbCl, and CsCl) and sodium halides (NaF,

NaCl, NaBr,and NaI) against the ionic radii of cations and anions, respectively, are shown in

Figure 3.1. Then, the magnitude of kscc of alkali metal ions with a common anion and solute is

in the order Na+ > K+ > Rb+ > Cs+ ≃ Li+, where it is noted that the smallest size ion, Li+, is

deviated from the normal ordering of ion size. There are several explanations for the origin of the

exceptional behavior of Li+ or the nonmonotonic behavior of kscc in the cation series including

Li+[17, 89, 156, 157, 18]. It has been reported in earlier computational studies[89, 157, 159] that

kscc of electrolyte solutions are correlated with volumetric properties of the solutions such as the

packing fractions, the partial molar volumes of the ions, or the volume contraction caused by

electrostriction. In particular, Docherty et al.[89] pointed out similar ion size effects of kscc and

η for monovalent cations and anions, with exceptionally small values at the Li+ size only for

cations not for anions. In the present study, we revisit the question of the ion size effect on kscc

and examine the ion size dependences of kscc via an investigation of the packing fraction and the

microstructure of the ionic surroundings based on the theory of liquid mixtures and computer
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Figure 3.1: Setschenow coefficients kscc for methane in aqueous solution of alkali halides. The
caption in the figure indicates the electrolyte species: the experimental kscc against the ionic
radii of the alkali metal ions (red circles) and the halide ions (blue squares). The Setschenow
coefficients and the ionic radii are taken from refs. [46] and [160], respectively.

II THEORETICAL BACKGROUND

We now consider a three-component aqueous solution consisting of w (water), s (salt Xν+Yν−),

and A (solute). Salt species Xν+Yν− dissociates into ν+X
z+ and ν−Y

z− (zi is the ion valence)

in solution. It is discussed in Chapter 1 that the ionic effect on the solubility of a solute species

in aqueous solution may be described by the theory of liquid mixtures or more specifically by

fluctuation theory, and there is extensive literature on this subject[161, 55, 162]. We start with

the ratio λi = ρi/zi of the number density to the activity zi of species i. Here, zi is defined as

zi → ρi in the ideal-gas limit for nondissociable species. For salt species Xν+-Yν− , zi is defined

such that ρ
ν+
X ρ

ν−
Y = ν

ν+
+ ν

ν−
− ρν++ν− in the ideal gas limit. The solvation free energy µ∗

i (SFE)

of a nondissociable solute in solution is then µ∗
i = −kBT lnλi, with T the temperature and

kB the Boltzmann constant. When the solution is in equilibrium with its vapor, λi satisfies

ρi/zi ≃ ρi/ρ
gas
i , and corresponds to the Ostwald absorption coefficient which represents the
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solubility of solute i.

The Setschenow coefficient is given by eq. 3.1 is the first-order approximation to an expansion

of lnλA of solute in powers of the number density ρs of salt at fixed T and with some additional

constraints:

lnλA = lnλ0
A −Ksρs +O (ρs) (3.2)

with λ0
A = limρs→0 λA. When the constraint is fixed p and fixed activity z′w,s for all species

except water and salt,

Ks = − lim
ρs→0

(
∂ lnλA

∂ρs

)
T,p,z′w,s

, (3.3)

where the constraint of fixing z′w,s means that the system is open for all molecular species except

water and salt. We now consider solute A as a hydrophobic solute and suppose the solution

is infinitely dilute in solute A, which is essentially the case for nonpolar solutes. Then the

constraints on the variation in ρs are simply of fixed T and p, i.e.,

Ks = − lim
ρs→0

(
∂ lnλA

∂ρs

)
T,p

= lim
ρs→0

(
∂µ∗

A/kBT

∂ρs

)
T,p

. (3.4)

As derived in section III of Chapter 1, the Setschenow coefficient is rewritten using the

Kirkwood-Buff integral (KBI) Gij as

Ks = (ν+ + ν−) (GAw −GAs) (3.5)

Gij =

∫
hij (r) dr, (3.6)

where hij (r) = gij (r) − 1 is the pair correlation function between molecular species i, j with

gij (r) the radial distribution function, and the solute-salt KBI GAs is given by averaging the

solute-cation and solute-anion KBIs, GA+ and GA−, respectively:

GAs =
ν+GA+ + ν−GA−

ν+ + ν−
. (3.7)

Equation 3.5 implies that salting-out (Ks > 0) occurs when GAw > GAs, and vice versa. In the

limit ρA → 0, using 2.11, we obtain GAw = −v̄∗A with the solvation volume v̄∗A = v̄A − kBTχT of

solute where v̄A is the partial molecular volume and χT is the isothermal compressibility. Then,
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eq. 3.5 is rewritten by

Ks = − (ν+ + ν−) (v̄
∗
A +GAs) . (3.8)

v̄∗A is volume change of a solution when one molecule of solute is added at a fixed point in the

system: for the solvation of hydrophobic solutes in water near room temperature, v̄∗A ≃ v̄A > 0.

Therefore, the salting-out (Ks > 0) for hydrophobic solutes must be so negatively large that

GAs makes v̄∗A +GAs < 0.

The charge neutrality condition requires Gw+ = Gw− in a macroscopic volume centered at a

molecule of solute A[140]. In practice, however, when GA+ and GA− are evaluated numerically

from the corresponding correlation functions obtained by molecular simulation, they could be

appreciably different for different ions. In particular, at the infinite dilution limit of ions, GA+

and GA− would be ion-specific and, that is, given for each ion species.

From eq 3.8, it follows that the salt effect as measured by Ks for a common hydrophobic

solute depends on GAs alone. So we will examine GAs, i.e., GA+ and GA−, for various ions

to understand the ion-specific effects of the solubility of hydrophobic solutes, especially the

nonmonotonic behavior ofKs with the size of alkali metal ions. Ion-specific effects were examined

through two routes as follows:

(1) It has been pointed out[17, 63, 89, 157] that the ion specificity of the Hofmeister effects for

a hydrophobic solute including the salting-out or -in may be understood from how the structure

of water is affected by ions, i.e., from structural properties of electrolyte aqueous solutions.

This view is naturally inferred from the mean-field theory of liquid applied to hydrophobic

hydration[163, 164]: the density or the packing fraction of the solution mainly determines the

changes in the SFE with temperature, pressure, and salt concentration. Therefore, we shall

examine the volumetric properties of salt solutions, i.e., the packing fractions and the partial

molar volumes of salts (or v̄∗s = −Gws) for model electrolyte aqueous solutions and the correlation

between them and the ion specificity of the Setschenow coefficients Ks.

(2) From eqs. 3.7 and 3.8, given that the salt species dependences of Ks come only from GAs

and the ion-specificity of GA+ and GA− at the infinite dilution limit of salt, the ionic size effects

on Ks of alkali metal ions for a common solute and anion, including the exceptional behavior of

Li+, should be included in GA+ alone. Therefore, from ref. 3.5, we shall examine the cation size

dependences of the solute-cation effective interaction, i.e., the potential of mean force (PMF)

wA+ (r), in aqueous solutions of electrolytes and hydrophobic solutes. The solute-cation PMF
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represents the magnitude of the solute-cation potential at their distances r in aqueous solution

and is given by

wA+ (r) ≡ −kBT ln gA+ (r) . (3.9)

III COMPUTATIONAL DETAILS

We performed NpT ensemble MD simulations using the program package GROMACS2018[141]

to develop and validate a new charge scaling force field of several monovalent ions in the study

of Chapter 3. All of the MD simulations were performed in a cubic cell system with three-

dimensional periodic boundary conditions at 1 bar and a time step of 1 fs. We assumed the

pairwise approximation where the total energy of the system was given by the sum of the poten-

tial energy between the particles in the system (eq. 2.1). The interaction between pairs of atoms

was given by the sum of Lennard-Jones (LJ) and Coulomb potential. The Parrinello-Rahman

method and the Nosé-Hoover method were used for pressure and temperature control, respec-

tively. The duration of the production run ranges from 10 to 450 ns depending on structural

properties to be calculated, after the equilibrium run of 5 ns. Configurations in the production

run are sampled every 50 steps. First, we performed MD simulations for four kinds of model

systems: pure water, aqueous solutions of salt, those of methane, and those of salt + solute

(methane or propane). Each system contains 2000 water molecules. The aqueous salt solutions

contain the additional 36 pairs of monovalent cations and anions to give a salt concentration of

1 mol/kg, and a methane solution contains 24 methane molecules. For the solutions of salt and

methane, the same number of ions and methane as above are added to 2000 water molecules,

while the solutions of salt and propane contain 4000 water molecules, 72 pairs of monovalent

cations and anions, and 48 propane molecules. Second, we prepared 4000 water molecules and

added one cation, anion, and methane. The position of the cation was fixed, the cation-methane

distance was fixed to a variety of distances in the range of 0.3 nm to 1.5 nm, and the following

two restrictions that prevented the anion from being close to the cation and methane: (1) the

cation-anion and methane-anion LJ parameters set to σ+− = σA− = 1.5 nm and ϵ+− = ϵA+ =

0.517903 kJ/mol. (2) the cation-anion Coulomb interaction is set to zero. Under similar restric-

tions, a solution with water + one methane molecule and solutions with water + one salt were

prepared, and we performed MD simulations for 20 ns for each solution.

The potential function for the intermolecular interactions of water molecules is of TIP4P/2005[60].
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The force field parameters of sodium and chloride ions (Na+ and Cl−), which are proposed by

Jungwirth et. al., were chosen as the reference cation and anion[102, 103]: σNa+ = 0.2115 nm,

ϵNa+ = 0.544284 kJ/mol, σCl− = 0.4100 nm, and ϵCl− = 0.4928 kJ/mol. The ion models belong

to a family of recently developed force fields that effectively incorporate polarization effects of

solvent by scaling ionic charges. It is suggested in Chapter 2 that the charge-scaling force fields

with the TIP4P/2005 model water reproduces accurately experimental values of the solution den-

sity, and is more accurate in describing the salting-out effect of methane than the conventional

nonpolarizable force field. The OPLS force field was used as a spherical monoatomic LJ particle

model of methane[165, 142, 166]: σA=0.373 nm, ϵAA=1.2301kJ/mol. The monoatomic LJ par-

ticle model was also used for propane molecule; σA=0.5637 nm, ϵAA=2.0121kJ/mol[165, 167].

The LJ parameters between heterogeneous particles were basically determined by

σ12 =
√
σ1σ2, ϵ12 =

√
ϵ1ϵ2. (3.10)

However, the methane-water LJ parameters were used σAw = 0.34445 nm and ϵAw = 1.043

kJ/mol[143]. The methane-methane and interaction was replaced by the repulsive part of the

Weeks-Anderson-Chandler (WCA) potential[144] to prevent solute aggregation. The original

methane-methane radial distribution function gAA (r) is transformed from the methane-methane

gsimAA (r) obtained from the MD simulations using the WCA repulsive potential[145, 146]. The LJ

potential part of all of the intermolecular pair potentials was truncated at 0.9 nm, and the long-

range Coulomb part of those was calculated by the Ewald sum with the same cutoff distance as

the LJ part in the real space. However, the cutoff distance was changed to 1.2 nm in the system

with 4000 water molecules. The set of those model potentials reproduces accurately the density

of pure water[60] and the solubility of methane in water[143] in a wide range of temperatures at

1 bar. In other words, the recently developed charge-scaled force field for Na+ and Cl−[102, 103]

with the TIP4P/2005 water is more satisfactory in calculating the Setschenow coefficient of

methane in aqueous NaCl solution than other common force fields.

We examined two series of model salts including the reference salt NaCl: one is the cation

series in which only the LJ size parameters σ+ of cations differ from each other while the anion

is fixed to be Cl−: the other is the anion series in which only anions’ σ− differ from each other

while the cation is fixed to be Na+. All the LJ energy parameters ϵ+ and ϵ− for cations and

anions are those of Na+ and Cl−, respectively. The force field parameters of the model ions

are showed in Table 3.1: numbers followed by ionic species in the parentheses indicate that the
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LJ size parameters are chosen to be those of the ions, and the LJ size parameters of the other

model ions are hypothetical ones.

The effective hard sphere diameters d of the ions listed in Table 3.1 are as

d = 2rc − σO, (3.11)

where rc is the smallest distance at which the ion-water radial distribution function becomes

1 and σO is the LJ size parameter for the oxygen site in the TIP4P/2005 model water. The

effective diameters d for cations and anions will be used for the calculation of the packing fraction

η of model electrolyte solutions defined by

η =
π

6

∑
i

ρid
3
i , (3.12)

where ρi is the number density of species i in the system and di is the effective particle diameter

of that species, the sum being taken over all species.

The packing fraction η is evaluated by eq. 3.12 from MD calculations of aqueous electrolyte

solutions. The solvation free energy µ∗
A of methane was calculated from the Widom test-particle

insertion (TPI) method[147] to obtain the Setschenow coefficient. We performed MD simulations

of pure water and aqueous salt solutions for 50 ns and inserted test particles 2× 105 times into

the equilibrium configuration at 50 fs intervals. Ks for methane was even evaluated from eq. 3.5.

The KBIs GAw, GAs, and Gws are evaluated from numerical integration of the corresponding pair

correlation function. MD simulations of methane aqueous solution and salt + solute (methane

of propane) aqueous solutions for 450 ns were performed to compute GAw, GAs and the solute-

cation PMF wA+ (r). MD simulations of salt aqueous solutions for 150ns were also performed

to compute Gws. Any hij(r) obtained from MD simulation at a closed system does not converge

to zero at large distances due to the finite-size effect. We shifted the entire hij(r) so that the

average of hij(r) in a certain range at large distances becomes zero. Furthermore, we evaluated

the KBI Gij in the thermodynamic limit by applying the method proposed by Krüger et al.

[148, 149] to the KBI obtained for the finite systems:

Gij (L) =

∫ L

0
4πr2hij (r)

[
1− 3

2

( r
L

)
+

1

2

( r
L

)]
dr

Gij (L) =
C

L
+Gij (1/L → 0) , (3.13)
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where L is the upper limit of the integral and C is a constant. Substituting corrected hij(r)

into the first line of eq. 3.13, Gij (L) are obtained as a function of L. Then, Gij (L) is plotted

against 1/L and fitted linearly over the range of 1/L where a linear relationship holds in small

1/L, and the intercept gives the KBI Gij .

Table 3.1: Lennard-Jones size parameters σ+, σ+ and the effective diameters d for the cation and
anion series of the model salts. Numbers followed by symbols of ionic species in the parentheses
indicate that σ+ or σ− is of that ion species.

Cation series 1(Li+) 2 3(Na+) 4 5 6(K+)

σ+(nm) 0.18 0.2 0.2115 0.225 0.24 0.28384

d(nm) 0.072 0.096 0.108 0.124 0.140 0.188

Cation series 7 8(Cs+) 9

σ+(nm) 0.33 0.360101 0.41

d(nm) 0.232 0.264 0.308

Anion series 1 2 3 4 5 6

σ−(nm) 0.16 0.18 0.2115 0.24 0.27 0.30

d(nm) 0.0041 0.032 0.068 0.104 0.136 0.168

Anion series 7 8(F−) 9(Cl−) 10 11(I−) 12

σ−(nm) 0.33 0.3619368 0.41 0.44 0.468096 0.50

d(nm) 0.196 0.228 0.276 0.300 0.324 0.352

IV RESULTS AND DISCUSSION

Ion Size Dependences of Ks.

The Setschenow coefficients for methane obtained from MD calculations of model aqueous elec-

trolyte solutions and their cation size effects were validated. Setschenow coefficients Ks are

evaluated by two routes. One route is to use the linear approximation of eq. 3.4:

Ks = lim
ρs→0

(
∂µ∗

A/kBT

∂ρs

)
T,p

≃
µ∗
A − µ∗

A,0

ρskBT
, (3.14)

where µ∗
A and µ∗

A,0 are the SFE of methane in salt soltion and in pure water, respectively, at

infinite dilution of methane: µ∗
A and µ∗

A,0 were evaluated by applying the TPI to methane-free

salt solutions and pure water. Another route is to use eq. 3.5 with GAw and GAs at infinite

dilution of methane and salt. In this method, both GAw and GAs are evaluated from numerical
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integrations of the pair correlation function obtained from MD simulations of aqueous solutions

of methane and of methane and salt, respectively. We supposed that the KBIs obtained at low

but finite concentrations of solute and salt were approximately equivalent to the KBIs in the

limit of infinite dilution of those. Figure 3.2 shows the Setschenow coefficients kscc (converted

from Ks) for the cation series: plotted are two sets of numerical results, KBI and SFE routes,

together with experimental data[46] for LiCl, NaCl, KCl, and CsCl aqueous solutions. It follows

that the cation size dependences of kscc calculated in two routes are in good agreement with

each other, both giving the largest kscc at σ+ of Na+. The values of kscc for NaCl (0.121 and

0.114 m3/kmol) computed via eqs. 3.5 and 3.14 underestimate by 20 and 24%, respectively, the

experimental value (0.1505 m3/kmol). This result, as similarly reported in Chapter 2 and the

earlier studies[88, 89], suggests that the charge-scaling force field of NaCl with the TIP4P/2005

model water is more accurate than conventional nonpolarizable force fields[96, 83] of NaCl in

describing the salting-out effect for methane molecules in aqueous solutions. Here, we must

consider the problem that the computed Setschenow coefficients in Figure 3.2 are systematically

smaller than the experimental data in spite of the fact that the TIP4P/2005 water with the

LJ methane accurately reproduces the solvation free energy of methane in an aqueous solution

without ions[143]. herefore, the deviations would be attributed to the model potentials for

the ion-water interactions, more specifically, the chloride ion-water interaction. It is however

sufficient for the present models to investigate the reversed order of sodium and lithium ions in

the salting-out effect.

From eps. 3.5 and 3.8, the orderKs (LiCl) < Ks (NaCl) depends only on GAs and comes from

the order GAs (NaCl) < GAs (LiCl). In other words, the order of GAs indicates the obvious fact

that the more repulsive the solute–ion effective interactions are, the more strongly the solubility

of the solute is reduced by the salt. The problem through this Chapter is then synonymous

with why the methane-lithium effective interaction is less repulsive than the methane-sodium

effective interaction.
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Figure 3.2: Setschenow coefficients kscc calculated from two routes of the SFE in eq. 3.14 (green
triangles) and the KBI in eq. 3.5 (blue squares) for aqueous solutions of four cation sizes.
Experimental data for LiCl, NaCl, KCl, and CsCl aqueous solutions of methane are also plotted
as a reference (red circles)

Correlation of the Setschenow Coefficient and the Packing Frac-

tion of Solution with respect to Ion Size.

Docherty et al.[89] reported that the monovalent ion size dependence of Ks, including Li+, is

similar to that of the packing fraction η defined in eq. 3.12. We examined the cation and an-

ion size dependences of two properties, the SFE µ∗
A of methane in model electrolyte aqueous

solutions and the packing fraction η of solutions without solute, over a wider range than they

did. Figure 3.3 shows the cation size σ+ dependences of µ∗
A and η in model electrolyte aqueous

solutions, Figure 3.4 shows the anion size σ− dependences of those in model electrolyte aqueous

solutions. In the cation series, both µ∗
A and η are maximal at around the ion size of Na+ and

rather sharply decrease as σ+ decreases to 0.18 nm, the value of Li+. In the anion series, µ∗
A

monotonically increases with decreasing σ− up to σ− ≃ 0.25 nm and plateaus out at smaller σ−,

while η increases monotonically with a decrease in σ− over the whole range. Note that σ− of the

smallest F− is 0.36 nm so that both µ∗
A and η by halogen anions with the common cation Na+

decrease monotonically with the anion size. The above results for the cation and anion series
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are in agreement with those reported by Docherty et al[89].

It is known that the ion specificity in packing fractions η of electrolyte solutions is closely

related to that in partial molar volumes of electrolytes since both reflect the degree of electrostric-

tion. Mazzini et al.[27] thoroughly discussed the relation between ion-specific electrostriction

and partial molar volumes of electrolytes in solvents. In the limit ρs → 0, the partial molecular

volume v̄s of an electrolyte in water is directly related to the water-salt KBI Gws via eqs. 2.12 and

2.13: limρs→0 v̄s = (ν+ + ν−)
(
−Gws + kBTχ

0
T

)
with χ0

T the isothermal compressibility of water.

Here, limρs→0 v̄s ≃ − (ν+ + ν−)Gws for most cases, e.g., v̄s ≃ 17 mol for NaCl and kBTχ
0
T ≃ 1.1

mol for pure water at 298 K and 1 bar[26]. Furthermore, from eq. 2.12, the ion specificity of v̄s

depends only on Gws. Thus, the correlation between η and v̄s is synonymous with that between

η and Gws, especially for the ion species dependence. Figure 3.5 shows the correlation between

η and Gws for solutions of six model electrolyte (LiCl, NaF, NaCl, NaI, KCl, and CsCl). It is

seen that a near-linear correlation between η and Gws. Based on the above results, we attempt

to elucidate the ion size effect on the salting-out by analyzing the microscopic structure around

ions for the volumetric properties of solutions without solute, more specifically η and Gws.
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Figure 3.3: Cation size σ+ dependences on (a) the solvation free energy µ∗
A of methane and (b)

the packing fraction η in electrolyte solutions: cation series in Table 3.1 with the common anion
Cl−.
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Microscopic Origins of the Ion Size Dependences of η and v̄s.

Ion pairings and cluster formation of ions in some aqueous solutions have been directly investi-

gated in computer simulations[168, 169, 170, 100] and have been studied by experiment[171, 172].

Thomas and Elcock[156] stated that the formation of ion strings in simulated LiCl aqueous solu-

tions may cause the exceptional behavior of lithium salts. In other words, a possible microscopic

mechanism of the nonmonotonic cation size dependences of η and v̄s in cation series with a com-

mon anion species is that as the cation size decreases, the tendency to form clusters or strings

of ions increases, thereby reducing the degree of electrostriction. In the snapshots of our MD

simulations, we observe some associations of ions in the case of cation of the lithium-ion size.

To investigate the effect of ion association on the ion size dependence of properties of aqueous

solution, we performed additional MD simulations in which the cation-anion LJ size parameters

are deliberately set as large as 0.6 nm to fully hydrate each ion and prevent formations of ion

clusters. This setting is similar, in practice, to the constraint used by Thomas and Elcock[156].

Figure 3.6 shows the results for the system with ion associations suppressed together with
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original results in Figure 3.3. It follows in Figure 3.6a that the cation size dependence of η for

the system with no ion associations is virtually the same as that for the original system. Thus,

the fact of decreasing η and increasing v̄s with decreasing cation size from that of Na+ is not due

to ionic association. As shown in Figure 3.6b, the solvation free energy µ∗
A of methane in the

model electrolyte solutions with no ion association is maximal at a cation size close to sodium

ion as it is in the solutions with no constraint, which is the same result as for η. Therefore, we

argue that the anomalous behavior of lithium salts regarding the salting-out effect should be

explained not regarding to formation of ion clusters.

On the other method, we examine the following integrals of following the ion–water pair

correlation functions hw± (r) as a function of the upper limit R of the integral to reveal the

microscopic mechanisms of the anomalous ion size dependences of the packing fraction η of the

solution and the partial molecular volume v̄s of salt for the cation series:

Gw± (R) = 4π

∫ R

0
hw± (r) r2dr, (3.15)

where w is water, + is cation, and − is anion in the subscripts. From eqs. 2.12 and 3.15,

for solutions with infinitely dilute ions, −Gw± (R) is the contribution to the partial molecular

volume v̄s of salt via the solvation volume v̄∗± = v̄± − kBTχT of cation or anion from the sphere

of radius R, centered at a cation or an anion.

Figure 3.7a shows Gw+ (R) for selected four cation sizes with hw+ (r) the pair correlation

functions between oxygen and ion species. It can be seen that the orders of Gw+ (R) at the

second maxima, at the third minima, and at the following extrema are the same as the order of

Gw+, i.e., Gw+ (R) in the limit R → ∞. This result indicates that the origin of the exceptional

behaviors of v̄s and η for the cation series should be included in the spherical solvation volume

of that radius ∼0.5 nm around each cation. Figure 3.7b shows the first maximum and the

second minimum of Gw+ (R) against the cation size σ+. The decrease of the first maximum

and the increase of the second minimum are seen with respect to the increase of σ+. This

means that cation size has two opposing effects on the density of water: the water density in

the first hydration shell increases as σ+ decreases, whereas that in the volume of a spherical

shell adjacent to the first shell decreases with decreasing σ+. These opposing behaviors of the

two regions cause the minimum for partial molecular volume and the maximum for packing

fraction at the cation size close to that of Na+. Figure 3.8 shows Gw− (R) for selected anion

sizes and the first maximum and the second minimum of Gw− (R) against the anion size σ−. In
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Figure 3.8a, the order of Gw− (R) at any common extremum is the same as the order of v̄s for

the three anions whose size is F−, Cl−, and I−, and actually that is true for all of the anions

in the anion series. Figure 3.8b shows that both the first maximum and the second minimum

decrease monotonically with decreasing σ−, which explains the regular behaviors of v̄s and η for

the anion series.

We have found that the spherical solvation volume of radius ∼0.5 nm around each cation

basically determines the exceptional behavior of v̄s for the cation series. As with v̄s, for the

packing fraction η of electrolyte solutions, we consider the packing fraction around each cation

that contributes to v̄s. To confirm this, we define the solvation packing fraction η (R) to be the

packing fraction in the spherical region of radius R centered at a solvated ion. We calculate η (R)

using the radial distribution functions gci (r) between pairs of the central ion c and molecular

species i (= w, +, and −):

η (R) =
π

2R3

∑
i

ρid
3
i

∫ ∞

0
f (r;R, di/2) gci (r) r

2dr +

(
dc
2R

)
, (R > dc/2) (3.16)

where η (R) is the fraction of the volume of intersection of two spheres of radii R and di/2 with

the center–center distance r to the volume of the sphere of radius di/2: dc/2 is the effective

hard-sphere diameter of the central ion. We have calculated η (R1), η (R2), and η (R3) for the

first, second, and third solvation spheres of radii Rn (n = 1, 2, 3), respectively. Here, Rn is

taken to be the distance of the nth local minimum of the ion–water (oxygen) radial distribution

function.

Figure 3.9 shows the packing fractions of the system and the solvation packing fractions

around each cation against the cation sizes σ+ and those around each anion against the anion

sizes σ−. In the cation series (Figure 3.9a), η (R1) increases monotonically with decreasing σ+, so

that for the first solvation shell, the smaller the cation, the larger the degree of electrostriction.

However, both η (R2) and η (R3) for the second and third solvation spheres exhibit a maximum

around the size of Na+, indicating that the exceptional behavior of η of the electrolyte solutions

in the cation series is manifested in the cation-centered second solvation sphere. In the anion

series (Figure 3.9b), all solvation packing fractions of η (R1), η (R2), and η (R3) increase with

decreasing σ− as does η, and the smaller the solvation sphere, the larger the rate of change in

η (Rn) with σ−. There is no exceptional behavior in any solvation spheres in the anion series.

We have found that the spherical solvation packing fraction in the second hydration shell around

each cation or each anion determines the order of ion size effect on η for both the cation series,
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including the exceptional behavior Li+ size, and anion series.
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Figure 3.6: Cation size dependences on (a) the solvation free energy µ∗
A of methane and (b) the

packing fraction η in electrolyte solutions with ion associations suppressed (blue triangles) and
those with no constraint (red circles).
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Molecular Orientation and Packing in Solvation Spheres around

an Ion.

Considering the fact that the ion size dependences of v̄s and η are monotonic in the anion series

and nonmonotonic in the cation series, microscopic origins of that difference must be sought for

in the molecular orientations of water relative to a central cation and anion. Here, we define the

angle θ between the dipole moment of H2O and the vector from the oxygen atom to a central

ion as shown in Figure 3.10, and the orientations cos θ of water molecular dipoles around ions

are examined.

Figure 3.11 displays distributions of the average orientation ⟨cos θ⟩ of water molecules in

the first solvation shells of cations in the selected cation series and of anions in the selected

anion series. In the cation series (Figure 3.11a), the peak position of the distribution shifts

significantly toward more negative values as the cation size decreases, whereas in the anion

series (Figure 3.11b), the peak position shifts only slightly toward more positive values as σ−

decreases. The difference between the cation size dependence of the distributions of ⟨cos θ⟩ and

the anion size dependence of those may be explained as follows: Water molecules in the first

solvation shell around cations tend to orient to face their oxygen atoms toward cations, and this

tendency increases continuously as the cation size decreases to Li+. By contrast, one OH group

from each H2O around an anion is more or less fixed in a state where the O−H and the anion are

aligned straight, thereby the peak position of the ⟨cos θ⟩ distribution is only weakly dependent

on the anion size.

We next calculated the conditional solvation packing fraction ηR2
(⟨cos θ⟩) in the second

solvation shells, which is the packing fraction around each ion averaged over the simulated

configurations giving a prescribed value of ⟨cos θ⟩. Figure 3.12 shows ηR2
(⟨cos θ⟩) of the selected

cation sizes (Figure 3.12a) and the selected anion sizes (Figure 3.12b). The function ηR2
(⟨cos θ⟩)

for each cation in the cation series depends significantly on ⟨cos θ⟩ with a maximum at some

value of ⟨cos θ⟩ < 0. In particular, ηR2
(⟨cos θ⟩) for cation sizes of Li+ and Na+ are very similar

to each other and both decrease sharply as ⟨cos θ⟩ approach −1, i.e., as all of the water molecules

in the first solvation shell tend to orient their oxygen atoms toward a central cation. Considering

this result together with the results obtained in Figure 3.11, the peak position of the distribution

of ⟨cos θ⟩ of Li+ is closer to −1 than that of Na+ so that the solvation packing fraction η (R2)

is lower around Li+ than around Na+. Since the order of η for the cation series is determined

by that of η (R2) according to Figure 3.9, the above result concerning Figures 3.11a and 3.12a
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seems to be the microscopic origin of the nonmonotonic ion size dependences of η and v̄s for the

cation series. On the other hand, ηR2
(⟨cos θ⟩) for each anion in the anion series has no strong

dependence on ⟨cos θ⟩, and the smaller the ion size, the larger ηR2
(⟨cos θ⟩) (Figure 3.12b), so

that one observes simple, monotonic ion size dependences of η and v̄s for the anion series.
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Relation between GAs and Gws.

As observed in earlier studies[89, 157] and shown in the present work for the cation and anion

series (Figures 3.3 and 3.4), the Setschenow coefficients Ks or the solvation free energies µ∗
A of

a hydrophobic solute such as methane molecule in electrolyte aqueous solutions are correlated

with the packing fractions η or the partial molecular volumes v̄s of salts in those solutions. It is

by no means trivial since it is a correlation observed between a property of aqueous solutions of

salts alone (η and v̄s) and the one concerning both salts and solutes (the Setschenow coefficient

Ks). Therefore, in terms of the Kirkwood–Buff integrals, from eqs. 3.5 and 2.12, there must be

some correlation between GAs and Gws because the ordering of ions in Ks is due to that of GAs

and the ordering in η (or v̄s) comes from Gws. Figure 3.13 shows the correlation GAs and Gws

for the selected salt aqueous solutions in the cation and anion series. As expected, there is a

strong correlation between GAs and Gws: a linear fit to the data gives GAs = −6.4Gws − 0.45.
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Figure 3.13: Correlation between GAs and Gws for model salts in Table 3.1, and their linear
fitting (black line).

Cation Size Effect on wA+ (r).

In the present work, we have connected the ion size effect on the salting-out for hydrophobic

solutes, including the exceptional behavior of Li+, with that on the volumetric properties of
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aqueous salt solutions (the packing fraction η and the partial molecular volume v̄s of salt), and

by observing η and v̄s, we have found that the microscopic origin for the exceptional ion size

effect on the Setschenow coefficients Ks of Li
+ lies in the orientation of water molecules solvated

to ions. However, the mechanism has not yet been clarified. Then, we now focus on GAs, which

essentially determines the ionic specificity of Ks in eq. 3.5. At the infinite dilution of solute and

salt, GA+ and GA− are given independently of each other, which means the cation specificity

of GAs is contained in GA+ alone. Therefore, to understand the cation size effect of GA+, the

solute-cation potentials of mean force wA+ (r) defined in eq. 3.9 are examined.

Figure 3.14 shows the methane-cation and propane-cation PMFs wA+ (r) for salt aqueous

solutions in the selected cation series. As shown in Figure 3.14(a), in the case of K+ and

Cs+, wA+ (r) has the minimum at the contact distance between methane and cation, and the

minimum for Cs+ is lower than that for K+, which has a smaller cation. In the case of Na+,

however, the minimum does not appear at the distance where the cation is in contact with the

methane, and a shoulder appears slightly to the outside of it. For even smaller Li+, wA+ (r)

has a low minimum at a similar distance to the shoulder for Na+. As shown in Figure 3.14(b),

the distances r at which a maximum and minimum appear in the propane-cation PMFs are

in good agreement with those in the methane-cation PMFs which are shifted by +0.095 nm.

The difference of 0.095 nm corresponds to that between the radii of methane (σAA/2 = 0.1865

nm) and propane (σAA/2 = 0.2819 nm). Therefore, the first minimum for Li+ appears at the

distance that a solute molecule is adjacent to water in close proximity to cations, indicating that

the solute is relatively stable at that distance, e.g., r = 0.45 nm for methane. It is due to that

minimum that the Ks of Li
+ is smaller than that of Na+, i.e., the GAs of Li

+ is larger than that

of Na+.
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Origins of Exceptional Behavior of Li+ in w∗
A+ (r).

Here, the solute-cation PMF wA+ (r) can be divided into the direct interaction ϕA+ (r) between

methane and cation and the solvent-mediated interaction w∗
A+ (r):

wA+ (r) = ϕA+ (r) + w∗
A+ (r) . (3.17)

Figure 3.15 shows that ϕA+ (r) and w∗
A+ (r) in aqueous solutions of electrolytes and methane

in the selected cation series. ϕA+ (r) is the LJ interaction between methane and the cation,

and the solvent-mediated interaction (SMI) was evaluated by the difference between wA+ (r)

obtained from the MD calculations and ϕA+ (r): w∗
A+ (r) = wA+ (r) − ϕA+ (r). We compare

with Figures 3.15a and 3.15b at the distance in which the first minimum in Figure 3.14 appears

for each cation. It then follows that the minimum of wA+ (r) is due to the direct interaction

for larger cation sizes (K+, Cs+), while the minimum of that is due to the solvent-mediated

interaction for smaller cation sizes (Li+, Na+). Therefore, the exceptional behavior of Li+ for

the salting-out effect should be included in the solvent-induced interaction.

Considering a two-component system (solvent 1 + solute 2), at the infinite dilution limit of

solute, the solute-solute SMI w∗
22 (r) is given by

w∗
22 (r) = ∆E12 (r) + ∆E11 (r) + T∆S (r) , (3.18)

where ∆Eij (r) is defined by ∆Eij (r) ≡ Eij (r) − Eij (∞) with Eij (r) the potential energy

between molecular species i and j at the solute-solute distance r, and ∆S (r) is the difference

in entropy at solute-solute distances r and infinity. In the earlier studies[173, 174, 175, 176], it

is known that the solvent-solvent potential is canceled out by part of the entropy terms. Then,

eq. 3.18 is rewritten as

w∗
22 (r) = ∆E12 (r) + T∆S∗ (r) , (3.19)

where ∆S∗ (r) is the effective entropy. Therefore, at the infinite dilution limit of methane and

ions, we assume that w∗
A+ (r) can be divided into the enthalpic contribution wH (r) and the

entropic contribution wS (r) as follows.

w∗
A+ (r) = wH (r) + wS (r) (3.20)
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with

wH (r) = ∆Ew+ (r) + ∆EAw (r) , (3.21)

where Ew+ (r) and EAw (r) are the water-cation and water-methane potential energies at the

methane-cation distance r, respectively. The question is then which contribution gives rise

to the first minimum of solvent-mediated interaction in Li+. In a system with one salt and

one methane molecule in water, we calculated Ew+ (r) and EAw (r) to obtain wH (r) by MD

simulations with fixed methane and cation positions at their distance r and restricted anion to

be no closer to those. Ew+ (∞) and EAw (∞) are calculated from systems with one salt and

one methane molecule in the water, respectively, indicating that the cations and methane are

independent of each other. Furthermore, wS (r) was obtained by the difference between w∗
A+ (r)

and wH (r).

Figure 3.16 displays wH (r) and wS (r) at a variety of fixed methane-cation distances r in the

selected cation series. As shown in Figure 3.16a, there is a minimum at r = 0.45 nm only for

Li+, while for the other ion sizes, wH (r) is more repulsive as the methane molecule approaches

the cation. The exceptional minimum of wH (r) for Li+ appears at the same distance as that

of the PMF for Li+ in Figure 3.14. On the other hand, in Figure 3.16b, it follows that wS (r)

increases with the decrease in the cation size σ+ at the methane-cation distance r around 0.4

nm. This result means that the smaller the cation size σ+, the less stable methane and cation

are by wS (r) at r < 0.5 nm. Therefore, it is found that the exceptional behavior of Li+ for the

salting-out effect is mainly attributed to wH (r).

From eq. 3.21, wH (r) is divided into the water-cation potential ∆Ew+ (r) and the water-

methane potential ∆EAw (r). The cation size σ+ effects on ∆Ew+ (r) and ∆EAw (r) are then

examined separately, including the exceptional behavior of Li+ for wH (r). Figure 3.17 shows

∆Ew+ (r) and ∆EAw (r) at a variety of fixed methane-cation distances r in the selected cation

series. In Figure 3.17a, ∆Ew+ (r) has a minimum at r = 0.45 nm, similar to wH (r), while

for the other cations, ∆Ew+ (r) becomes monotonically larger as the methane-cation distance

decreases. In Figure 3.17b, ∆EAw (r) becomes small around r = 0.45 nm as the cation size

σ+ decreases, indicating that ∆EAw (r) for Li+ makes the methane molecule the most stable

around the distance. However, the cation size dependence of ∆EAw (r) is smaller than that of

∆Ew+ (r) and has little effect on the cation size dependence of wH (r). Therefore, we find that

a methane molecule and Li+ are relatively stable due to the water-cation interaction energy
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around the distance of r = 0.45 nm, resulting in the exceptionally small salting-out effect of

Li+. Furthermore, one of the most interesting results is that all wH (r), ∆Ew+ (r), and, albeit

slightly, ∆EAw (r) for Li+ are negative at r = 0.45 nm, indicating that cations along with a

methane existed in the position are more stabilized than those in the solution without methane

by the potential energy between cation and water.
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Cation Size Dependences of Setschenow Coefficient Ks for Solute

with Hydrophilic Group.

The Setschenow coefficientKs in eq. 3.4, a measure of the solubility of nonpolar solute in aqueous

electrolyte solution, is derived from eq. 3.3 with considering a nonpolar solute with very small

solubility in aqueous solutions in order to naturally suppose the infinite dilution of solute in

eq. 3.4. However, even for polar solutes with hydrophilic groups such as methanol, there is

no problem in observing Ks at infinite dilution of solute from eqs. 3.4 or 3.5, which is rather

interesting. It has been reported in the earlier experimental study[177] that the magnitude of

the salting-out effects for tert-butanol in a variety of aqueous electrolyte solutions: the order

of cations with a common anion is Na+ > K+ > Li+ and of anions with a common cation is

F− > Cl− > I−. Those orders are similar to the order of the ion size effects on the solubility of

nonpolar solutes such as methane (Figures 3.1 and 3.2) and benzene[178]. However, there is no

guarantee that the microscopic origins of the ion size dependences of the Setschenow coefficients

Ks for polar and nonpolar solutes are the same. To examine the cation size effect of Ks for

methanol, the simplest alcohol, we performed similar MD simulations replacing methane with

methanol as the solute and obtained Ks from eq. 3.5. The TraPPE-UA force field[179] was

applied to the molecule model of methanol. The KBI for the molecule models of methanol

with multiple interaction sites was obtained by averaging the KBIs between all the pairs of sites

on the molecules since the correlation function integral is invariant to the choice of molecular

centers[150].

Figure 3.18 shows that Setschenow coefficients kscc (converted from Ks) for methanol in

aqueous electrolyte solutions of selected cations from the series of cations. As seen in Figure 3.18,

the Setschenow coefficient for methanol is the largest at the K+ size as varying the cation size,

the order being K+ ≃ Cs+ > Na+ > Li+. The ion size of the salting-out maximum for methanol

differs from that for tert-butanol as well as methane. Thus, it is expected that cation size

dependences of Ks for alcohols, including tert-butanol, own completely different or partially

common mechanism from that of the ion size effect for nonpolar solutes such as methane.

Then, to understand the microscopic origins of the ion size dependences of Ks for methanol,

we examined the methanol (methyl group)-cation PMFs, wA+ (r), in the selected cation series

and compared wA+ (r) for methanol with those for methane. It is noted, as mentioned earlier,

that the choice of molecular centers from which to measure intermolecular distances must be

independent of the correlation function integral, while the shape of the correlation function
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differs from the choice[150]. Therefore, we choose the methyl group as the molecular center of

the methanol molecule to elucidate the differences between wA+ (r) for methane and those for

methanol due to the hydrophilic group.

Figure 3.19 shows that the PMFs wA+ (r) between methanol (methyl group) and cation in

the selected cation series. In Figure 3.19, it follows that the smaller the cation size, the smaller

the first minimum of wA+ (r), that is, the first minimum for a cation of Li+ size is the smallest

at the smallest methanol (methyl group)-cation distance r. This result differs from the first

minimum of the methane-cation PMFs in Figure 3.14 because of the effect of the hydrophilic

group attracting smaller cations. Here, the second minimum in Figure 3.19 increases as the

cation size σ+ decreases, except for Li+. The wA+ (r) second minimum for Li+ is smaller than

that for Na+, and both this exceptional behavior and the distance (0.45 nm < r < 0.55 nm) at

which the minimum for Li+ appears are similar to those of wA+ (r) for methane. This result

indicates that the hydration structure around the hydrophobic group in a solute is not broken

by the presence of hydrophilic groups in that solute. Thus, considering that the ion size effect

on Ks for methanol differs from that for tert-butanol, which has the larger nonpolar group than

methanol, it is expected that ion size dependences of Ks for amphiphilic solutes are qualitatively

estimated by a combination of a cation size effect similar to methane (the magnitude of the

contribution to Ks is Na
+ > K+ > Cs+ ≃ Li+) and an effect that the hydrophilic group attracts

smaller cations (the magnitude of the contribution to Ks is Cs
+ > K+ > Na+ > Li+).
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V CONCLUSIONS

Cation and anion size dependences of the salting-out effect were contrasted, and the origins of

the differences were examined.

In the cation series, where the cation size is varied at fixed anion as Cl−, the solvation free

energy µ∗
A of methane is maximal at around the cation size σ+ of Na+ and decreases rather

sharply as σ+ decreases further. In the anion series where the anion size σ− is varied at fixed

cation as Na+, µ∗
A is a monotonic function of the σ+.

The Setschenow coefficients Ks in the cation series were calculated from two different routes:

the SFE route in eq 3.14 with the test-particle insertion method, and the KBI route in eq 3.5

with the correlation function integrals. The results from the two routes are similar to each other

and show the reversed order of Li+ and Na+, in agreement with experimental data[46].

The correspondence between the salting-out effect and volumetric properties of electrolyte

aqueous solutions, more specifically, the packing fraction η and the partial molar volume v̄s of
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salt, was confirmed. The two properties of η and v̄s show nonmonotonic dependences on σ+ in

the cation series, while they are monotonic functions of σ− in the anion series.

We examined the microscopic origins of the ion size dependences of µ∗
A, η, and v̄s. First, it is

demonstrated that the formation of ion clusters in aqueous solutions of LiCl is not responsible

for the reversed order of lithium and sodium ions in the ion size dependences of µ∗
A and η.

Second, the ion–water pair correlation function integrals Gw± (R), which is a function of the

radius R of the spherical volume centered at each ion in the cation and anion series, were

calculated. A notable conclusion derived from the computational result is that the spherical

volume of radius ∼0.5 nm, i.e., the second hydration sphere, around each cation sets the order

of cations for Gws ≃ −v̄s including the reversed order of lithium and sodium salts. Third, we

calculated the solvation packing fractions η (R1), η (R2), and η (R3) for the first, second, and

third solvation spheres around a cation and an anion, defined by eq. 3.16. It is found that

η (R1) increases monotonically with decreasing σ+, but η (R2) and η (R3) appear maxima at

around σ+ of Na+, thereby confirming that the tendency of the nonmonotonic behavior of η in

the cation series depends on the second solvation sphere. In the anion series, all η (R1), η (R2),

and η (R3) increase monotonically with decreasing σ−. Fourth, we examined the distribution of

the average orientation ⟨cos θ⟩ of water molecules in the first solvation shell of each ion in the

cation and anion series and the conditional solvation packing fraction ηR2
(⟨cos θ⟩) for the second

solvation spheres, and found the microscopic mechanism as follows. The peak position of the

⟨cos θ⟩ distribution shifts significantly toward -1, i.e., orients to face their oxygen atoms of water

molecules toward cations, with decreasing σ+ in the cation series: ηR2
(⟨cos θ⟩) for Li+ and Na+

are similar to each other and decrease sharply as ⟨cos θ⟩ goes to −1, and thereby η (R2) for Li
+

is smaller than that for Na+.

Next, we examined the relation between the Setschenow coefficients of methane and the

volumetric properties of aqueous solutions in terms of the Kirkwood–Buff integrals Gws and

GAs. It was found that GAs is near-linearly correlated with Gws for model electrolyte solutions

containing both cation and anion series. Qualitatively, the correlation is consistent with the

commonly observed results: the solubility of a hydrophobic solute is lower with the packing

fraction of the aqueous solution increasing[17, 63, 89, 157, 163, 164]. The remaining question is

how robust is the correlation between Gws and GAs. In the present study, we considered the size

effect of monovalent ions alone for methane. It is interesting to examine, by verifying more ion

and solute species, which combinations of ion and solute form a more or less universal Gws−GAs
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curve and which fall off from it.

Then, the cation size dependence of GAs was examined in terms of the methane-cation

potential of mean force wA+ (r). The exceptionally small Ks for Li+ was found to be due to

exhibiting an exceptional minimum of wA+ (r) for Li+ at the methane-cation distance r ∼0.45

nm. The position of this minimum is in good agreement with the region which is a smaller

packing fraction at ⟨cos θ⟩ ≃ −1. Furthermore, the exceptional minimum of wA+ (r) for Li+ is

found to be caused by the solvent-mediated interaction, specifically, the water-cation interaction

energy Ew+ (r) at the methane-cation distance r.

Finally, the cation size σ+ dependence of the Setschenow coefficients Ks for the amphiphilic

solute, methanol, was examined. No linear correlation between Ks and the volumetric properties

of the aqueous solution, i.e., between GAs and Gws, was observed for methanol, unlike for

methane. The cation size dependence σ+ of Ks for methanol was examined in terms of wA+ (r).

It was found that the cation size dependences of Ks for methanol are determined by the sum

of the contributions from hydrophobic and hydrophilic groups: the former has an ion size effect

similar to Ks for methane, while for the latter the smaller the salting-out effect is, the smaller

the σ+ is. This means that both hydrophobic and hydrophilic groups make the Ks for Li
+ more

negative (the weaker salting-out or the stronger salting-in) than that for Na+. In other words,

the ionic size effect on the Setschenow coefficient Ks for amphiphilic solutes including alcohols

depends on the hydrophobic and hydrophilic group species and their combinations, if the effect

of structural changes of solute molecules is ignored. Therefore, to quantitatively clarify the ion-

and solute-specificity for Ks, it is a subject of future study to examine the hydrophobic group

and hydrophilic group species dependences, e.g., size and number of each functional group, etc.,

of the ion-specificity for Ks, respectively.
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Chapter 4

Correlation between the

Salting-out/Salting-in Effect and the

Osmotic Second Virial Coefficient in

Aqueous Electrolyte Solutions

Abstract

Earlier simulation studies indicate that the larger the salting-out effect the ionic species has

the stronger the hydrophobic interaction, i.e., the effective interaction between hydrophobic

molecules, in the aqueous solution of that salt. To understand the ion-specific effects of solute-

solute effective interactions, we performed molecular dynamics simulations of solutions of water

+ electrolytes (Xν+–Yν−) + solute at the low densities ρs and ρA of salt and solute, respectively,

and calculated the osmotic second virial coefficient B and the Setschenow coefficient Ks for a

variety of combinations of salt and solute. At least in the range of salting-out and small salting-in,

it is confirmed that the salt-enhanced-association (SEA) coefficient CI ≡ − limρs→0 (∂B/∂ρs)T,p,

which represents the magnitude of the salt effect on the solute-solute effective interaction, is

correlated with the Setschenow coefficient as CI ≃ K2
s /2 (ν+ + ν−), an approximation of the

analytical result derived in an earlier theoretical study.
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I INTRODUCTION

The addition of salt to water decreases or increases the solubility of solutes. The former and

latter are called salting-out and salting-in effect, and their strength depends on the salt and

solute species. The effects are applied to the separation of proteins, low molecular weight

organic compounds, metal complexes, and ion pairs that cannot be separated by filtration or

centrifugation[180]. In general, the larger the ion valence and the smaller the ion size, the

stronger the salting-out effect on hydrophobic solutes. The ordering of salting-out effect of ions

is called the Hofmeister series. The Hofmeister series was originally introduced as the ordering

of ions in the magnitude of ion addition effects on protein aggregation[24]. Since then, a lot

of experimental and computer simulation studies of the ion addition effects on the physical

properties of aqueous solutions have been conducted[181, 63, 27, 69, 182, 151]. This series has

been found to be related to not only the structural change and precipitation of protein and

colloid[61, 153, 67] but also physical properties of various aqueous electrolyte solutions[1, 8],

e.g., surface tension[14, 15, 16] and solute solubility[18, 19]. Recently, it has been understood

that the Hofmeister series results from a complex interplay of the ion-water and ion-protein

interactions in aqueous solution[67, 8, 152], whereas the detailed mechanism remains unclear.

Understanding ion species dependence on the solubility of hydrophobic solutes is the first step

to revealing the molecular mechanism underlying the Hofmeister series.

Setschenow (Sechenov)[158] proposed and verified the relationship between the salt concen-

tration and the solubility of a gas in aqueous electrolyte solution, which kscc = − (1/cs) log10 [λ/λ0]

in a notation commonly used today, where λ and λ0 are the Ostwald absorption coefficients of

the gas in aqueous solution and pure water, respectively, and cs is the molar concentration of

salt. The Setschenow coefficient kscc represents the strength of the salting-out/salting-in effect

and depends on the salt and gas species; the positive and negative value of kscc indicates salting-

out and salting-in, respectively. Setschenow coefficients have been experimentally measured and

theoretically investigated for many solute and ion species[42, 45, 126, 46, 127, 128, 183]. Here,

the magnitude of the Setschenow coefficients of alkali metal ions for a common hydrophobic so-

lute is in the order Na+ > K+ > Rb+ > Cs+ ≃ Li+, where it is noted that the smallest size ion,

Li+, is deviated from the normal ordering of ion size. The ion size dependence of the salting-out

effect, including the exceptional behavior of Li+, has been examined in our earlier study[19],

whereas the comprehensive investigation of the Setschenow coefficients including the dependence
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on the species of solute and ion has not been conducted yet except for the dependence on ion

size.

In earlier studies, qualitative correlations have been found that the lower a gas solubility

by varying salt concentration or changing salt species, the more attractive the solute-solute

effective interaction is[184, 156, 164]. In 2021, Okamoto and Koga[185] theoretically proposed

the relationship between gas solubility and the osmotic second virial coefficient B in aqueous

electrolyte solutions, where the latter quantifies the strength of solute-solute effective interaction

in solution at the infinite dilution limit of the solute. If a salt species Xν+–Yν− dissociates into

ν+X
z+ and ν−Y

z− , where zi is the ion valence, we obtained the following approximate relation:

CI ≡ − lim
ρs→0

(
∂B

∂ρs

)
T,p

≈ K2
s

2 (ν+ + ν−)
, (4.1)

where CI is called the salt-enhanced-association coefficient (SEA) coefficient, ρs is the salt den-

sity, and Ks is the Setschenow coefficient defined by

Ks = lim
ρs→0

(
∂ lnλ

∂ρs

)
T,p

. (4.2)

The osmotic second virial coefficient B is given by the solute-solute Kirkwood-Buff integral

(KBI) GAA at the infinite dilution limit of the solute;

B = − lim
ρA→0

GAA

2
= −1

2
lim
ρA→0

∫
hAA (r) dr, (4.3)

where ρA is the solute density and hAA is the solute-solute pair correlation function. B is useful

for characterizing the solute-solute interaction in solvent; in fact, the positive and negative

value of B indicates a repulsive and attractive interaction, respectively. Unfortunately, it was not

straightforward to obtain B from experiments for hydrophobic solutes with small solubility, such

as small alkanes and inert gases. In 2013, Koga[145] proposed a scheme for directly calculating

B for solutes that dissolve little in a solvent using molecular dynamics (MD) simulation, and

since then there had been many studies on B for various solute species at various temperature

and pressure conditions[186, 150, 187, 188, 189, 190, 191, 192, 193, 194, 146].

Equation 4.1 relates Ks to CI, where Ks represents the ion addition effect on the solvation

free energy (SFE) µ∗
A of an isolated single solute molecule and CI represents the ion effect on the

solute-solute effective interaction in a solvent. Equation 4.1 implies that the stronger the salting-
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out, i.e., the more positive Ks is, the more attractive the solute-solute interaction is, while it also

implies that the stronger the salting-in, i.e., the more negative Ks is, the more attractive the

solute-solute interaction is, which appears to be a contradiction. Thus, it is highly significant

to verify this equation. In the present study, we performed MD simulations to calculate Ks and

B for a variety of ion and solute species to validate eq. 4.1. In addition, lower alcohols were

employed as co-solvents instead of electrolytes to verify the prediction by eq. 4.1 for the cases

of salting-in.

II THEORETICAL BACKGROUND

In the present work, we consider a three-component system (water + ions + hydrophobic solute),

which is the infinitely dilute solute in a dilute electrolyte aqueous solution;

ρA ≪ ρI ≪ ρw. (4.4)

where ρI is the total ion density and ρw is the water density. For salt species Xν+Yν− , the ion

densities ρ± satisfy the charge neutrality condition,

ρs =
ρ+
ν+

=
ρ−
ν−

=
ρI

ν+ + ν−
. (4.5)

Thus, the limit ρI → 0 implies ρA → 0 in this paper. Under the above conditions, we derive

eq. 4.1 in this section.

A Osmotic Second Virial Coefficient B

A pressure difference occurs between two solutions of different solute concentrations separated

by a semipermeable membrane in which the solute is impenetrable, and is called the osmotic

pressure. In a solution of water + ions + solute and ρA = 0 in one region, the chemical potentials

µw, µI of water and ions are equal in both regions, respectively, which the osmotic pressure is

defined as Π = p (ρw, ρI, ρA) − p (ρ′w, ρ
′
I, 0). The expansion equation for the osmotic pressure

with respect to the solute density ρA at constant the solvent chemical potentials µw, µI and

the temperature T is Π = ρAkBT (1 +BρA + · · · ), with B the osmotic second virial coefficient

that measures the solute-solute effective interaction and kB the Boltzmann constant. Using the
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Gibbs-Duhem relation, we obtain

(
dΠ

dρA

)
T,µw,µI

=

(
∂p

∂ρA

)
T,µw,µI

= kBTρA/IAA (i, j = w, I,A) (4.6)

with

Iij ≡ kBT

(
∂ρi
∂µj

)
T,{µk}k ̸=j

. (4.7)

Thus, at the infinite dilution limit of the solute, B is given by

B =
1

2
lim
ρA→0

(
1

IAA
− 1

ρA

)
. (4.8)

B Density Second Derivatives of the Free Energy Density

Let f (ρw, ρI, ρA) be the Helmholtz free energy density of the system. Here, since we consider

a constant temperature, the temperature is not shown as a variable. In general, f expanded in

powers of the solute density ρA is given by

f (ρw, ρI, ρA) = f0 (ρw, ρI) + µA (ρw, ρI) ρA +
1

2
UAA (ρw, ρI) ρ

2
A +O

(
ρ3A
)

= f0 (ρw, ρI) + kBTρA{ln
(
ρAΛ

3
A

)
− 1}+ µ∗

A (ρw, ρI) ρA

+
1

2
UAA (ρw, ρI) ρ

2
A +O

(
ρ3A
)
, (4.9)

where the logarithmic term is singular at ρA = 0, so it has not been expanded. f0 is the

Helmholtz free energy density of the electrolyte solution without the solute, ΛA is the thermal

de Broglie length of the solute, µA and µ∗
A are the chemical potential and the solvation free

energy of the solute at the infinite dilution limit of the solute, respectively, and UAA is the

second-order coefficient of ρA, related to the two-body interaction of the solute. Then, the

isothermal compressibility χT ≡ ρ−1 (∂ρ/∂p)T,{Ni} is given by

χ−1
T = ρ

∂

∂ρ

 ∑
i=w,I,A

ρi

(
∂f

∂ρi

)
− f


= kBT

∑
i,j=w,I,A

ρiρjI
ij (4.10)

with the system density ρ = ρw + ρI + ρA, the particle number Ni of species i, and

Iij ≡ 1

kBT

∂2f

∂ρiρj
=

1

kBT

(
∂µi

∂ρj

)
T,{ρk}k ̸=j

. (4.11)
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From eqs. 4.7 and 4.11, the symmetric matrices {Iij} and {Iij} are inverse matrices of each

other,
∑

k IikI
kj = δij .

In the limit ρA → 0, eq. 4.11 is rewritten as

IiA =
∂βµ∗

A

∂ρi
+O (ρA) (i = w, I)

Iij = Iij0 +O (ρA) (i, j = w, I)

IAA =
1

ρA
+ βUAA +O (ρA) (4.12)

with the inverse temperature β = 1/kBT and Iij0 = limρA→0 I
ij . Equation 4.7 is expanded as

Iij = I0ij +O (ρA) (i, j = w, I)

IiA = AiρA +O (ρA) (i = w, I) (4.13)

Substituting eqs. 4.12 and 4.13 into
∑

j IijI
jA = δiA for i = w, I,

Ai = −
∑
j=w,I

I0ij

(
∂βµ∗

A

∂ρj

)
T,{ρk}k ̸=j

(i = w, I) . (4.14)

This equation is rewritten as

(
∂βµ∗

A

∂ρi

)
T,{ρk}k ̸=j

= −
∑
j=w,I

Iij0 Aj . (4.15)

C Partial Molecular Volume

The partial molecular volume of species i is the solution volume change when a single molecule

of species i is added to the solution, which is defined by v̄i = (∂V/∂Ni)T,p,{Nj}j ̸=i
; the partial

molecular volume of the ions is v̄s = (ν+ + ν−) v̄I from eq. 4.4. Since the chemical potential µi

is the intensive variable, µi (T, V, {Nj}) = µi (T, λV, {λNj}) for some positive real number λ.

Differentiating both sides with respect to λ and substituting λ = 1, we obtain

(
∂µi

∂V

)
T,{Nj}

= −kBT
∑

j=w,I,A

Iijρj . (4.16)

The partial molecular volume is given by

v̄i = χT

(
∂p

∂ρi

)
T,{ρj}j ̸=i

= kBTχT

∑
j=w,I,A

Iijρj , (4.17)
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where eq. 4.16 is used to derive the last equality. Multiplying both sides by the density ρi of

species i and summing for i = w, I,A, we obtain

∑
i=w,I,A

v̄iρi = 1. (4.18)

In the limit ρA → 0, from eqs. 4.17 and 4.18

kBTχ
0
T =

∑
i,j=w,I

I0ij v̄
0
i v̄

0
j = 1/

∑
i,j=w,I

Iij0 ρiρj , (4.19)

where the superscript 0 represents the infinite dilution limit of the solute, i.e., v̄0i = limρA→0 v̄i,

χ0
T = limρA→0 χT , respectively.

The solvation partial volume is also defined as v̄∗i ≡ v̄i − kBTχT . In the limit ρA → 0,

substituting eq. 4.17 into eq. 4.11 and using eq. 4.9, we obtain

v̄0A = kBTχ
0
T

1 + ∑
i=w,I

ρi

(
∂βµ∗

A

∂ρi

)
T,{ρj}j ̸=i

 (4.20)

v̄0∗A = kBTχ
0
T

∑
i=w,I

ρi

(
∂βµ∗

A

∂ρi

)
T,{ρj}j ̸=i

= −
(
v̄0wAw + v̄0IAI

)
, (4.21)

where v̄0∗i = limρA→0 v̄
∗
i . Furthermore, the partial molecular volume of solute in the limit ρI → 0

is given by

vA = kBTχw

[
1 + ρw

(
∂βµ∗

A

∂ρw

)]
, v∗A = kBTχwρw

(
∂βµ∗

A

∂ρw

)
(4.22)

with vi = limρI→0 v̄
0
i , v

∗
i = limρI→0 v̄

0∗
i , and the isothermal compressibility for pure water χw =

limρI→0 χ
0
T .

D Composition Susceptibility of the Electrolyte Solvent

In this section, we consider the composition susceptibility of the electrolyte solvent XI ≡

kBTρ
−1 (∂xI/∂h)T,p in the infinitely dilute limit of the solute, with h = µI − µw and the ion

molar fraction xI = ρI/ρ. Composition susceptibility XI represents a measure of fluctuations of

the total ion density in the low-frequency limit[185, 193]. At first, using eq. 4.17, differentiating
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the pressure with respect to the ion density can be represented as

(
∂p

∂ρI

)
T

=
v̄0w
χ0
T

(
∂ρw
∂ρI

)
T

+
v̄0I
χ0
T

. (4.23)

Under isobaric condition, eq. 4.23 is written as

(
∂ρw
∂ρI

)
T,p

= −
v̄0I
v̄0w

. (4.24)

Then, differentiating the density with respect to xI, we obtain

(
∂ρw
∂xI

)
T,p

= −ρ2v̄0I ,

(
∂ρI
∂xI

)
T,p

= ρ2v̄0w. (4.25)

Using eq. 4.25, we can rewrite XI as

X−1
I = ρ3

[
Iww
0 v̄0I + III0 v̄

0
w − IwI

0

(
v̄0w + v̄0I

)]
. (4.26)

Furthermore, using eps.4.10, 4.18 and ∆0 =
[
det{Iij0 }

]−1
, we obtain

XI = ∆0/
(
kBTρ

4χ0
T

)
. (4.27)

Expanding the Helmholtz free energy density f0 (ρw, ρI) of the electrolyte solution in eq. 4.9

with respect to ρI, we obtain

f0 (ρw, ρI) = fw (ρw) + kBTρI

[
ln

(
Λ3
I

ρI
ν+ + ν−

)
− 1

]
+ µ∗

I (ρw) ρI

−kBT

12π
κ3 + UII (ρw) ρ

2
I +O

(
ρ3I
)
, (4.28)

where fw is the Helmholtz free energy density of the pure water, ΛI is the thermal de Broglie

length of the ions, µ∗
I is the solvation free energy of the ions at the infinite dilution limit of the

ions, and UII is the second-order coefficient of ρI. The fourth term on the right-hand side is the

Debye-Hückel free energy in the limit of the low ion densities[58, 59], with the inverse of the

Debye length

κ =

√
|z+z−| e2
ϵ (ρw) kBT

ρI, (4.29)

where ϵ (ρw) is the dielectric constant in the pure water and e is the elementary charge. Using

eqs. 4.28 and 4.18 in the limit ρI → 0, III0 = 1/ρI+O
(
ρ
−1/2
I

)
, IwI

0 = (∂βµ∗
I /∂ρw)T,ρI +O

(
ρ
1/2
I

)
,
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v̄0w = 1/ρw +O (ρI). Thus, eq. 4.27 is written as

XI =
ρI
ρ2w

+O
(
ρ
3/2
I

)
. (4.30)

E Setschenow Coefficient Ks

At the low-salt density, the Setschenow coefficient Ks, defined as eq. 4.2, represents a measure of

the salting-out effect for the solute in the aqueous solution. When the solution is in equilibrium

with its vapor, the Ostwald adsorption coefficient λ, which represents the ratio of the solute

density in the solution to that in the gas phase, corresponds to λ = e−µ∗
A/kBT . Then, the

Setschenow coefficient Ks is written as

Ks = − lim
ρs→0

(
∂ lnλ

∂ρs

)
T,p

= (ν+ + ν−) lim
ρI→0

(
∂βµ∗

A

∂ρI

)
T,p

= (ν+ + ν−)

[
lim
ρI→0

IAI −
v∗AvI

kBTχw

]
, (4.31)

where eqs. 4.22 and 4.24 are used to derive the last equality.

In earlier studies[162, 19], we showed that the Setschenow coefficient was given by

Ks = (ν+ + ν−) (GAw −GAs) , (4.32)

where A is solute, w is water, + is cation, and − is anion in the subscripts of the KBI. The

solute-salt KBI is given by GAs = (ν+GA+ + ν−GA−) / (ν+ + ν−), with

Gij =

∫
hij (r) dr. (4.33)

The Setschenow coefficient is generalized from the low to the general salt density by the

solvation coefficient gA ≡ (∂βµ∗
A/∂xI)T,p. From eq. 4.25, we can rewritten as

gA = βρ2
[
v̄0w

(
∂µ∗

A

∂ρI

)
− v̄0I

(
∂µ∗

A

∂ρw

)]
(ρA → 0)

=
AwρI −AIρw

ρ2XI
, (4.34)

where the second line follows from eqs. 4.14, 4.17, and 4.30. In the limit ρI → 0, substituting

eq. 4.22 into eq. 4.34 and using eqs. 4.18 and 4.31, gA is reduced to Ks;

lim
ρI→0

gA = ρw

[
lim
ρI→0

IAI −
v∗AvI

kBTχw

]
=

ρwKs

ν+ + ν−
. (4.35)
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Inverting eqs. 4.21 and 4.34, we obtain

Aw = ρ2XIgAv̄
0
I − ρwv̄

0
A, AI = −ρ2XIgAv̄

0
w − ρIv̄

0
A. (4.36)

F Salt-Enhanced-Association Coefficient CI

In the limit ρA → 0, substituting eqs. 4.12, 4.13, and 4.15 into
∑

i I
AiIiA = 1, we obtain

1

IAA
=

1

ρA
+ βUAA −

∑
i,j=w,I

Iij0 AiAj . (4.37)

Then, substituting eq. 4.36 into 4.37, and using eqs. 4.17, 4.19, and 4.27, we obtain

1

IAA
=

1

ρA
+ βUAA − β

(
v̄0∗A
)2

χ0
T

−XIg
2
A. (4.38)

Thus, we can rewrite eq. 4.8 as

B =
1

2

[
βUAA − β

(
v̄0∗A
)2

χ0
T

−XIg
2
A

]
. (4.39)

Similarly, for a binary system of water + solute in the limit ρA → 0, the osmotic second virial

coefficient B0 =
(
UAA − v∗2A /χw

)
/2kBT . The first two terms in eq. 4.39 are the same part as

B0 in an aqueous solution without ions and are equal to B0 in the limit ρI → 0. The last term

in eq. 4.39 is generated by the presence of the ions and vanishes at ρI → 0. Therefore, from

eq. 4.39, the SEA coefficient CI is rewritten as

CI =
ν+ + ν−

2
lim
ρI→0

∂
[
βUAA − β

(
v̄0∗A
)2

/χ0
T −XIg

2
A

]
∂ρI


T,p

= C
(1)
I + C

(2)
I (4.40)

with

C
(1)
I ≡ ν+ + ν−

2kBT
lim
ρI→0

∂
[(
v̄0∗A
)2

/χ0
T − UAA

]
∂ρI


T,p

C
(2)
I ≡ ν+ + ν−

2
lim
ρI→0

(
∂
[
XIg

2
A

]
∂ρI

)
T,p

=
K2

s

2 (ν+ + ν−)
, (4.41)

where eqs. 4.30 and 4.35 are used to derive the last equality in the second line.

eq. 4.39 is formally the same as the osmotic second virial coefficient B in a ternary solution of
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a water-like solvent, an alcohol-like cosolvent, and a hydrophobic solute, proposed by Okamoto

and Onuki[193]. Okamoto and Onuki[193] state that eq. 4.39 is dominated by the last term

rather than the sum of the first two terms for not very small xI (≳ 0.05). Thus, the relation

CI ≃ C
(2)
I was theoretically proposed and verified in various aqueous electrolyte solutions[185].

In the present work, we verified eq. 4.1 by performing MD simulations to calculate CI and C
(2)
I

for various solute and ion (or alcohol) species, respectively.

III COMPUTATIONAL DETAILS

We performed NpT ensemble MD simulations using the program package GROMACS2018[141]

to obtain the Setschenow coefficient Ks and the osmotic second virial coefficient B in various

aqueous solutions in this chapter. All of the MD simulations were performed in a cubic cell

system with three-dimensional periodic boundary conditions at 1 bar, 298 K, and a time step of

1 fs. The Parrinello-Rahman method and the Nosé-Hoover method were used for pressure and

temperature control, respectively. Duration times of the production run were 150 and 450 ns to

calculate the SFE of solute µ∗
A and the B, respectively, after equilibrium runs were carried out

for 5 ns. The configurations generated by the production run simulations were sampled every

50 steps.

We performed MD simulations for four kinds of model systems: pure water, aqueous solutions

of salt (or alcohol), those of solute (methane, propane or methanol), and those of the salt (or the

alcohol) and solute. Each system contained 4000 water molecules. The aqueous salt solutions

contained 72 × ν+ cations and 72 × ν− anions to give a salt concentration of 1 mol/kg, and

a methane or methanol solution contained 48 methane or methanol molecules as the solute

molecules and a propane solution contained 24 propane solute molecules. In the solutions of salt

and solute, the same number of ions and solutes as above were added. As for the model electrolyte

solutions, salts of HCl, LiF, LiCl, LiI, NaF, NaCl, NaI, CsF, CsCl, CsI, NaOH, and MgCl2 were

prepared. Here, for solutions containing the hydronium ion, we set the number of water molecules

to 3928, because a hydronium ion consisted of one water molecule and one proton. In the same

manner, we prepared aqueous solutions of alcohol and those of alcohol with solute. Each aqueous

alcohol solution was prepared by adding 36 molecules of methanol (MeOH), ethanol (EtOH), or

1-propanol (PrOH) in water. Furthermore, for the aqueous methanol solution, a system with 72

molecules was also prepared. For the alcohol (MeOH, EtOH, PrOH) and methane solution, the
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number of alcohol and methane molecules was set to 36 and 48, respectively. We also prepared

an aqueous solution containing 72 methanol and 24 propane molecules.

We assumed the pairwise approximation where the total energy of the system was given by

the sum of the potential energy between the particles in the system. The interaction between

pairs of atoms was given by the sum of Lennard-Jones (LJ) and Coulomb potential. The po-

tential function for the intermolecular interactions between water molecules was of TIP4P/2005

model[60]. We adopted the model potentials with effective electric charges scaled from those vac-

uum values (integer values) as the force field for the ions. The parameters introduced are shown

in Table 4.1. Each ion model combined with the TIP4P/2005 model of water in the present study

has been known to be consistent with the experimental values of the density of aqueous salt solu-

tions and the Setschenow coefficient for methane in those solutions[19, 111, 195, 115]. The OPLS

Table 4.1: Force field parameters of the ions; the LJ diameter σ, LJ energy parameter ϵ, and
scaled charge q.

Ion Sites Li+[100] Na+[103] Cs+[195] Mg2+[111]

σ(nm) 0.18 0.2115 0.360101 0.11629

ϵ(kJ/mol) 0.07647 0.544284 0.375958 3.6519

q(|e|) 0.75 0.75 0.75 1.7

Ion Sites Cl−[102] Cl−(of MgCl2)[111] F−[195] I−[195]

σ(nm) 0.410000 0.46990563 0.3619368 0.4681

ϵ(kJ/mol) 0.4928 0.07692308 0.03096364 0.1790

q(|e|) -0.75 -0.85 -0.75 -0.75

Ion Sites O(H3O
+)[195] H(H3O

+)[195] O(OH−)[195] H(OH−)[195]

σ(nm) 0.265 0 0.36 0

ϵ(kJ/mol) 0.8 0 0.05 0

q(|e|) -1.05 0.6 -0.75 0

force field[142] was used as a spherical monoatomic LJ particle model of methane; σA=0.373

nm, ϵAA=1.2301kJ/mol. The monoatomic LJ particle model was also used for propane molecule;

σA=0.5637 nm, ϵAA=2.0121kJ/mol[165, 167]. The TraPPE-UA force field[179] was applied to

the molecule model of each alcohol. The LJ parameters between intermolecular particles were
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basically determined by

σ12 =
√
σ1σ2, ϵ12 =

√
ϵ1ϵ2, (4.42)

whereas σAw = 0.34445 nm and ϵAw = 1.043 kJ/mol[143] were used as the methane-water LJ

parameters, and σNa+OH− = 1.134 nm was used as the Na+−OH− LJ diameter parameter[195].

The methane-methane and propane-propane interactions were replaced by the repulsive part

of the Weeks-Anderson-Chandler (WCA) potential[144] to prevent solute aggregation so that

the conformation sampling of the solute molecules was enhanced. The solute-solute radial dis-

tribution function gAA (r) = hAA (r) + 1 by the original LJ potential was calculated via a

transformation of the solute-solute gsimAA (r) obtained from the MD simulations using the WCA

repulsive potential[145, 146]. The ion-water and ion-ion LJ parameters for the Madrid-2019 force

field were individually given by the reference [111]. The LJ and Coulomb potentials between all

the intermolecular pairs were truncated at 0.9 nm, while the long-range part of the Coulomb

potentials was calculated by the particle mesh Ewald method. However, the cutoff distance of

these interaction potentials was changed to 1.2 nm for the alcohol solution and 1.5 nm for the

propane solution.

The solvation free energy of methane was calculated using the Widom test-particle insertion

(TPI) method[147]. We performed MD simulations of pure water and salt solutions for 150 ns

and inserted test solute particle 2×105 times into the equilibrium configurations obtained every

50 fs intervals. The Setschenow coefficient Ks for the propane and methanol was calculated

via eq. 4.32 because it was hard to directly use these solutes as a test particle due to the

large molecular size. To determine Ks and B, the KBIs GAw, GAs, and GAA were obtained

from numerical integration of the corresponding pair correlation function. We performed MD

simulations of solute solutions and salt plus solute solutions for 450 ns. hij(r) obtained from MD

simulation at a closed system does not converge to zero at large distances due to the finite-size

effect. We scaled the entire hij(r) so that the average of hij(r) over a certain range at large

distances becomes zero. Furthermore, we evaluated the KBI in the thermodynamic limit by

applying the method proposed by Krüger et al. [148, 149] to the KBI obtained for the finite

systems. The KBI for the molecule models with multiple interaction sites such as alcohol was

obtained by averaging the KBIs between all the pairs of sites on the molecules[150].
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IV RESULT AND DISCUSSION

In this section, the relationship between CI and Ks in various aqueous salt (or alcohol) solutions

for three solute species is verified using the results of MD simulations. First, the computational

results of Ks and CI obtained for methane in fifteen different aqueous solutions are shown in

Figure 4.1. In Figure 4.1, captions represent the co-solvent species. We evaluated the Setschenow

coefficient by the following linear approximation of eq. 4.31;

Ks = lim
ρs→0

(
∂βµ∗

A

∂ρs

)
T,p

≃
µ∗
A − µ∗

A,0

ρskBT
, (4.43)

where µ∗
A,0 is the SFE of solute in pure water. It has been pointed out in Chapter 2 and 3, i.e.,

in our earlier computational studies[19, 195], that the salt species dependence of Ks calculated

in eq. 4.43 by applying the TPI method is very close to the experimental value[46]. In the same

manner, CI was evaluated by the following linear approximation of eq. 4.1;

CI = − lim
ρs→0

(
∂B

∂ρs

)
T,p

≃ −B −B0

ρs
, (4.44)

where B0 is the osmotic second virial coefficient in pure water. Next, the results of Ks and CI

calculated for propane solutes and methanol solutes are shown in Figure 4.2. Ks was evaluated

by eq. 4.32 using the KBIs instead of eq. 4.43. The numerical results obtained from these two

routes are known to be in good agreement with each other for methane in Chapter 2 and 3. We

supposed that the KBIs obtained at low but finite concentrations of solute and salt (or alcohol)

were approximately equivalent to the KBIs in the limit of infinite dilution of those.

We find that CI and Ks for methane solute satisfy the relationship in eq. 4.1 for all salt

species (Figure 4.1). The differences between CI and C
(2)
I are less than 1.2× 10−2 (L/mol)2 for

all salt solutions, except for 1.65 × 10−2 for MgCl2 and 1.75 × 10−2 (L/mol)2 for HCl. In the

aqueous alcohol solutions, the CI are smaller by 1.4 ∼ 2.1 × 10−2 (L/mol)2. Thus, it may be

difficult to fully ignore the contribution of C
(1)
I in eq. 4.40 when C

(2)
I is small (|Ks|/

√
ν+ + ν− ≤

0.1 L/mol). Most of the MD simulation results of CI are slightly larger than C
(2)
I in the positive

Ks and smaller than C
(2)
I in the negatively small Ks, which are consistent with the numerical

results using the theoretical model by Okamoto et al[185]. The result for Li+ obtained from this

work is consistent with the exceptional salting-out effect that has been experimentally observed

for Li+, while this Li+ ion specific effect is not reproduced by the theoretical model[185].

Next, if we focus on the salting-in region, the order of Ks in alcohol co-solvents is as follows:
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EtOH < MeOH < PrOH. In general, the larger the hydrophobic solute (i.e., the longer the

alkane), the larger the hydrophobic interaction. Thus, the order of the salting-in effect of alcohol

co-solvents on a hydrophobic solute is expected to be PrOH > EtOH > MeOH, because of the

stronger hydrophobic interaction between the solute and larger hydrophobic group of alcohol

and eq. 4.32. However, the computational results were opposite to the expected trend. One of

the possible reasons for the exceptional trend of PrOH is the influence of finite concentration of

PrOH caused by aggregation of the hydrophobic groups of PrOH. Thus, we also examined Ks

for the PrOH solution model where the attractive interactions between the hydrophobic groups

of PrOH molecules were removed. However, we observed the smallest salting-in effect in the

PrOH solution model, too, indicating that such an aggregation behaviour does not affect Ks.

Figure 4.2 shows that CI and Ks for propane and methanol satisfy the relationship in eq. 4.1

as well as for methane. It is not straightforward to discuss the differences between CI and C
(2)
I

for propane because the error bars of CI for propane are much larger than those for methane.

However, the differences are less than 1.7 × 10−2 (L/mol)2 for the most of salt (or alcohol)

solutions, exceptionally, 4.7 × 10−2 (L/mol)2 for NaF which has the largest salting-out effect

and −3.5× 10−2 (L/mol)2 for MeOH. In the case of methanol solute, the differences between CI

and C
(2)
I are the values ranged from 8.4 ×10−3 to 1.9 ×10−2 (L/mol)2, and CI is always larger

than C
(2)
I for any salt. Thus, these results show that CI ≃ C

(2)
I = K2

s /2 (ν+ + ν−) is valid over

the wide region of salting-out in the salt solutions, independent of the size or the property of

the solute. Unfortunately, it was unable to investigate a solution indicating strong salting-in

effects in the combinations of solute and co-solvent species used in this chapter. On the one side,

in the weak salting-in region, CI was found to be negative so that those results were deviated

from CI ≃ C
(2)
I . However, if eq. 4.1 holds in the negatively large Ks, CI should give a positive

value due to the effect of K2
s . On the other hand, in the range of Ks investigated in this work,

we successfully estimated the magnitude of the salt effect on the hydrophobic interaction using

eq. 4.1 from the magnitude of the salt addition effect on the gas solubility.
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Figure 4.1: SEA coefficient CI vs Setschenow coefficient Ks divided by
√
ν+ + ν− for methane

in aqueous solution of each co-solvent. However, for alcohol co-solvent, ν+ + ν− = 1. The solid

curve indicates C
(2)
I = K2

s /2 (ν+ + ν−).
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methanol (squares). However, for alcohol co-solvent, ν+ + ν− = 1. The solid curve indicates

C
(2)
I = K2

s /2 (ν+ + ν−). The results for methane are same as shown in Fig. 4.1.

V CONCLUSIONS

We performed MD simulations to calculate the salt addition effect on the gas solubility (Setschenow

coefficient Ks) and the salt effect on the solute-solute effective interaction (osmotic second virial

coefficient B), respectively, and investigated their salt (or alcohol) and solute species dependent

relationships. The Setschenow coefficient was calculated through the SFE route (eq. 4.43) for a

methane solute and the KBI route (eq. 4.32) for propane and methanol solutes. We evaluated a

measure of the salt effect on B by the salt-enhanced-association coefficient CI ≡ − (∂B/∂ρs)T,p.

Equations 4.40 and 4.41 provide the exact relation between CI and Ks in the limit of infinite di-

lution of both salt and solute. We investigated whether the approximation CI ≃ K2
s /2 (ν+ + ν−)

based on the proposal in the earlier study[193] that the third term in eq. 4.39 is dominant for B

in a ternary system of water + salt (or alcohol) + solute. In addition, we examined solute and

co-solvent species to which the approximations are valid.

We performed MD simulations using the force field consisting of the LJ potential and the
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Coulomb potential, specifically, the single spherical LJ model for hydrophobic solutes, the charge-

scaled model for ions, and the TraPPE-UA model for alcohols. The calculation results indicated

that Ks and CI are consistent with the relationship given by eq. 4.1 for all salt and solute

combinations considered in the present study. This relationship is also applicable for divalent

ions such as Mg2+. Furthermore, we showed that this relationship was applied to not only

the hydrophobic solute but also solutes with the hydrophilic group. In other words, although

eq. 4.1 is derived assuming a hydrophobic solute, we clarified that this relationship was also

valid for solutes with hydrophilic groups. Thus, it was demonstrated that the magnitude of the

effective pair interaction between solute particles in aqueous electrolyte solutions at the infinite

dilution limit of salt was estimated using the SFE of an isolated, single solute. However, we

did not investigate the regime of strong salting-in. Equation 4.1 indicates that CI should be

in proportion to the square of Ks for both negatively and positively large values of Ks. In

other words, it is suggested that both the salting-in and salting-out cases make the interactions

between pairs of solute particles more attractive. For the salting-out, the more attractive the

solute-solute interaction is, the more the aggregation of the solutes is promoted, which can be

understood as a decrease in solubility of the solute. However, it remains unclear what makes B

more attractive due to the salting-in effect. It is interesting to investigate the case with more

negative Ks using, e.g, fullerene as the solute with a larger size and lower solubility and, e.g.,

tert-butyl alcohol (TBA) as the co-solvent, since a larger salting-in effect is expected.

In this chapter, C
(1)
I was not mentioned because of the large error bars of CI, which made

it difficult to determine C
(1)
I = CI − C

(2)
I . However, C

(1)
I is a significant factor in determining

the precision of eq. 4.1. Equation 4.41 indicates that C
(1)
I depends on not only the salt species

but also the solute species. It has been pointed out in the earlier theoretical study[185] that the

larger the ion and solute size, the larger the contribution of C
(1)
I . In order to evaluate C

(1)
I for

various salt and solute species using MD simulations in the future, it is necessary to increase

the system size and computation time. Such the approach requires an enormous computational

cost. Alternative approach is to evaluate C
(1)
I directly from eq. 4.41. It is then expected that a

similar computational cost is required to obtain v̄0∗A and χ0
T in aqueous electrolyte solutions with

sufficient accuracy. However, it would be informative to investigate the even larger hydrophobic

solute and the solute with complex structures, such as proteins when we extend the present

results and further understand the solute species dependence of the accuracy of eq. 4.1.
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