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A B S T R A C T   

Objectives: Rab11(Rab11a and Rab11b) localizes primarily along recycling endosomes in cells and is involved in 
various intracellular trafficking processes, including membrane receptor recycling and secretion of exosomes or 
small extracellular vesicles (EVs). Although Rab11 is closely associated with the progression and metastasis of 
various cancer types, little is known about Rab11’ role in head and neck squamous cell carcinoma (HNSCC). In 
this study, we investigated the roles of Rab11a and Rab11b in HNSCC. 
Methods: The clinical significance of Rab11 expression in HNSCC was investigated using a public database and 
tissue microarray analysis. Stable cell lines with loss and gain of Rab11a or Rab11b were originally established to 
investigate their roles in the proliferative, migratory, and invasive capabilities of HNSCC cells. 
Results: Database analysis revealed a significant association between Rab11b mRNA expression and a favorable 
patient survival rate in HNSCC. Tissue microarray analysis revealed that Rab11b expression was the highest in 
normal tissues and gradually decreased across the stages of HNSCC progression. Overexpression of Rab11a or 
Rab11b resulted in a decrease in epidermal growth factor receptor (EGFR), Epithelial cell adhesion molecule 
(EpCAM) exosome secretion, and the migratory and invasive potential of HNSCC cells. The knockdown of 
Rab11a or Rab11b increased EpCAM/CD9 exosome secretion in addition to the migratory and invasive potential 
of HNSCC cells. 
Conclusions: Rab11 suppresses HNSCC by regulating EGFR recycling and EpCAM exosome secretion in HNSCC 
cells. Our results indicate that Rab11b is a superior prognostic indicator of HNSCC and holds promise for 
developing novel therapeutic strategies.   

1. Introduction 

Most advanced cases of oral carcinoma are associated with jawbone 
invasion, which results in facial deformity, reduced quality of life (QOL), 
and poor prognoses. Hence, surgical treatment is mainly based on the 

extensive removal of the jawbone. The invasiveness of oral carcinoma 
cells into the jawbone is followed by their migration into the bone 
resorption area, where they are resorbed by osteoclast-secreted enzymes 
such as cathepsin K (CTSK), matrix metalloproteinase (MMP) [ [1–3]]. 
Recently, in addition to CTSK and MMPs, the role of extracellular 
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vesicles (EVs) in cancer cell invasion and metastasis has been investi-
gated. EVs can educate the tumor microenvironment and pre-/-
pro-metastatic niche by transferring cargo molecules such as RNA, 
proteins, and lipids to recipient cells in local and distant tissues [4]. 
Many proteins are involved in the secretion/release of EVs, including 
Rab proteins — and Rab11 in particular. Epidermal growth factor re-
ceptor (EGFR) involves cell proliferation in cancer via EGFR signaling, 
with exosomal EGFR essential for the progression of HNSCC [ [5,6]]. 
Epithelial cell adhesion molecule (EpCAM) is also a key factor in cancer 
progression, as exosomal and extracellular EpCAM promote cancer 
progression, including HNSCC [ [7–10]]. Therefore, we hypothesized 
that Rab11 regulates cancer cells by regulating exosomal EpCAM and 
EGFR level. 

The Rab family of proteins represents the largest branch of the Ras 
superfamily of small GTPases, and approximately 70 Rab GTPases have 
been identified in the human genome [11]. Rab GTPases control the 
vesicular transport system, which is composed of vesicle budding, 
uncoating, motility, and fusion within a target membrane site, and are 
important for ensuring that cargo is delivered to their correct destina-
tions. They regulate the specificity and directionality of membrane 
trafficking signals by recruiting effectors, which come in many forms — 
such as sorting adaptors, cytoskeletal motor proteins, tethering factors, 
kinases, and phosphatases — to the vesicular membrane surface [ 
[12–14]]. 

The abundant expression of Rab proteins is closely associated with 
cancer cell migration, invasion, metastasis, and even prognosis [15]. 
Indeed, Rab1A [ [16,17]], Rab2A [18], Rab3D [19], Rab 4 [20], Rab5 [ 
[20,21]], Rab8 [22], Rab11 [23], Rab17 [24], Rab 21 [25], Rab 23 [26], 
Rab25 [[27 [28–30]], Rab27B [31], Rab 31 [32], Rab35 [33], Rab37 [ 
[34–36]], and Rab 38 [37] are involved in tumor migration, invasion, 
and metastasis. 

It has been previously reported that Rab11a promotes breast cancer 
invasion by promoting EGFR recycling [38]. Structurally, Rab11 is 
classified into three isoforms, Rab11a, Rab11b, and Rab25. Of these, 
Rab11a is ubiquitously expressed, Rab11b is enriched only in the heart, 
brain, testes [39], polarized MDCK, and gastric parietal cells [40], while 
Rab25 is found only in epithelial cells [41]. Recently, it was reported 
that Rab11 expression influences cancer prognoses in various tissues 
[42–46]]. More recently, Rab11a expression was associated with the 
level of aggressiveness of a cancer via the regulation of EGFR signaling 
in lung squamous cell carcinoma [47]. On the other hand, the role of Rab 
proteins in the release of EVs from cells into the extracellular space has 
attracted attention — it has become clear that intracellular transport 
mechanisms play an important role in the secretion of these proteins and 
EVs [ [48–51]]. Among these, Rab11 is an important factor in the con-
trol of EVs and cancer [48]. In the present study, we analyzed how 
Rab11 regulates intracellular trafficking and affects cancer cell growth 
and invasion. 

2. Materials and methods 

2.1. Antibodies and reagents 

Dalbecco’s modified Eagle’s medium (DMEM) was purchased from 
WAKO (Osaka, Japan). Antibodies (Abs) of EpCAM (VU1D9), Rab11a 
and Rab11b were obtained from Cell Signaling Tech. (Massachusetts, 
USA). HRP-conjugated GAPDH monoclonal antibody was from Pro-
teintech (IL 60018, USA). Anti-EGFR (ab32562) Abs and HRP- 
conjugated anti-β-actin antibody (ab49900) were purchased from 
Abcam (Cambridge, MA). Abs of CD9 (D252-3) were purchased from 
MBL (Tokyo, Japan). 

2.2. Cell culture 

Human HNSCC cell lines SAS, Ca9-22, OSC-19, HSC-2, HSC-3, and 
HSC-4 were obtained from JCRB Cell Bank (Osaka, Japan). Cells were 

cultured in DMEM supplemented with 10 % fetal bovine serum (FBS) 
(Gibco-BRL), 100 U/ml penicillin, and 100 μg/mL streptomycin in 5 % 
CO2 and 95 % air humidified incubator at 37 ◦C. 

2.3. Western blot (WB) analysis 

WB was performed as described previously [52]. Briefly, whole cell 
lysates (WCL) were prepared using RIPA buffer (50 mM Tris-HCl [pH 
8.0], 1 % Nonidet P-40, 0.5 % sodium deoxycholate, 0.1 % SDS, 150 mM 
NaCl) supplemented with proteinase inhibitor cocktail (Sigma-Aldrich 
Tokyo, Japan). WCL (15–50 μg) were run on 10 % SDS-PAGE and then 
transferred to polyvinylidene fluoride membranes. The blots were 
blocked in Tris-buffered saline containing 0.05 % Tween-20 and 5 % 
skim milk for 1 h at room temperature (RT), and subsequently probed 
with various antibodies (Rab11a, Rab11b, EGFR, EpCAM; 1:1,000, CD9; 
1:3,000, GAPDH & β-actin; 1:2000) at 4 ◦C overnight. After washed, the 
blots were incubated with horseradish peroxidase (HRP)-conjugated 
secondary antibodies. WB visualization was achieved using a ChemiDoc 
MP Imaging System (Bio-Rad, Hercules, CA, USA), according to the ECL 
substrate (Millipore, USA). 

2.4. RNA interference 

SAS cells were transfected with 5.0 μg control short hairpin (sh)RNA 
plasmid (sc-108060; Santa Cruz Biotechnology, Inc.) or human Rab11a 
and Rab11b shRNA plasmid (sc-44491-SH; Santa Cruz Biotechnology, 
Inc.) with the use of 4D-Nucleofector™ (Lonza Group, Ltd.). Two days 
later, cells were cultured in DMEM containing 10 % FBS for 5 days in the 
presence of 1.6 μg/mL puromycin dihydrochloride to select cells that 
stably expressed the shRNAs. 

2.5. tissue microarray analysis 

Expression of human Rab11b was analyzed in HNSCC tissue and a 
normal tissue microarray (#OR601c; US Biomax). For immunohisto-
chemical (IHC) analysis, specimens were incubated with anti-Rab11b 
antibody (1:250) overnight at 4 ◦C. The slides were then treated with a 
streptavidin-biotin complex (EnVision System Labeled Polymer, HRP; 
Dako; Agilent Technologies, Inc.) for 60 min at a dilution of 1:100. The 
immunoreaction was visualized with the use of DAB substrate- 
chromogen solution (Dako Cytomation Liquid DAB Substrate Chro-
mogen System; Dako; Agilent Technologies, Inc.). Cells were counted 
using a light microscope and evaluated. 

2.6. xenograft of SAS cells to mice 

SAS cells were transplanted subcutaneously to the backs and heads of 
5 nude mice (BALB/c-nu/nu) at 1.0 × 106 cells per xenograft. As a 
control, 5 nude mice were xenografted by the above-mentioned method. 
Mice were fixed by perfusion with 10 % neutral buffered formalin. Tu-
mors were excised, fixed by immersion in 10 % neutral buffered 
formalin, dehydrated, and embedded in paraffin. Paraffin sections were 
prepared for hematoxylin-eosin (HE) staining and IHC and observed 
with a light microscope. For the Negative Control, after blocking, the 
2nd antibody of the mouse was applied and this was used as the Negative 
Control. 

2.7. Immunohistochemistry (IHC) 

Cells seeded and grown on glass coverslips were fixed with 4.0 % PFA 
in PBS for 1h at RT. After washing with PBS, fixed cells were per-
meabilized with 0.1 % Triton X-100 in PBS for 10 min. Cells were 
incubated sequentially with 10 % normal goat serum for 30 min and 
with primary antibodies (1:300) at 4 ◦C overnight. Cells were washed 
and stained with second antibodies, Alexa Fluor 594 goat anti-rat IgG or 
Alexa Fluor 594 goat anti-rabbit IgG (Cell Signaling Technology, 
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Danvers, MA, USA). Ultimately, nuclear staining with DAPI (Invitrogen 
Carlsbad, CA, USA) was carried out. The samples were visualized using a 
laser-scanning confocal imaging system (LSM 780 META; Carl Zeiss, AG, 
Jena, Germany) at Central Research Laboratory, Okayama University 
Medical School. 

2.8. retrovirus construction and expression of human Rab11 

Retrovirus construction and expression of human Rab11a and 
Rab11b were generated as the methods described previously [ [52,53]]. 
Briefly, full-length cDNAs of human Rab11a and Rab11b were generated 
by PCR method employing cDNA originating from SAS cells. The 
primers were used for Rab11a (forward: 5′-GGACGAGCTGTACAAGGG 
CACCCGCGACGAGTAC-3′ and reverse: 5′- CTACCCGGTAGAATTCTTA 
GATGTTCTGACAGCACTGC-3′) and for Rab11b (forward: 5′- GGAC-
GAGCTGTACAAGGGGACCCGGGACGACGAGTAC -3′ and reverse: 5′- 
CTACCCGGTAGAATTCTCACAGGTTCTGGCAGCAC -3′). Then, the 
cDNA(s) were amplified using Prime STAR GXL DNA polymerase 
(Takara, Tokyo). To generate GFP-Rab11a and Rab11b fusion protein, 
the amplified fragments were fused with linearized pMSCVpuro-GFP, 
gifted by Prof. Kosei Ito (Nagasaki University, Japan), using In-Fusion 
cloning kit (Clontech, Mountain View, CA, USA). pMSCVpuro-GFP was 
also used as a control vector. Vectors were transfected into HEK293T 
cells by using Lipofectamine 2000 (Life Technologies, Gaithersburg, 
MD, USA). After incubation at 37 ◦C in 5 % CO2 for 48 h, the superna-
tants composed of viruses were collected and infected into SAS cells. The 
cells were cloned by puromycin (5 μg/mL) diluted in DMEM supple-
mented with 10 % FBS, and the medium was refreshed every 3 days. 
After 2 weeks of culture, puromycin-resistant cells were obtained. 

2.9. cell viability assay 

Cells seeded in 96-well cell culture plates were incubated with the 
Cell Counting Kit-8 (CCK-8: Dojindo, Kumamoto, Japan) for 1 h, and 
then the absorbance at 450 nm was measured with a microplate reader 
(HITACHI, Japan). 

2.10. In vitro scratch assay 

A total of 1.0 × 105 cells/well were seeded in 6-well plates. At 90 % 
confluence, an artificial wound was made using the head of a 200-μl 
pipette tip across the monolayer. The cells were then washed with PBS 
and cultured in a serum-free medium for 10 or 12 h. Wound width was 
measured microscopically at 0 and 10 or 12 h. 

2.11. Cell invasion assay 

The invasion assay was conducted with BioCoat Matrigel invasion 
chambers (Corning, NY, USA). Cells grown in a serum-free culture me-
dium were applied to the upper chamber. In the lower chamber, a me-
dium containing 10 % FBS as a chemoattractant was applied. After 
incubation for 48 h at 37 ◦C, the remaining cells were removed with cell 
scraper. The filters were then fixed with 10 % methanol for 10 min and 
stained with Diff Quik (Funakoshi, Japan). Cell counting was performed 
in four random microscope fields per well. 

2.12. Preparation of EVs 

EV fractions were prepared as described previously [ [54–57]]. 
Briefly, the cell culture supernatant was centrifuged at 2000 g for 30 min 
and then at 10,000 g for 30 min at 4 ◦C. The supernatants were filtered 
with a 0.2-μm pore filter in a few experiments. The pass-through was 
concentrated using an ultrafiltration device for the molecular weight 
100 K to separate an EV fraction and vesicle-free factors. The concen-
trate was applied to polymers of Total Exosome Isolation Reagent 
(Thermo Fisher Scientific, Carlsbad, CA). The EV fractions were 

suspended in PBS without calcium or magnesium (PBS (− )). For protein 
assay, 10 × RIPA buffer and 100 × a protease inhibitor cocktail (Sigma, 
St. Louis, MO) were added to the EV fraction. For WB, equal amounts of 
protein were applied to each lane. 

2.13. Particle size distribution 

A part of the EV fraction was diluted within PBS (− ) to a volume up 
to 40 μL and then analyzed using a Zetasizer Nano ZSP (Malvern Pan-
alytical, Malvern, UK) in a range of 0.3–10,000 nm-diameters, as 
described [ [54,57]]. 

2.14. Transmission electron microscopy 

Transmission electron microscopy (TEM) and particle diameter dis-
tribution analysis were carried out as described [ [54,57]]. Briefly, a 
400-mesh copper grid coated with formvar/carbon films was treated 
hydrophilically. EV suspension (5–10 μL) was placed on Parafilm®, and 
the grid was floated on the EV liquid and left for 15 min. The sample was 
negatively stained with 2 % uranyl acetate solution for 2 min. EVs and 
non-vesicular extracellular particles (NVEP) on the grid were visualized 
with 20,000 × magnification with an H-7650 transmission electron 
microscope (Hitachi). 

2.15. Statistical analysis 

Statistical significance was calculated using Microsoft Excel. Differ-
ences between two data sets were examined with a Welch’s t-test, and 
more than three sets of data were examined with a Kruskal-Wallis test; 
values of p < 0.05 were considered to indicate statistical significance. 
Data were expressed as means ± S.D. unless otherwise specified. 

3. Results 

3.1. Rab11 expression in HNSCC 

To determine whether HNSCC cells express the Rab11 protein, 
several HNSCC cell lines (SAS, Ca9-22, OSC-19, HSC2, HSC3 and HSC4) 
were examined at the protein level. Rab11a and Rab11b were expressed 
in all HNSCC cells examined (Fig. 1A). SAS cells that moderately 
expressed both Rab11a and Rab11b were selected for subsequent anal-
ysis. To investigate the tumor tissue localization of Rab11a and Rab11b 
in vivo, we next transplanted SAS cells into nude mice and examined 
their localization by IHC (Fig. 1B). Rab11 was expressed at the border 
between cancer and epithelial cells. However, no findings of cell 
morphology changes such as spindle shape, were observed upon 
knockdown or overexpression of Rab11 (Supplementary Fig. 1). 

3.2. Rab11 affects cell migration and invasion in HNSCC 

To determine whether Rab11 expression is associated with HNSCC 
invasion and migration, we first used Rab11 shRNA to generate Rab11a 
and Rab11b knockdown cell lines in SAS cells. Each shRNA efficiently 
suppressed the Rab11a and Rab11b knockdown in cell lines, but the 
generated cell lines had little effect on each other’s Rab protein 
expression (Fig. 2A). These did not affect the proliferative potential of 
the suppressed sublines (Fig. 2B). Invasion assays were performed using 
Matrigel invasion chambers to examine the invasive abilities of Rab11a 
and Rab11b knockdown cells. The invasive capability of each Rab11- 
knockdown cell line was enhanced by the knockdown (Fig. 2C and D). 
To examine the effect of Rab11 suppression on the migratory ability of 
cancer cells, we performed a wound closure assay and found that Rab11 
knockdown promoted cell migration and invasion (Fig. 2E and F). 

To examine the migration and invasion abilities of SAS cells over-
expressing Rab11a and Rab11b, the GFP-fused Rab11 cDNA was intro-
duced into a retrovirus and expressed in SAS cells. The expression or 
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proliferation of these cell lines was not affected by each other (Fig. 3A 
and B). However, in contrast to the Rab11-repressed cell lines, both 
Rab11-overexpressing cell lines showed suppression of tumor invasive-
ness in the Matrigel invasion assay (Fig. 3C and D). Similarly, both 
Rab11b overexpressing cell lines showed a suppression of tumor inva-
siveness, although the Rab11a overexpressing cell lines showed no sig-
nificant difference from the controls (Fig. 3E and F), indicating different 
roles for Rab11a and Rab11b. 

3.3. Expression of EGFR was altered by knockdown and overexpression of 
Rab11 

It is well known that EGFR, a receptor on the cell membrane, is 
involved in cancer growth, invasion, and migration. Therefore, to 
investigate whether Rab11 is involved in EGFR expression, we examined 
EGFR expression in Rab11 knockdown and overexpression systems. 
Rab11 knockdown showed a slight trend toward increased EGFR 
expression, but the difference was not significant (Fig. 5A). In contrast, 
Rab11 overexpression significantly decreased the expression of both 
Rab11a and Rab11b. In particular, the phenomenon of EGFR expression 
was more pronounced in Rab11a (Fig. 4B). 

3.4. Rab11 inhibits EpCAM exosome secretion from HNSCC cells 

To examine whether Rab11 is involved in exosome secretion or EV 
release, EVs were prepared from the culture supernatant of Rab11a and 
Rab11b knockdown and overexpression cell lines. EV morphology was 
observed using TEM, and particle size was measured using the Zetasizer 
Nano ZSP. The EV fractions contained a lipid bilayer (Fig. 5A, Supple-
mentary Fig. 2A). The size of EVs from the Rab11a and Rab11b 
knockdown cell lines was 239.3 nm and 195.2 nm in diameter, respec-
tively, which were larger than the control EVs (159.3 nm) (Fig. 5B). The 
EV marker proteins EpCAM and CD9 were also increased by Rab11a/b 
knockdown when compared to those in the control (Fig. 5 C, D). 

Cup-shaped particles surrounded by lipid bilayers were observed in 
all the EV fractions, including the control (Fig. 6A). The size of EVs from 
Rab11a and Rab11b overexpressing cell lines was 154.8 nm and 143.7 
nm, respectively, in diameter and nearly the same particle size of the 
control EVs (130.3 nm) (Fig. 6A and B, Supplementary Fig. 2B). The 
Rab11 overexpressing cell lines released almost the same amount of 
total EV protein from the same number of cells, although they released 
significantly reduced levels of the EV marker proteins EpCAM and CD9 
compared to the controls (Fig. 6 C, D). 

Fig. 1. The expression of Rab11 in HNSCC. (A) Detection of Rab11a/b in SAS, Ca9-22, OSC-19, HSC2, HSC3 and HSC4 cell lines. Cells were cultured in DMEM 
containing 10 % FBS. The whole cell lysates (WCL) were subjected to WB analysis with anti-Rab11a or Rab11b antibodies or β-actin-HRP as a loading control. (B) 
Rab11a and Rab11b IHC in mouse tumor xenograft model. SAS cells were transplanted into nude mice. Tumor tissues were stained using anti-Rab11a or Rab11b 
antibodies. Scale bar, 500 nm. 
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Fig. 2. The effects of Rab11a/b knockdown in SAS cells. (A) WB showing individual knockdown of Rab11a/b. SAS cells were transfected with a human Rab11a or 
Rab11b shRNA plasmid or a control vector. The whole cell lysates (WCL) were subjected to SDS-PAGE, followed by WB with anti-Rab11a or Rab11b antibodies or 
β-actin-HRP as a loading control. (B) Cell proliferation was detected by CCK-8 assay. (C, D) Invasion activities of knockdown cells. Cells were cultured in a 24-well 
Transwell chamber at 37 ◦C for 12 h, and cells migrated to the lower well were fixed, stained with Diff-Quik (C), and counted (D) under a light microscope. **p <
0.01, N = 3. (E, F) Wound healing assay. Wound width was taken photos (E) and measured (F) microscopically at 0 or 48 h **p < 0.01, N = 3. 
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Fig. 3. The effects of Rab11 overexpression in SAS cells. (A) WB showing Rab11a/b overexpression. SAS cells were infected with a human Rab11a-GFP or Rab11b- 
GFP overexpression or a control virus. Arrow shows endogenous Rab11a and Rab11b, respectively and arrowhead shows fusion protein of GFP-Rab11a and GFP- 
Rab11b, respectively. GAPDH, loading control. (B) Cell proliferation detected by CCK-8 assay. *p < 0.05, N = 3. (C, D) Invasion activities of Rab11 over-
expression cells. Cells in a 24-well Transwell chamber were incubated at 37 ◦C for 12 h, and cells that migrated to the lower well were fixed, stained with Diff-Quik 
(C), and counted (D) under a light microscope. *p < 0.05, N = 3. (E, F) Wound healing assay. Wound width was taken photos (E) and measured (F) microscopically at 
0 and 48 h later. *p < 0.05, N = 3. ns: no significance. 
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3.5. Expression of Rab11 correlates with patients’ survival periods in 
HNSCC 

To investigate the involvement of Rab11a and Rab11b in HNSCC, we 
analyzed TCGA database. A Kaplan-Meier plot of the prognostic signif-
icance of Rab11 in HNSCC revealed that overall survival (OS) was longer 
in patients with lower Rab11b mRNA expression than in those with 
higher levels (Fig. 7A). This implies that low Rab11b expression is 
associated with a poor prognosis in HNSCC. In contrast, no significant 
differences were observed in Rab11a (Fig. 7A). To further investigate 
whether Rab11b influences HNSCC, we compared Rab11b expression 
between normal cells and HNSCC cells using tissue microarrays. 
Immunohistochemical analysis revealed lower levels of Rab11b in 
HNSCC tissues than in non-cancerous tissues (Fig. 7B). Furthermore, we 
quantified the tissue microarray results by scoring and found that 
Rab11b expression was lower in cancer cells than in normal cells 
(Fig. 7C). 

4. Discussion 

Rab proteins transport various intracellular proteins and lipids to the 
next organelle, extracellular secretions of EVs and NVEP, and free pro-
teins. Of the Rab family, Rab11 is one of the oldest proteins and 

functions in various intracellular transport mechanisms via the recycling 
endosomal compartment. Notably, our study showed that Rab11 over-
expression resulted in a reduction in EGFR expression in HNSCC cells 
(Fig. 4). EGFR mutations are one of the causes of poor patient prognosis 
in some cancer types, including lung and colorectal cancers, but not in 
HNSCC. EGFR genetic amplification, high expression, and mutations are 
involved in cancer growth, invasion, migration, and metastasis; how-
ever, the mechanisms of its transport to the cell membrane and recycling 
are still unknown. In general, Rab11 is associated with cancer growth 
and invasion by promoting high EGFR expression and enhancing the 
expression of various signaling factors. For example, in lung cancer [42, 
43], hepatocellular carcinoma [44], colorectal carcinoma [45], and 
esophageal cancer [46], when Rab11 — and especially Rab11a — is 
overexpressed, the cancer becomes highly malignant and leads to a poor 
prognosis. Therefore, we hypothesized that high Rab11 expression in 
HNSCC, including oral cancer, would result in a poor prognosis. How-
ever, contrary to our expectations, knockdown of Rab11 in oral carci-
noma cells promoted cancer cell growth and invasion, while 
overexpression of Rab11 suppressed them (Figs. 2 and 3). Consistently, 
the prognosis was also worse for those with lower Rab11 expression in 
terms of survival rates and tissue arrays from the database, and Rab11b 
expression was significantly lower in HNSCC, although Rab11a 
expression was not significant (Fig. 7). Other Rab proteins also differ in 

Fig. 4. The expression of EGFR in Rab11 knockdown and overexpression cells. (A) WB showing EGFR increased by Rab11a or Rab11b knockdown. Cells were 
incubated with DMEM containing 10 % FBS. Two days later, The WCL were subjected to SDS-PAGE, followed by WB with EGFR antibody. The experiments were 
three times and analyzed by using Image J software. Quantification is shown relative to the control. Three independent experiments were carried out. ns, no sig-
nificance. (B) WB showing EGFR reduced by Rab11a or Rab11b overexpression. Cells were incubated with DMEM containing 10 % FBS. Two days later, The WCL 
were subjected to SDS-PAGE, followed by WB with EGFR antibody. The experiments were three times and analyzed by using Image J software. Quantification is 
shown relative to the control. Three independent experiments were carried out. *p < 0.05, ****p < 0.0001, N = 3. 
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cancer progression and prognosis depending on the tissue and organ. 
Rab25 acts as a promoter of cancer migration and invasion in ovarian 
and lung cancers [27] but as a suppressor in esophageal [28] and colon 
[29] cancers. Thus, the roles of Rab proteins in cancer invasion, 
migration, and prognosis vary among tissues and cancer types. Based on 
these reports and the present results, it is possible that Rab11 expression 
in the digestive system — particularly Rab11a, but not Rab11b — 
negatively regulates cancer progression. 

In the present study, Rab11 overexpression decreased EGFR 
expression (Fig. 4). This is a similar manner to the lysosomal degrada-
tion mechanism of membrane receptors previously demonstrated in 
osteoclasts [ [52,53]]. According to our current results, overexpression 
of Rab11 promoted the degradation pathway from endosomes to lyso-
somes rather than membrane receptor recycling to the membrane and 
inhibited osteoclast differentiation. However, unlike osteoclasts, sup-
pression of Rab11 expression in cancer did not promote EGFR expres-
sion, suggesting that factors other than EGFR may be involved in cancer 
invasion and migration in the case of suppression of Rab11 expression. 

Although MMPs and TIMP1 secreted by cancer cells are involved in 

cancer growth, invasion, and migration [3], their secretory mechanisms 
remain unknown. We recently showed that MMPs, including MMP3, are 
released with EVs and transferred into recipient cell nuclei [ [58–60]]. In 
addition to MMPs and TIMP1, EVs have attracted attention for their role 
in vesicles secretion. Furthermore, intracellular vesicle transport 
mechanisms play an important role in the release of EVs and NVEP with 
these proteins. Indeed, Rab proteins such as Rab11, 27A, 31, and 35 play 
a central role in the intracellular vesicle and protein transport mecha-
nisms [ [48–51]]. In the current study, we found differences in the levels 
of key proteins (EpCAM and CD9) in small EVs inclusions upon knock-
down or overexpression of Rab11 (Figs. 5 and 6). This may be due to 
changes in the proteins, nucleic acids, and lipids contained in or on EVs 
upon differential Rab11 expression. Differences in Rab11 expression 
may alter cancer cell migration and invasion. Further analyses of the 
number of EVs and their inclusion are necessary for future studies. 

As for Rab effector proteins, the tissue-specific expression of each 
Rab protein varies. Future research should focus on Rab effector proteins 
for Rab in cancer cells. Currently, a precise explanation for the differ-
ences in the properties of Rab11a and Rab11b has not been obtained; 

Fig. 5. The release of EpCAM + EVs from HNSCC cells was promoted by Rab11 knockdown. (A) Representative TEM images of EVs derived from SAS-based cell lines 
transfected with control shRNA, Rab11a or Rab11b shRNA. Scale bar, 100 nm. (B) Representative particle diameter distribution of EVs. Peak values were 150–250 
nm. (C) WB showing EpCAM and CD9 in EVs. Equal amounts of protein were applied to each lane. (D) Relative levels of EpCAM expression in EVs. Image J was used 
to quantify WB bands in (C). Three independent experiments were carried out. *p < 0.05, N = 3. 
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however, it has been reported that a knockout of Rab11a in the brain has 
been reported to be compensated by Rab11b, but not in the intestine, 
suggesting that the specific expression of Rab11b may determine the 
difference in survival between Rab11a and Rab11b. 

5. Conclusion 

Rab11 acts as a tumor suppressor that controls tumor migration and 
invasion by regulating tumor receptor recycling on the plasma mem-
brane. Furthermore, Rab11 inhibits exosome secretion in HNSCC cells. 
Rab11b expression levels correlated with better prognosis in HNSCC. 
Considering these things, Rab11a and Rab11b are potential prognostic 
indicators and promising targets for the development of novel thera-
peutic strategies for HNSCC. 
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Fig. 7. Rab11 expression and prognostic values in patient-derived tumor specimens of HNSCC. (A) Kaplan-Meier survival analysis based on Rab11a or Rab11b 
expression in patients with HNSCC. Red lines, high expression group in Rab11a or Rab11b. Black lines, low expression group in Rab11a or Rab11b. (B) Immuno-
histochemistry (IHC) of human Rab11b in HNSCC vs. normal tissues using tissue microarray. (C) Rab11b IHC scores in normal vs. stage I/II and III/IV HNSCC 
specimens. The Rab11b -positive cells were counted using a light microscope and evaluated. (For interpretation of the references to color in this figure legend, the 
reader is referred to the Web version of this article.) 
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