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Deep neural network (DNN) techniques, as an advanced 
machine learning framework, have allowed various image 
diagnoses in plants, which often achieve better prediction 
performance than human experts in each specific field. 
Notwithstanding, in plant biology, the application of DNNs 
is still mostly limited to rapid and effective phenotyping. 
The recent development of explainable CNN frameworks 
has allowed visualization of the features in the prediction 
by a convolutional neural network (CNN), which potentially 
contributes to the understanding of physiological mech-
anisms in objective phenotypes. In this study, we pro-
pose an integration of explainable CNN and transcriptomic 
approach to make a physiological interpretation of a fruit 
internal disorder in persimmon, rapid over-softening. We 
constructed CNN models to accurately predict the fate to 
be rapid softening in persimmon cv. Soshu, only with photo 
images. The explainable CNNs, such as Gradient-weighted 
Class Activation Mapping (Grad-Class Activation Mapping 
(CAM)) and guided Grad-CAM, visualized specific featured 
regions relevant to the prediction of rapid softening, which 
would correspond to the premonitory symptoms in a fruit. 
Transcriptomic analyses to compare the featured regions of 
the predicted rapid-softening and control fruits suggested 
that rapid softening is triggered by precocious ethylene 
signal–dependent cell wall modification, despite exhibiting 
no direct phenotypic changes. Further transcriptomic com-
parison between the featured and non-featured regions in 
the predicted rapid-softening fruit suggested that premon-
itory symptoms reflected hypoxia and the related stress sig-
nals finally to induce ethylene signals. These results would 
provide a good example for the collaboration of image 
analysis and omics approaches in plant physiology, which 
uncovered a novel aspect of fruit premonitory reactions in 
the rapid-softening fate.
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Introduction

Non-invasive prediction of the fate to be disordering is a big 
issue for plant phenotyping, both in plant biology and agricul-
ture. Genetic mutants would follow a uniform fate, whereas 
physiological disorders in natura (especially in crops) often 
occur randomly at one glance, dependent on complicated envi-
ronmental conditions. Expert skills with long experiences in 
each specific field would often allow the high-quality prediction 
to capture the early symptoms, which might enable the charac-
terization of early physiological processes causing the objective 
disorder. Although acquiring such skills would require a long 
time and special environments, recent progress in machine 
learning techniques may allow the reproduction of a profes-
sional eye on a specific internal disorder.

Recent progress in machine learning frameworks, such as 
deep neural networks (DNNs), has realized various image analy-
ses or natural language processing. Especially for image analyses, 
convolutional neural networks (CNNs) (LeCun et al. 2015) out-
performed the conventional machine learning models in the 
ImageNet Large Scale Visual Recognition Challenge, which tries 
classification of 1,000 visual object categories (Krizhevsky et al. 
2017, Russakovsky et al. 2015). In plant science, CNN techniques 
have also been applied to various tasks using plant images. 
For example, a review by Masuda and Akagi (2022) lists the 
following tasks: taxonomic classification, stress/disease diagno-
sis, non-invasive prediction, regression and quantification, and 
automated sorting.

One of the practical issues with DNNs for biology is their 
‘black-box’ nature, which prevents us from knowing the reason 
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for their prediction/diagnosis. Consequently, we could not 
localize the regions contributing to the analysis results. How-
ever, the recent development of visualization techniques called 
‘explainable AI (X-AI)’ has solved this critical issue. Represen-
tative X-AI techniques are Gradient-weighted Class Activation 
Mapping (Grad-CAM) (Selvaraju et al. 2016), guided backprop-
agation (Springenberg et al. 2015), guided Grad-CAM (Selvaraju 
et al. 2017) and layer-wise relevance propagation (Bach et al. 
2015).

X-AI techniques may provide valuable interpretations that 
researchers have not been able to describe. For example, a 
combination of CNN and X-AI techniques successfully visual-
izes the early symptoms of disease infection or stress exposure 
(Ghosal et al. 2018, Nagasubramanian et al. 2020). X-AI has 
also been applied to reveal invisible feature characteristics of 
fruit internal traits, such as calyx-end cracking disorder (Akagi 
et al. 2020) and seedlessness (Masuda et al. 2021) in persimmon 
fruits. Integrating phenotypic collinearity and feature visualiza-
tion with X-AI in citrus fruit also realizes generalized interpre-
tations for fruit peelability and hardness (Minamikawa et al. 
2022). These studies suggest that X-AI can immediately repro-
duce professional eyes to describe the contributing region for 
predicting a specific objective (or phenotype). This allows cell- 
or region-specific analyses of the biological index for objective 
phenomena. Hence, the combination of X-AI and plant omics 
approaches will provide a novel aspect for assessing various 
physiological reactions in plants.

Persimmon is a major fruit crop, especially in East Asia. 
Their fruit disorders, including calyx-end cracking or rapid 
(over-)softening (or rapid fruit decaying with severe water–
soaked patches), substantially involve their commodity qual-
ities, while the physiological mechanisms for their disorder 
occurrences have been little known (Yamada et al. 1988, 2002). 
Particularly rapid softening is becoming a serious issue, poten-
tially not only in persimmon fruit. This disorder randomly 
occurs within ca. 10 d after the harvest even in identical shelf 
conditions. Although it is so hard to predict rapid softening 
from outer appearances at harvest even by experts’ eyes, our 
previous study has developed CNN-based prediction models, 
only with simple Red, Green, Blue (RGB) photo images (Suzuki 
et al. 2022). Importantly, the application of an X-AI technique, 
Grad-CAM, suggested that a few specific regions in the fruit 
surface, perhaps corresponding to the premonitory symptoms, 
had substantial weight for the prediction of the rapid-softening 
fate. This situation might propose a good experimental frame-
work to characterize physiological reactions in the premonitory 
symptoms of rapid softening. Here, we attempted to perform 
a comparative transcriptomic analysis on the fruits with a pre-
dicted fate to be disordered or to be a control (or with a 
long storage term) (Fig. 1). This would contribute not only to 
the understanding of the physiological mechanism for rapid-
softening fruit but also to the development of a novel approach 
based on a collaboration of image analysis and plant omics.

Fig. 1 A schematic view of the approach in this study. (A) Fates of 
persimmon fruits to be rapid softening or long shelf life (control). At 
harvest, fruits that are rapidly softening are hard to detect even by 
human experts, but deep learning frameworks can predict them from 
the faint premonitory symptoms in photo image data (Suzuki et al. 
2022). (B) Deep learning training, feature visualization and biologi-
cal interpretation steps in this study. A VGG16 model is trained with 
the photo image data of persimmon fruits to classify into rapid soft-
ening (positive) and control (negative). The trained model predicts 
the fates of new testing samples, followed by visualization of the fea-
ture region, or potential premonitory symptom, with X-AI techniques, 
such as Grad-CAM. The feature regions are subjected to transcriptomic 
analysis to interpret the physiological reactions that occurred there. 

Results and Discussion

Prediction of rapid-softening persimmon fruits 
with CNN models
A total of 2,690 persimmon fruits from cv. Soshu were har-
vested at the same full maturing stage (skin color chart = 6), 
in October 2018, in Gifu city, Japan. Immediately after the har-
vest, they were divided into two groups each consisting of 1,446 
and 1,244 fruits, and RGB photographic images of the apex side 
were taken with different digital cameras on a uniform black 
background to form ‘dataset A’ and ‘dataset B’, respectively (see 
the Materials and Methods section for the detailed conditions). 
We have mainly two reasons to apply two digital cameras: (i) 
for efficient image capturing and (ii) for examination of the 
robustness of the CNN models trained with images including 
environmental differences. For the assessment of rapid soften-
ing, packaged mature fruits were stored at ambient tempera-
ture for 1 week to check their flesh texture, according to the 
criteria previously used (Suzuki et al. 2022) (see the Materi-
als and Methods section for the details). Fruits substantially 
softened in 1 week after the harvest were defined as ‘rapid soft-
ening’. Here, we applied a typical CNN model called VGG16 
for binary classification of positive (or rapid softening) and 
negative (or control). The model was implemented in Keras 
2.2.4 (https://keras.io/) and pre-trained with the ImageNet
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Fig. 2 The deep learning prediction of rapid-softening persimmon fruits. (A, B) The distribution of the first and second highest dimensional 
features in the fully connected layer of the trained VGG16 (model A for (A) and model B for (B)), with the tSNE analysis, which is a dimensionality 
reduction technique. The squares and circles represent the positive and negative validation samples, respectively (N = 361). (C, D) ROC curves 
for the classification performance of models A (C) and B (D). The line indicates the chance classification. (E) The distribution of the confidence 
values for the prediction of rapid softening (or positive) in the testing samples, with models A and B. The confidence values for the prediction 
of 1 and 0 strongly supported rapid softening and control, respectively. The samples highlighted with solid circles were used for the following 
transcriptomic analyses. 

(http://www.image-net.org/), according to the previous study 
of training CNN models for predicting persimmon rapid soft-
ening (Suzuki et al. 2022).

We trained two independent classification models using 
datasets A and B, respectively. The images in each dataset 
were randomly split for training and validation sets in a ratio 
of 3:1. Hereafter, they are called ‘model A’ and ‘model B’ 
(Supplementary Fig. S1 shows their training curves). Clas-
sification performance was examined by observing the fea-
ture distribution in the fully connected layer by t-distributed 
stochastic neighbor embedding (tSNE), receiver operating char-
acteristic (ROC) curve (Fig. 2) and classification accuracies. 
Both models achieved adequate classification performance 
[ROC-area under curve (AUC) value > 0.77 and >75% accu-
racy]. The confidence distributions of these two models were 
not appreciably correlated [r = 0.314 in the validating sam-
ples in dataset A (N = 361), Supplementary Fig. S2]. This 
suggested that the two models apply slightly different feature 
characteristics for the classification and that combination of 
them might achieve higher prediction performance for posi-
tive samples (rapid-softening fruits), which could be further 
analyzed using transcriptomic approaches. The two models, 
especially model B, exhibited substantially low precision values 
for the positive classification (positive precisions were 0.47 and 
0.25, and negative precisions were 0.89 and 0.97 for models A 
and B, respectively). For the validation samples in dataset A 
(N = 361), the combination of models A and B, filtering with 
a higher confidence threshold than in the default classification 

(=0.5), maximized accuracy > 93% and positive precision > 0.8 
(Supplementary Fig. S2).

Regarding the selection of test samples for the transcrip-
tomic analysis described below, a total of 311 persimmon 
fruits of cv. Soshu were harvested in October 2020 in Gifu 
city, Japan, under the same fruit conditions as in 2018. The 
trained classification models A and B were applied to pre-
dict their fate to soften rapidly (positive) or not (negative). 
We selected 10 positive samples with the highest confidence 
by both models A and B, and 10 negative samples with 
enough low confidence (Fig. 2E). It would be worth not-
ing that previous results suggested a substantial correlation 
between the confidence for the prediction of rapid soften-
ing and the actual date to be softened, as rapid softening is 
a quantitative disorder (Suzuki et al. 2022). Thus, although 
our selection might include potential false positive samples, 
they were estimated to be softened more rapidly than the 
selected negative samples. These 10 positive and negative fruit 
samples were applied to the transcriptomic analyses described
below.

Visualization of the feature characteristics for the 
prediction
For visualization of the regions relevant to the prediction of 
rapid softening, Grad-CAM (Selvaraju et al. 2016) and guided 
Grad-CAM (Selvaraju et al. 2017) were applied according to the 
previous study (Akagi et al. 2020). We detected the relevant 
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Fig. 3 Visualization of the relevant regions for the rapid-softening prediction. (A) Original photo images of the predicted rapid-softening fruit 
with high confidence. (B, C) Relevance visualization with Grad-CAM (B) and guided Grad-CAM (C). The areas with the highest relevance were 
highlighted. (D) The distribution of relevance weight in fruits, as detected by guided Grad-CAM. A two-dimensional histogram H(r, d), where 
r is the relevance weight of a pixel and d is the normalized distance of the pixel from the outer contour of the fruit. Relatively higher relevance 
weights were accumulated around the apex (or fruit center) (𝑑 ∈ [0.75, 1.0]) or in the peripheral regions (or surrounding outer contour) of fruit 
(𝑑 ∈ [0, 0.1]). (E) Three categories of the fruit samples based on the rapid-softening prediction and the featured/non-featured regions were used 
in the following transcriptomic analyses. 

regions in 62 predicted rapid-softening fruits with model A in 
the testing sample sets. Fig. 3A–C shows three examples with 
relatively high confidence for the prediction. Although we had 
hypothesized that physically damaged regions might exhibit 
higher relevance, the actual relevance was located randomly 
at a glance or potentially in the regions with color uneven-
ness, as suggested in the previous study (Suzuki et al. 2022). 
Grad-CAM tries to find the relevant regions in the feature 
map by the last convolutional layer (conv5_block3 in VGG16). 
As the feature map is smaller than the original image, Grad-
CAM often gives too coarse relevance visualizations (Selvaraju 
et al. 2017). To improve this situation for finding the relevance 
with Grad-CAM, we applied a shallower convolutional layer, 
conv4_block3 in VGG16, instead of the original last convolu-
tional layer, conv5_block3. The visualized relevance was mostly 
consistent between Grad-CAM and guided Grad-CAM (Fig. 3B, 
C, Supplementary Fig. S3). The distribution of the quantitative 
relevance as a function of the distance from the outer contour of 
the fruit was detected with 62 predicted rapid-softening fruits 
in the testing sample set (Fig. 3D). Relatively higher relevance 
distributes mainly around the apex (𝑑 ∈ [0.75, 1.0]) or in the 
peripheral regions of fruit (𝑑 ∈ [0, 0.1]), where d is the nor-
malized distance of the pixel from the fruit contour (Fig. 3D).
In the empirical knowledge, the indexes of certain stresses in 

persimmon fruits often appear mainly in color unevenness in 
the peripheral regions, as with fruit calyx–end cracking (Yamada 
et al. 1988, Akagi et al. 2020). Although these observations 
are partially consistent with the empirical prediction of rapid 
softening, most of the relevant regions, especially around the 
apex, have not been interpretable at least from the empirical 
knowledge.

Regarding each 10 predicted rapid-softening (positive) and 
control (negative) samples selected for the following tran-
scriptomic analysis (Fig. 1E), we sampled approx. 10 mm ×
10 mm × 5 mm (length × width × thickness of the mesocarp) of 
mesocarp immediately beneath the high relevance for the pre-
diction of rapid softening (RS-featured or RS-F) and control 
(C-featured or C-F) and with no relevance in the predicted rapid 
softening (RS-non-featured or RS-NF) (Fig. 3E).

Transcriptomic interpretation of the deep learning 
prediction
We obtained mRNA-seq reads from the 10 RS-F, 4 RS-NF 
and 10 C-F samples. A principal component analysis (PCA) 
was conducted to profile the expression patterns of all genes 
[reads per kilobase of transcript per million mapped reads 
(RPKM) > 1] among the sampling groups (Fig. 4A). PC1 and 
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Fig. 4 Transcriptomic interpretation of the deep learning prediction on rapid softening in persimmon fruit. (A) The characterization of gene 
expression dynamics in C-F, RS-F and RS-NF, with PCA. All sample groups were not statistically separated (P > 0.34) in PC1 explaining ca. 65% of 
the whole variance. The cross marks represent the average PC1 and PC2 values in each group. (B, C) The heat map for the normalized expression 
patterns of DEGs in criteria (i) with C-F and RS-F (B) and criteria (ii) with RS-F and RS-NF (C). (D) The potential correlation of the expression bias in 
DEGs in criteria (i) (x-axis) and criteria (ii) (y-axis). The genes commonly upregulated or downregulated in RS-F (P < 0.05 and FDR < 0.1 in criteria 
(i) and (ii), respectively) were subjected to GO enrichment analysis. (E, F) GO enrichment analysis for the upregulated DEGs detected in criteria 
(i) and (ii) ((E) and (F), respectively, FDR < 0.05). The larger blue dots indicate more significant FDR values. Asterisks represent GO annotations 
mentioned in the main text. 

PC2 represented 64.9% and 12.0% of the total variance, respec-
tively. The PCA analysis suggested that the overall gene expres-
sion levels have not changed significantly across the sample 
groups (P = 0.34–0.77 in PC1, two-sided Student’s t-test). Dif-
ferentially expression analyses were conducted in the two crite-
ria: (i) RS-F vs C-F and (ii) RS-F vs RS-NF, with DESeq2 and paired 
edgeR, respectively (Fig. 4B, C). The differentially expressed 
genes (DEGs) in criteria (i) would reflect the difference in the 
early physiological reactions of fruit with the two distinct ripen-
ing fates, rapid softening and long shelf life. On the other hand, 
criteria (ii) would reflect the physiological reaction in the pre-
monitory symptoms within a rapid-softening fruit. In criteria 
(i), not all but half of the RS-F samples (left five samples in 
Fig. 4B) exhibited clearly consistent both up- and down regu-
lations in comparison to the control samples. The rest half RS-F 
samples exhibited no clear upregulations, but consistent ten-
dency for the expression patterns in the downregulated DEGs. 

This situation would be derived from sample heterogeneity. 
On the other hand, one of the control samples (ID number 
85, right end in Fig. 4B) exhibited clear RS-F-like expression 
patterns. This might be due to potentially wrong prediction 
of the control sample, since the prediction performance with 
our model was not perfect (negative precision = ca. 0.95, as 
given in Supplementary Fig. S2). On the other hand, in criteria 
(ii) with a paired analysis, four comparisons of RS-F and RS-
NF exhibited mostly consistent expression behaviors in DEGs
(Fig. 4C).

We could detect 756 and 180 RS-F upregulated and down-
regulated DEGs using DESeq2 (P < 0.05, RPKM > 1 for either 
of the averaged value in RS-F or C-F), respectively, in criteria 
(i). The RS-F upregulated genes were statistically enriched with 
ethylene signal–related and cell wall modification genes [Fig. 4E 
for the gene ontology (GO) enrichment analysis in the biolog-
ical process, and Supplementary Table S1 for the DEG list].
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They clearly reflected a typical physiological reaction in soft-
ening of climacteric fruit species, such as tomato (Alexander 
and Grierson 2002), where ethylene plays a main role in 
eventually inducing cell wall (or polysaccharide) degradation 
enzymes, including pectin lyase (or pectin methylesterase) (see 
Supplementary Table S1 for the details). This result suggested 
that genes inducing typical fruit softening were precociously 
activated in the fruits to be rapid softening, although we (and 
also empirical knowledge) cannot detect clear visible indexes 
in outer phenotypes between the rapid softening and con-
trol persimmon fruits (Suzuki et al. 2022). On the other hand, 
RS-F-downregulated genes showed significant enrichment of 
membrane transport–related and immune- or defense-related 
genes (Supplementary Fig. S4B). This is consistent with the 
reactions associated with the upregulated genes, since fruit 
cells already in the decaying process have no longer the mem-
brane transporting or defending abilities, as indicated in the 
reactions with fruit chilling injury (Lyons 1973, Saltveit and
Morris 1990).

For criteria (ii), we detected 486 and 456 RS-F upregu-
lated and downregulated DEGs using paired edgeR (FDR < 0.1, 
RPKM > 1 for either of the averaged value in RS-F or RS-NF, and 
Supplementary Table S2 for the DEGs list), respectively. Their 
significance is less interpretable from the significantly enriched 
gene ontologies in the biological process (Supplementary 
Fig. S4C) than that of criteria (i) (Fig. 4E). The RS-F upreg-
ulated genes were enriched in those annotated with alcohol 
dehydrogenase (ADH) in molecular function (Fig. 4F), similarly 
to those upregulated in criteria (i) (Supplementary Fig. S4A). 
This is reminiscent of a typical response to hypoxic conditions 
(or low oxygen stress) in fruit crops, including avocado, tomato 
or pear (Kanellis et al. 1991, Van Der Straeten et al. 1991, Chervin 
et al. 1999). Upregulation of ADH has been known as an index 
of hypoxia also in persimmon, mainly in the process of fruit 
deastringency with CO2 treatment (Min et al. 2012, Zhu et al. 
2018). The RS-F upregulated genes also included a few ethylene-
related genes, such as 1-aminocyclopropane-1-carboxylate oxi-
dase or 1-aminocyclopropane-1-carboxylate synthase, and genes 
relating cell wall modification, such as pectin methylesterase, 
although they exhibited no drastic activation (approx. 1.3–2.9-
fold changes in average, Supplementary Table S2) and no 
significant enrichment (Fig. 4C). These observations suggest 
that partial activation of ethylene-signaling pathways pre-
cedes cell wall degradation in the featured region–specific 
manner. The RS-F-downregulated genes exhibited the enrich-
ment of brassinosteroid- or abscisic acid–responsive genes 
(Supplementary Fig. S4D). This might be consistent with 
the gene regulation in criteria (i), where defense-responsive 
abilities have been gradually lost. In the comparison of cri-
teria (i) and (ii), relatively high correlation was detected in 
their DEG expression behaviors (r = 0.562, Fig. 4D). Among 
the DEGs in criteria (i) and (ii), 156 and 41 genes showed 
the common RS-F–specific upregulation and downregula-
tion, respectively (Fig. 4D, and Supplementary Table S3 for 
the gene list). Notably, ADH-related genes were commonly 

Fig. 5 A schematic model for the physiological mechanism of rapid 
softening in persimmon fruit. 

enriched in the upregulated DEGs of RS-F in both criteria 
(i) and (ii) (Supplementary Fig. S4E), implicating low oxy-
gen stress in persimmon fruit, as described earlier. Together, 
our transcriptomic results suggested that the Deep Learning-
predicted rapid-softening fruits precociously start an ethylene-
dependent cell wall degradation process and that the cue 
to trigger this reaction might involve certain stress signals 
potentially due to hypoxia, as given in Fig. 5. These results 
would provide a good example for the collaboration of AI 
and omics approaches in plant physiology, which uncov-
ered a novel aspect of fruit premonitory reactions in the
rapid-softening fate.

Materials and Methods

Assessment of fruit softening in cv. Soshu 
persimmon
A total of 2,690 cv. Soshu persimmon fruits were harvested in the Itonuki area 
Gifu, Japan, at fully mature stage (skin color chart = 6) in October 2018. Imme-
diately after harvest, the RGB images (2,048 × 1,536 pixels) from the fruit apex 
side were taken at uniform light and background conditions using two digi-
tal cameras (Canon IXY-Digital 20IS and Nikon D5200). We defined the fruits 
over-softened in 7 d after the harvesting during storage at room temperature 
as positive samples for rapid softening. Fruits that did not return dented after 
being touched according to Sugiura et al. (2012) and Suzuki et al. (2022) were 
recorded as softened fruit.

Deep learning model construction for the 
prediction of rapid softening
The procedure of deep learning classification was followed by the previous 
report (Suzuki et al. 2022). Roughly speaking, we prepared an image dataset 
consisting of the softened fruits in 7 d as positive samples and the long shelf 
fruits (>7 d for softening) as negative samples for binary classification. All images 
were resized to 224 × 224 pixels and augmented with the ImageDataGenerator 
in Keras (https://keras.io/). Then images were randomly split for training and 
validation sets in a ratio of 3:1. The VGG16 model (Simonyan and Zisserman 
2014) was implemented in Keras 2.2.4, and its fully connected layer was cus-
tomized for binary classification. Its model was weighted with the ImageNet 
dataset (http://www.image-net.org/) for pretraining. We used the standard set-
ting with stochastic gradient descent as the solver, 0.001 as the learning rate 
with categorical cross-entropy for the loss function and 20–100 epochs with 
the class weight option, since its applicability had already been confirmed by 
Suzuki et al. (2022). The classification performance of the trained models was 
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evaluated with feature distribution in the fully connected layer using the tSNE 
and ROC-AUC values in the validation samples. For the confusion matrix, the 
threshold prediction value was set as 0.5.

X-AI feature visualization in models
Based on previous reports (Akagi et al. 2020, Suzuki et al. 2022), the feature 
visualization methods Grad-CAM (Selvaraju et al. 2016) and guided Grad-CAM 
(Selvaraju et al. 2017) were applied to the trained VGG16 model to find the 
high-relevance regions. As described in the Results and Discussion section, 
Grad-CAM is often used to capture the relevant regions in the feature map 
by the last convolutional layer (conv5_block3). On the other hand, since we 
need to sample small fruit regions for the following transcriptomic analyses 
(or to visualize the relevance with a finer resolution than the original one), we 
applied a shallower convolutional layer using conv4_block3 to find the relevant 
regions. We have checked that the relevance was mostly consistent not only 
between Grad-CAM and guided Grad-CAM but also between the Grad-CAM 
using conv4_block3 and the original Grad-CAM (Supplementary Fig. S3). The 
distribution of the quantitative relevance in guided Grad-CAM, along with the 
distance from the outer contour of the fruit, was calculated according to the 
previous method (Akagi et al. 2020).

Transcriptomic analysis
In October 2020, a total of 311 cv. Soshu persimmon fruits were harvested in 
the Itonuki area, Gifu, Japan, at a fully mature stage (color chart = 6), of which 
the condition was mostly identical to that of the described sampling for the 
CNN model construction. Immediately after the harvest, photo images shot 
by the described two cameras were analyzed with the constructed CNN mod-
els to predict their fates to be rapidly softening (positive) or to be controlled 
(negative) with confidence values. We selected 10 predicted rapid-softening 
fruits with the highest positive confidence and 10 control samples. Grad-CAM 
and guided Grad-CAM detected the featured and non-featured areas in the 
fruits. The fruit exocarps and mesocarps around the highest featured areas 
[10 mm × 10 mm × 5 mm (length × width × thickness of the mesocarp)] were 
sampled to be immediately frozen in liquid nitrogen. The remaining fruits 
were stored at room temperature, and their dates of fruit softening were
recorded.

Total RNA was extracted from the frozen samples using PureLink Plant 
Reagent (Invitrogen, Carlsbad, CA, USA). Illumina sequencing libraries were 
prepared as previously described (Masuda et al. 2022). Briefly, mRNA was iso-
lated using the DynabeadsTM mRNA purification kit (Ambion, Foster City, CA, 
USA), and mRNA libraries were constructed using the KAPA RNA HyperPrep 
kit (Roche, Basel, Switzerland) following the provided procedure. The libraries 
were sequenced with Illumina Hiseq 4000 (50-bp single-end reads) and analyzed 
at the Vincent J. Coates Genomics Sequencing Laboratory at UC Berkeley. For 
preprocessing and demultiplexing of sequencing data, raw sequencing reads 
were processed using Python scripts (https://github.com/Comai-Lab/allprep/
blob/master/allprep-13.py). The mRNA-seq reads were aligned to the reference 
coding sequences (CDS) of Diospyros kaki cv. Taishu whole-genome sequences 
(Horiuchi et al. 2022) using the Burrows-Wheeler Aligner (version 0.7.15) (Li and 
Durbin 2009) (http://bio-bwa.sourceforge.net/) and counted per CDS using an 
R script to calculate the RPKM for each gene, according to Akagi et al. (2014). 
To understand the reactions related to the predicted rapid-softening fruit, DEGs 
were detected between the featured areas of the predicted rapid-softening and 
control fruits in criteria (i) (or RS-F vs C-F), with DESeq2 (Love et al. 2014). To 
understand the physiological pathways related to the premonitory symptoms 
of the predicted disordered fruits, DEGs were detected between the featured 
and non-featured areas in the predicted rapid over-softening fruits in criteria 
(ii) (or RS-F vs RS-NF), by using edgeR (Robinson et al. 2010, McCarthy et al. 
2012), with a paired-test option. Since RS-F and RS-NF have been sampled 
in each fruit, we adopted edgeR with a paired-test option to detect statis-
tical significance for the comparison of paired samples. Putative functions 

of each gene were annotated with a BLASTX search of the TAIR10 database
(https://www.arabidopsis.org/index.jsp). GO enrichment analysis was per-
formed on the DEGs with shinyGO (http://bioinformatics.sdstate.edu/go/). The 
threshold for the significance of enriched GO terms was set at P < 0.05.

Supplementary Data

Supplementary data are available at PCP online.
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