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Abstract
Doublecortin (DCX)-positive neural progenitor-like cells are purported components of 
the cancer microenvironment. The number of DCX-positive cells in tissues reportedly 
correlates with cancer progression; however, little is known about the mechanism by 
which these cells affect cancer progression. Here we demonstrated that DCX-positive 
cells, which are found in all major histological subtypes of lung cancer, are cancer-
associated Schwann cells (CAS) and contribute to the chemoresistance of lung cancer 
cells by establishing an adrenergic microenvironment. Mechanistically, the activation 
of the Hippo transducer YAP/TAZ was involved in the acquisition of new traits of CAS 
and DCX positivity. We further revealed that CAS express catecholamine-synthesizing 
enzymes and synthesize adrenaline, which potentiates the chemoresistance of lung 
cancer cells through the activation of YAP/TAZ. Our findings shed light on CAS, which 
drive the formation of an adrenergic microenvironment by the reciprocal regulation of 
YAP/TAZ in lung cancer tissues.
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1  |  INTRODUC TION

Recent advances in multidisciplinary treatment methods, including 
molecular-targeted drugs, have successfully improved the prognosis 
of lung cancer.1–3 However, the prognosis of patients with metasta-
sis or recurrence remains poor.4 Cancer stem cell populations are the 
main cause of metastasis and recurrence.5,6 They are characterized 
by a high self-renewal, maintenance of an undifferentiated state, tu-
morigenesis, and chemo-/radioresistance and are thus considered a 
promising therapeutic target.7–10

Among the determinants of cancer stemness, the tumor micro-
environment has been widely investigated for its association with 
the maintenance of CSCs.11–13 The cancer microenvironment com-
prises cellular components, such as tumor-associated fibroblasts 
and tumor-associated macrophages,14,15 gaseous components such 
as hypoxia,16,17 and liquid components, such as cytokines and me-
tabolites.18,19 The importance of catecholamines among the liquid 
components of the cancer microenvironment has been recently 
reported.20–22 In patients with breast cancer, a stress-induced in-
crease in blood adrenaline enhances cancer stemness via the eleva-
tion of CSC-related factors, including c-myc and beta-catenin.20 We 
also previously reported that, in malignant peripheral nerve sheath 
tumor (MPNST), adrenaline treatment enhances tumor stemness 
by inducing activation of YAP/TAZ,23 which is the Hippo pathway 
transducer and also known as a CSC-related factor.24–26

When considering the pathways by which adrenaline acts on 
tumor tissue, adrenaline in the blood is the most likely route; how-
ever, other possibilities may exist. For instance, it has recently been 
reported that DCX-positive neural progenitor cells in the central 
nervous system can flow directly into tumor tissue and become 
engrafted and differentiated into sympathetic neuron-like cells in 
patients with prostate cancer.27 Because these cells reportedly ex-
press TH, a rate-determining factor of catecholamine synthesis, they 
may be able to synthesize and secrete adrenaline directly into tumor 
cells and thus possibly contribute to cancer progression.

In a preliminary experiment we investigated the possibility of 
TH-positive sympathetic nerve fibers infiltrating lung cancer tissue. 
However, unlike previous reports, we did not observe clear evidence 
of TH-positive nerve fiber infiltration in human lung cancer tissues. 
Instead, we identified TH-positive cell bodies in lung cancer tissues. 
As DCX-positive cells differentiate into sympathetic neuron-like cells 
within tumor tissues, as mentioned above,27 we decided to investi-
gate the role of DCX-positive cells in lung cancer tissues. Interestingly, 
unlike prostate cancer, DCX-positive cells in lung cancer tissue may 

be CAS in the peripheral tissues and we investigated the molecular 
mechanism of the process of acquisition of their traits. These findings 
indicate the importance of Schwann cells as cellular components of 
the tumor microenvironment and contribute to the advancement of 
therapeutic strategies targeting the cancer microenvironment.

2  |  MATERIAL S AND METHODS

2.1  |  Lineage-tracing experiment

For lineage-tracing experiments, we prepared a P0-cre/loxP-stop-
loxP-tdTomato mouse line by crossing a mouse line that expressed 
under the P0 promoter and a mouse line that expresses tdTomato 
only under Cre expression with loxP-stop-loxP-tdTomato. The mice 
were transvenously inoculated with 1 × 105 cells/100 μL of the 3LL 
cell line. Three weeks later, xenograft tumors were excised and 
subjected to immunofluorescence analysis. Animal experiments 
were performed with permission from and in accordance with all 
guidelines published by the committees of Okayama University 
(approval number: OKU-2021726 for animal usage and 20,028 for 
recombinant DNA experiments on transgenic mice).

2.2  |  Statistical analyses

An unpaired two-tailed t-test was used to assess the differences be-
tween both groups. A one-way analysis of variance with Tukey's mul-
tiple comparisons post hoc test was used to compare more than two 
groups. The log-rank test was used for survival analysis. A p-value 
<0.05 was considered statistically significant. All analyses were per-
formed using the JMP Pro 16 software (SAS Institute Japan, Tokyo, 
Japan).

For the other materials and methods, see Supporting Information 
and Tables S1 and S2.

3  |  RESULTS

3.1  |  DCX-positive cells are found in primary 
human lung cancer tissues

The presence of DCX-positive cells in lung cancer tissues was ex-
amined by immunostaining. DCX-positive cells were present in all 

F I G U R E  1  DCX-positive cells are found in primary human lung cancer tissues. (A–D) Representative images of immunofluorescence 
analyses using anti-DCX and anti-pan-cytokeratin antibodies on human lung cancers. DCX-positive cells are present in an adenocarcinoma 
(A), squamous-cell carcinoma (B), small-cell carcinoma (C), and large-cell neuroendocrine carcinoma (D). Scale bars: 50 μm in (A) and 20 μm 
in (B–D). n = 26 (A), n = 26 (B), n = 9 (C), n = 3 (D). (E) In normal human lung tissue, there are no DCX-positive cells. Scale bar: 20 μm. n = 3. 
(F) Number of cases with DCX-positive cells per each histological type of human lung cancer. (G) The distribution of the number of DCX-
positive cells per field is shown. (H) Boxplot graph describing that the number of DCX-positive cells per field of view is significantly higher in 
patients with a larger tumor invasive diameter (>2 cm) (red, right) than in the smaller cases (<2 cm) (blue, left) (p = 0.0038). (I) Representative 
image of an immunofluorescence analysis using an anti-DCX antibody (green) and an anti-macrophage marker (S100A9 + Calprotectin) (red). 
Scale bar: 20 μm. (J, K) DCX-positive cells express undifferentiated neural markers, PSA-NCAM (J) and INA (K). Scale bars: 20 μm. n = 3, each.

 13497006, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cas.16164 by O

kayam
a U

niversity, W
iley O

nline L
ibrary on [08/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  3OTANI et al.

 13497006, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cas.16164 by O

kayam
a U

niversity, W
iley O

nline L
ibrary on [08/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



4  |    OTANI et al.

histological types of adenocarcinoma, squamous-cell carcinoma, 
small-cell carcinoma, and large-cell neuroendocrine carcinoma 
(Figure 1A–D), but not in normal lung tissue (Figure 1E). The number 
of DCX-positive cells per histological type of lung cancer is shown 
in Figure 1F, and the distribution of DCX-positive cells per field of 
view in each case is shown in Figure 1G. In lung cancer, the number 
of DCX-positive cells per field of view was significantly higher in 
cases with larger tumor diameters (>2 cm) than in those with smaller 
tumor diameters (<2 cm) (Figure  1H). DCX-positive cells in lung 
cancer were not stained by pan-cytokeratin (Figure 1 A–D) or by 
macrophage markers such as anti-S100A9 + Calprotectin (Figure 1I), 
suggesting that these cells were not cancer cells or macrophages. 
In a previous report on prostate cancer, DCX-positive cells in can-
cer tissues expressed markers of neural progenitor-like states such 
as PSA-NCAM and INA. DCX-positive cells in lung cancer tissues 
also expressed these markers (Figure  1J,K). These data suggest 
that DCX-positive cells, derived from cells of the nervous system, 
are commonly present in the major pathological subtypes of lung 
cancer.

3.2  |  DCX-positive cells in lung cancer tissue 
express Schwann cell markers

We subsequently sought to determine the origin of DCX-positive 
cells in lung cancer tissues. Lung tissue is rich in sensory, sympa-
thetic, and parasympathetic nerves.28 Schwann cells are localized 
around the axons of these nerve fibers and are known to contribute 
to the maintenance of their respective neuronal functions or re-
pair of neuronal damage.29,30 Moreover, Schwann cells reportedly 
have high plasticity and acquire neural crest-derived stem cell-like 
cell characteristics.31,32 Based on these reports, we hypothesized 
that DCX-positive cells in lung cancer tissue are either dedifferen-
tiated or transdifferentiated from Schwann cells originally present 
in lung tissue. Schwann cells are localized mainly in the vicinity 
of bronchioles in normal lung tissue.33 We performed the immu-
nostaining of normal mouse lung tissue using the Schwann cell 
marker S100β antibody and confirmed that S100β-positive cells 
were localized around the bronchiole (Figure 2A). S100β-positive 
cells were also found along the visceral pleura, suggesting nerve 
innervation in this area (Figure 2A). These S100β-positive cells did 
not express DCX (Figure 2A).

Subsequently, we performed immunostaining of human 
lung cancer specimens using the S100β and DCX antibodies. 
We confirmed S100β-positive cells in the lung cancer tissues 
(Figure  2B–E). Interestingly, many DCX-positive cells were lo-
cated in proximity to S100β-positive cells (Figure  2C–E), and 
some cells co-expressed DCX and S100β (Figure  2B, arrows). 
Immunostaining using the p75 NGFR antibody, another Schwann 
cell marker, confirmed similar results (Figure  2F). These results 
suggest that Schwann cells in the lung may acquire the DCX pos-
itivity in cancer tissues.

3.3  |  Lineage-tracing experiments reveal that 
Schwann cells acquire the DCX positivity in 
lung cancer

To examine the possibility that the DCX-positive cells in lung can-
cer tissues are Schwann cells, we conducted lineage-tracing experi-
ments. We generated a P0-cre/loxP-stop-loxP-tdTomato mouse line 
by crossing a mouse line expressing Cre recombinase under the P0 
promoter, a known promoter that is active in Schwann cells, and a 
mouse line expressing tdTomato only under Cre expression with 
loxP-stop-loxP-tdTomato (Figure  3A). Immunofluorescence analysis 
using anti-DsRed antibodies, which recognize tdTomato protein in 
paraffin-embedded samples, showed that, in the normal lung tissue 
of this model, the tdTomato signal was localized in the peribron-
chial and visceral pleura, and the tdTomato signal was consistent 
with S100β, supporting the immunostaining results of Figures  2A 
and 3B. The tdTomato signal was also identified in the vicinity of 
nerve fibers in the peribronchial area, as shown by immunostain-
ing with an antibody of neuron fiber marker Nf-h, confirming that 
the tdTomato signals properly indicate Schwann cells (Figure  3C). 
These tdTomato-positive cells did not express Dcx (Figure  3B), as 
shown in Figure 2A. Furthermore, the neural progenitor cell popu-
lation (Sox2+/Dcx+) in the subventricular zone of the cerebrum of 
this mouse model did not express tdTomato (Figure S1). To prepare 
a mouse model of lung cancer xenografts using the P0-cre/loxP-stop-
loxP-tdTomato mouse line, mice were inoculated transvenously with 
1 × 105 cells/100 μL of 3LL, a murine Lewis lung cancer cell line of 
the same strain (Figure 3D). Immunofluorescence analysis of tumor 
tissues showed that tdTomato-positive cells exhibited positive stain-
ing for Dcx, S100β, and Nf-h (Figure 3E,F, arrowheads). Co-staining 
with DCX, S100β, and NF-H was observed in a human primary lung 
adenocarcinoma specimen (Figure 3G). These data indicate that the 
DCX-positive cells in tumor tissue are Schwann cells and that some 
of the DCX-positive cells exhibited positive staining for the neuronal 
marker NF-H.

3.4  |  Schwann cells acquire the DCX positivity via 
YAP/TAZ signaling

We subsequently explored the mechanism by which Schwann cells 
acquire DCX positivity in lung cancer tissues. In a previous study, 
the Hippo pathway effector YAP/TAZ was a factor that caused the 
dedifferentiation of all cell types, including neural cells.34 Therefore, 
we hypothesized that the acquisition of new traits of Schwann 
cells in lung cancer tissues is promoted by YAP/TAZ signaling. To 
verify this, we performed an immunofluorescence analysis of nor-
mal lung tissue of P0-cre/loxP-stop-loxP-tdTomato mice and a lung 
cancer xenograft model with the transvenous injection of 3LL, as 
shown in Figure 3. As expected, no Yap expression was observed in 
Schwann cells in the normal lungs of P0-cre/loxP-stop-loxP-tdTomato 
mice (Figure 4A), whereas abundant Yap expression was observed in 
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    |  5OTANI et al.

tdTomato-positive cells in a mouse model of lung cancer (Figure 4B). 
To examine whether the forced expression of YAP can dedifferen-
tiate Schwann cells, we exogenously overexpressed YAP in mouse 
strain IMS-32 Schwann cells to generate yNSCs. IMS-32 cells were 
infected with lentiviruses expressing rtTA/tetON-GFP or rtTA/
tetON-YAP and cultured in a Schwann cell maintenance medium with 
or without doxycycline for 2 weeks. Sphere formation was observed 
only in IMS-32 cells infected with rtTA/tetON-YAP and cultured in a 
medium containing doxycycline (Figure 4C). According to a previous 
report, Schwann cells acquire sphere-forming ability when cultured 
in serum-free medium containing epidermal growth factor (EGF) and 
fibroblast growth factor-2 (bFGF).31 When IMS-32 cells were cul-
tured in the same manner, they acquired a sphere-forming ability 
(Figure 4D; induced neurosphere-forming cells (iNSC)). Importantly, 
the loss of YAP/TAZ resulted in a deficit in the acquisition (Figure S2). 
Western blotting of cell extracts before and after acquiring sphere-
forming ability revealed that Dcx expression was upregulated in sam-
ples after acquiring sphere-forming ability (Figure 4E). Furthermore, 
the expression levels of Axl and Cyr61 increased in the samples after 
acquiring sphere-forming ability (Figure  4E). Immunofluorescence 

analysis revealed that Yap activation and Dcx expression acquisi-
tion occurred after the dedifferentiation of IMS-32 cells (Figure 4F). 
These data indicated that Schwann cells acquired the new traits via 
YAP/TAZ activation in lung cancer tissues.

3.5  |  DCX-positive cells in lung cancer tissue 
acquire sympathetic neuron-like properties

We thereafter examined the role of the new traits of Schwann 
cell populations, including DCX-positive cells, in lung cancer tis-
sues. DCX-positive cells represent an early stage of differentiation 
within the nervous system.35 These cells can differentiate into 
various lineages in the normal nervous system. Previous reports 
have shown that DCX-positive cells in prostate cancer tend to dif-
ferentiate into sympathetic lineages, as demonstrated by immuno-
fluorescence analysis.27 Moreover, Schwann cell precursors were 
identified as the origin of adrenergic adrenal medullary chromaffin 
cells.36 Accordingly, we hypothesized that DCX-positive Schwann 
cells in lung cancer tissues expressed catecholamine synthase. 

F I G U R E  2  DCX-positive cells in lung cancer tissue express Schwann cell markers. (A) Representative image of immunofluorescent 
analyses using anti-DCX and anti-S100β antibodies on mouse normal lung tissue. Br, bronchiole; VP, visceral pleura. Scale bar: 100 μm. n = 2. 
(B–E) Representative images of immunofluorescent analyses using antibodies against DCX and S100β in human lung adenocarcinoma cancer 
tissues. Scale bars: 20 μm. (F) Immunofluorescence analysis using antibodies against DCX and another Schwann cell marker p75NGFR. Scale 
bar: 20 μm.
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6  |    OTANI et al.

The catecholamine synthesis pathway is shown in Figure  5A. 
Immunofluorescence analyses using antibodies against these 
synthases in human lung cancer tissue revealed that some DCX-
positive cells expressed TH, DDC, DbH, and PNMT (Figure  5B–
E). Furthermore, immunofluorescence analyses using antibodies 
against noradrenaline and adrenaline confirmed that noradrena-
line and adrenaline signals were observed in DCX-positive cells 

expressing catecholamine synthase (Figure 5C,E). Moreover, in a 
lineage-tracing experiment using P0-cre/loxP-stop-loxP-tdTomato 
mice, we confirmed that some tdTomato-positive cells express a 
group of catecholamine synthases (Figure  5F–I), noradrenaline, 
and adrenaline (Figure  5J,K). Importantly, neither the expres-
sion of the catecholamine synthase family nor any signal of cat-
echolamines was detected in Schwann cells in normal lung tissue 

F I G U R E  3  Lineage-tracing experiments reveal that Schwann cells express DCX in lung cancer tissue. (A) Cartoon describing the genetic 
background of the transgenic mouse used in a lineage-tracing experiment. (B) Representative image of immunofluorescence analysis of the 
normal lung from P0-cre/loxP-stop-loxP-tdTomato mouse using anti-DCX, anti-S100β, and anti-DsRed antibodies. Scale bar: 20 μm. n = 2. (C) 
Representative image of immunofluorescence analysis of normal lung from P0-cre/loxP-stop-loxP-tdTomato mice using antibodies against 
NF-H and DsRed. Scale bar: 10 μm. n = 2. (D) Cartoon describing the establishment of a lung cancer model using a 3LL cell line and a P0-cre/
loxP-stop-loxP-tdTomato mouse line. (E) Representative image of immunofluorescence analysis of the lung cancer model mouse using a P0-
cre/loxP-stop-loxP-tdTomato mouse line and antibodies against DCX, S100β, and DsRed. Scale bar: 20 μm. n = 3. (F) Representative image of 
an immunofluorescence analysis of the lung cancer model mouse using a P0-cre/loxP-stop-loxP-tdTomato mouse line and antibodies against 
NF-H, DCX, and DsRed. Scale bar: 20 μm. n = 3. (G) Representative image of immunofluorescence analysis using anti-DCX, S100β, and NF-H 
antibodies on human lung adenocarcinoma specimen. Scale bar: 20 μm.
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    |  7OTANI et al.

(Figure S3). Finally, in vitro validation using IMS-32 showed that 
adrenaline synthesis was not observed before the induction of ac-
tivation, whereas adrenaline synthesis was observed in cells after 
activation (Figure 5L). These data suggest that Schwann cells ac-
quire sympathetic neuron-like properties and synthesize catecho-
lamines in lung cancer tissue.

3.6  |  Cancer-associated Schwann cells 
exacerbate lung cancer cells by adrenaline in a 
YAP/TAZ-dependent manner

Thus far, we have shown that Schwann cells can acquire DCX 
positivity and catecholamine-synthesizing capacity in lung cancer 

F I G U R E  4  Schwann cells acquire DCX positivity by activation of YAP/TAZ signaling. (A) Representative image of an immunofluorescence 
analysis of the lung from P0-cre/loxP-stop-loxP-tdTomato mouse using antibodies against DCX, YAP, and DsRed. Scale bar: 20 μm. n = 2. (B) 
Representative image of the immunofluorescence analysis of a lung cancer mouse model using a P0-cre/loxP-stop-loxP-tdTomato mouse 
line and antibodies against DCX, YAP, and DsRed. Scale bar: 20 μm. n = 3. (C) Cartoon describing the procedure for the induction of yNSC 
from IMS-32 cells (left) and representative images of IMS-32 infected with lentiviruses expressing rtTA/tetON-GFP or rtTA/tetON-YAP 
and cultured in a medium containing doxycycline for 2 weeks (right). Scale bars: 200 μm. n = 4. (D) Representative images of IMS-32 cultured 
in Schwann cell medium (upper panel) and IMS-32 dedifferentiated in neurobasal medium supplemented with B-27, N-2, EGF, bFGF, and 
heparin (lower panel: iNSC = induced neurosphere-forming cells). Scale bars: 100 μm. n = 4. (E) Western blotting images of Dcx, Yap, Taz, 
Axl, Cyr61, and Gapdh in IMS-32 and dedifferentiated IMS-32 cell (iNSC) lysates. Full scans of the western blots are shown in Figure S5. 
(F) Representative image of immunofluorescence analysis of IMS-32 maintained in Schwann cell medium (upper panels) and IMS-32 
dedifferentiated in neurobasal medium (lower panels: iNSC) using antibodies against Yap, Dcx, and S100β. Scale bars: 20 μm. n = 2.
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8  |    OTANI et al.

tissue. Hereafter, we define these cells as CAS, which are acti-
vated Schwann cells in cancer tissues. We investigated whether 
CAS, which has acquired the ability to produce catecholamines, 
influence the behavior of lung cancer cells. In recent years, cat-
echolamines, components of the cancer microenvironment, have 
become increasingly important in cancer biology. For example, a 

stress-induced elevation of blood adrenaline reportedly promotes 
cancer progression in breast cancer.20 Previously, we demon-
strated that the adrenaline treatment of MPNST cells enhanced 
cancer stemness via YAP/TAZ.23 Noradrenaline treatment re-
portedly enhances drug resistance.21 As shown in Figure  5, CAS 
synthesizes noradrenaline and adrenaline. To test whether the 
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    |  9OTANI et al.

catecholamines synthesized by CAS could affect the surrounding 
lung cancer cells and promote lung cancer progression, we first 
tested the self-renewal ability of lung cancer cells using a me-
dium containing l-tyrosine, l-DOPA, dopamine, noradrenaline, 
and adrenaline (10 nM each). We performed a sphere formation 
assay using HCC827, HCC4006, H520, and HARA-B4 cells in the 
abovementioned medium. Of these cells, adrenaline significantly 
enhanced the self-renewal capacity of all lung cancer cell lines 
(Figure  6A). Furthermore, adrenaline treatment markedly in-
creased the drug resistance capacity of HCC827 and HCC4006 
cells to gefitinib, a selective tyrosine kinase inhibitor against the 
EGF receptor (Figure  6B). Interestingly, adrenaline treatment did 
not affect the drug resistance capacity of these cells to cisplatin, 
one of the key cytotoxic drugs in lung cancer treatment, suggest-
ing that the effect of adrenaline on the drug resistance capacity is 
specific for gefitinib (Figure S4). We previously reported that the 
adrenaline treatment of MPNST cells enhanced YAP/TAZ activ-
ity.23 As YAP/TAZ is widely recognized as a factor that defines can-
cer stemness and drug resistance in various cancer types, including 
lung cancer, breast cancer, and malignant brain tumors,37–39 we 
tested whether YAP/TAZ was enhanced by adrenaline treatment 
in lung cancer cells. We confirmed that adrenaline treatment in-
creased YAP protein levels in HCC4006 cells (Figure 6C, full scans 
of the western blots are shown in Figure S5). In human lung can-
cer specimens, an immunofluorescence analysis using anti-YAP 
and anti-S100β antibodies revealed that the nuclear localization 
of YAP, which indicates the activated state of YAP, was observed 
in pan-cytokeratin-positive lung cancer cells proximal to CAS 
(Figure  6D, arrowheads), whereas YAP nuclear localization was 
not observed in lung cancer cells that were not proximal to CAS 
(Figure 6D). These data suggest that adrenaline derived from CAS 
may promote YAP activity in lung cancer cells, thereby enhancing 
their stemness and drug resistance potential.

Finally, we investigated whether CAS affected patient progno-
sis. The immunofluorescence analyses of 33 lung cancer patients 
who underwent surgery followed by chemotherapy at Okayama 
University Hospital showed that the area ratio of Schwann cells 
stained with S100β was significantly higher in patients with recur-
rent disease than in those without recurrent disease (Figure 6E,F). 
The 5-year recurrence-free rates of these patients are shown in 
Figure  6G. We did not find any significant correlation between 
the clinicopathological characteristics of these patients and the 

abundance of S100β-positive Schwann cells in the cohort. These 
data suggest that CAS is involved in the recurrence of lung cancer, 
probably due to enhanced chemoresistance (Figure 7).

4  |  DISCUSSION

This study found that Schwann cells in lung cancer tissue showed 
DCX positivity and acquired sympathetic neuron-like properties, 
as shown by the expression of catecholamine synthases. These 
Schwann cells synthesized noradrenaline and adrenaline and 
activated YAP in neighboring cancer cells. Validation using 
lung cancer cell lines showed that only adrenaline, among the 
components of the catecholamine-synthesizing pathway, enhanced 
the self-renewal capacity and that adrenaline treatment markedly 
enhanced the chemoresistant potential of lung cancer cells. During 
the acquisition of new traits in Schwann cells, the activation of YAP/
TAZ, a Hippo pathway transducer, was observed. Similar to a previous 
study describing that the transient overexpression of YAP/TAZ in 
neurons led to the dedifferentiation into yNSCs, we succeeded in 
inducing yNSCs from Schwann cells. The molecular mechanism of 
the de novo dedifferentiation of Schwann cells in lung cancer tissues 
is considered to be influenced by the cytokines secreted by cancer 
cells. For example, nerve growth factor (NGF), a cancer-secreted 
growth factor and ligand for NGFR, which is a surface marker of 
Schwann cells, has been reported to activate YAP,40 suggesting that 
NGF derived from cancer cells activates YAP/TAZ via NGFR on the 
Schwann cell surface to induce dedifferentiation. As fibroblasts are 
transformed by cancer cells into cancer-associated fibroblasts, and 
their newly acquired traits promote cancer, we named Schwann cells 
transformed by cancer cells as CAS. Further studies on the detailed 
molecular mechanisms by which cancer cells induce CAS and the 
effects of CAS on cancer cells, beyond those described in this study, 
are warranted.

In Figure  2, we observed that, in normal lung tissue, Schwann 
cells are abundant in the peribronchial area and underneath the vis-
ceral pleura. These areas are rich in nerve fibers, including sensory 
and autonomic nerves. Depending on the subtypes of lung cancer, 
for example, adenocarcinoma tends to occur in the peripheral region 
of the lung, which may be partly affected by Schwann cells under-
neath the visceral pleura. Squamous-cell carcinoma tends to occur in 
the central region of the lung and may be affected by peribronchial 

F I G U R E  5  Schwann cells acquire sympathetic neuron-like properties in lung cancer tissues. (A) Cartoon describing the molecular pathway 
of catecholamine synthesis. (B–E) Representative images of immunofluorescent analyses on human lung adenocarcinoma specimens using 
antibodies against DCX, tyrosine hydroxylase (TH), and pan-cytokeratin (B), antibodies against DCX, DOPA decarboxylase (DDC), and 
noradrenaline (C), antibodies against DCX and dopamine beta-hydroxylase (DbH) (D), and antibodies against DCX, phenylethanolamine 
N-methyltransferase (PNMT), and adrenaline (E). Scale bars: 20 μm. n = 3, each. (F–I) Representative image of immunofluorescence analysis 
of the 3LL lung cancer mouse model using a P0-cre/loxP-stop-loxP-tdTomato mouse line and antibodies against Dcx, DsRed, and Th (F), 
antibodies against Ddc and DsRed (G), antibodies against Dcx, DsRed, and DbH (H), and antibodies against Dcx, DsRed, and Pnmt (I). Scale 
bars: 20 μm. n = 2, each. (J, K) Representative image of the immunofluorescence analysis of the 3LL lung cancer mouse model using a P0-
cre/loxP-stop-loxP-tdTomato mouse line and antibodies against Dcx, DsRed, and noradrenaline (J), and antibodies against Dcx, DsRed, and 
adrenaline (K). Scale bars: 20 μm. n = 2, each. (L) Representative image of the immunofluorescence analysis of IMS-32 and dedifferentiated 
IMS-32 using antibodies against adrenaline. Scale bars: 10 μm. n = 2.
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Schwann cells. The role of the sympathetic neuron-like character-
istics of CAS in different histopathological subtypes of lung cancer 
requires further analysis.

Schwann cells are activated during nerve injury and acquire plas-
ticity.41,42 There is an increasing amount of evidence that several 
factors from cancer cells activate Schwann cells and that the newly 
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acquired traits of Schwann cells can affect the cancer cell charac-
teristics. For example, Schwann cells reportedly promote cancer 
dispersion and invasion in pancreatic cancer.43 In melanoma, mel-
anoma cells convert Schwann cells from a static state to a repair-
like state and make them support tumor growth.44 In this study, we 
revealed that Schwann cells could be activated to DCX-positive cells 
and acquire catecholamine-synthesizing capacity in lung cancer tis-
sues. Our data reveal that cancer cells can transform Schwann cells 
into CAS, which promotes chemoresistance of cancer cells. Such a 
reciprocal regulation of the adrenergic microenvironment sustained 
by CAS may be a candidate for cancer therapy. In particular, tar-
geting YAP/TAZ can be a promising method to eliminate the CAS-
dependent adrenergic microenvironment because YAP/TAZ plays a 

pivotal role both in CAS induction and in the cancer cell acquisition 
of chemoresistance.
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