1	Weight loss enhances meniscal healing following transtibial pullout repair for medial meniscus
2	posterior root tears
3	
4	Abstract
5	Purpose: This study investigated the impact of weight change on the success of transtibial pullout
6	repair for medial meniscus (MM) posterior root tears (MMPRTs).
7	Methods: The study included 129 patients diagnosed with MMPRTs who had undergone transtibial
8	pullout repair. The patients were screened between July 2018 and November 2021. Patient-reported
9	outcomes were assessed preoperatively and at 12 months postoperatively using the Knee injury and
10	Osteoarthritis Outcome Score (KOOS). MM extrusion (MME) and Δ MME (postoperative MME–
11	preoperative MME) were calculated preoperatively and at 12 months postoperatively using magnetic
12	resonance imaging.
13	Results: Patients were divided into weight loss (body mass index [BMI] decrease of at least 0.5 kg/m ²
14	after primary repair; n=63) and weight gain (BMI increase of at least 0.5 kg/m ² ; n=66) groups. Both
15	groups had similar demographic variables and preoperative clinical scores; patient-reported outcomes
16	significantly improved postoperatively. The weight loss group had significantly greater improvement
17	in KOOS-quality of life (weight loss, 29.4 \pm 23.7; weight gain, 23.9 \pm 27.6; p=0.034), lower
18	postoperative MME (weight loss, 3.9 ± 1.7 ; weight gain, 4.2 ± 1.2 ; p=0.043), and lower Δ MME

19 (weight loss, 0.8 ± 0.8 ; weight gain, 1.2 ± 0.9 ; p=0.002) than the weight gain group. Total arthroscopic

20	healing scores (weight loss, 7.6 ± 1.0 ; weight gain, 7.2 ± 1.5 ; p=0.048) and associated subscales,
21	including anteroposterior bridging tissue width (weight loss, 4.0 ± 0.0 ; weight gain, 3.8 ± 0.7 ; p=0.004)
22	and MM posterior root stability (weight loss, 2.6 ± 0.7 ; weight gain, 2.4 ± 0.7 ; p=0.041), significantly
23	differed between the groups.
24	Conclusions: Weight loss was associated with better meniscal healing and less MME progression after
25	MMPRT repair, highlighting the significance of weight management in individuals undergoing
26	meniscal surgery. These findings provide valuable insights into the clinical significance of weight loss
27	in the success of transtibial pullout repair for MMPRTs.
28	Level of Evidence: Level III
29	
30	Keywords: weight change; transtibial pullout repair; medial meniscus posterior root tears; clinical

31 outcomes

32 Introduction

33	The posterior root of the medial meniscus (MM) is crucial for the connection of the meniscus
34	to the tibial plateau and plays a vital role in distributing axial loads associated with hoop stress during
35	loading [2]. Partial or complete MM posterior root (MMPR) detachment from its attachment site on
36	the tibia is known as an MMPR tear (MMPRT); these tears result in loss of hoop tension and functional
37	load distribution [16]. Such an injury can be caused by trauma or degeneration, particularly in middle-
38	aged patients during activities of daily living such as walking or descending stairs, and can lead to
39	abnormal knee kinematics, increased contact pressure, and cartilage damage [10]. Transtibial pullout
40	repair is the most common method for re-establishing adequate root fixation, as it can restore normal
41	knee function and reduce the risk of degenerative changes in the knee joint [13, 17].
42	Despite significant improvement in clinical outcome scores following MMPRT repair, there
42 43	Despite significant improvement in clinical outcome scores following MMPRT repair, there is scope for further progress. A previous study revealed that 49% of patients with MMPRT who
43	is scope for further progress. A previous study revealed that 49% of patients with MMPRT who
43 44	is scope for further progress. A previous study revealed that 49% of patients with MMPRT who underwent pullout repair experienced K–L grade progression (≥ 1 grade) after approximately 4 years
43 44 45	is scope for further progress. A previous study revealed that 49% of patients with MMPRT who underwent pullout repair experienced K–L grade progression (\geq 1 grade) after approximately 4 years of follow-up [4]. Furthermore, according to a systemic review, 5% of these patients required
43444546	is scope for further progress. A previous study revealed that 49% of patients with MMPRT who underwent pullout repair experienced K–L grade progression (\geq 1 grade) after approximately 4 years of follow-up [4]. Furthermore, according to a systemic review, 5% of these patients required conversion to total knee arthroplasty during an average follow-up period of 6.3 years [6]. Several
 43 44 45 46 47 	is scope for further progress. A previous study revealed that 49% of patients with MMPRT who underwent pullout repair experienced K–L grade progression (\geq 1 grade) after approximately 4 years of follow-up [4]. Furthermore, according to a systemic review, 5% of these patients required conversion to total knee arthroplasty during an average follow-up period of 6.3 years [6]. Several factors have been identified as potential predictors of poor postoperative clinical outcomes following

51	mass index (BMI) on postoperative outcomes following knee surgery [3, 30]. Overweight and obese
52	patients may have an increased risk of complications following knee surgery; elevated BMI levels are
53	also associated with worse clinical outcomes and increased rates of repeat surgery. Therefore, weight
54	loss may be considered a potential modifiable risk factor for improving surgical outcomes following
55	MMPRT repair. Addressing modifiable factors, such as body weight loss through weight management
56	interventions, could contribute to optimizing postoperative results and enhancing the overall efficacy
57	of MMPRT treatment.
58	Despite the growing interest in the role of weight loss in improving outcomes following knee
59	surgery, data describing the impact of weight loss specifically on outcomes of transtibial pullout repair
60	for the MMPR remain limited. To address this gap in the literature, this study aimed to investigate the
61	impact of weight loss on the clinical outcomes following transtibial pullout repair for MMPRTs. This
62	research is important to advance our understanding of patient outcomes, focusing not only on patient
63	demographics and surgical techniques but also on the significance of patient-initiated modifiable
64	factors-specifically weight management. We hypothesised that there are significant differences in
65	meniscal healing status, medial meniscus extrusion (MME) progression, and postoperative clinical
66	values between patients with weight loss and those with weight gain.
67	

68 Materials and Methods

69	This retrospective study was conducted in accordance with institutional guidelines and was
70	approved by the institutional review board of our hospital (ID number: XXXX). All patients provided
71	written informed consent. In total, 277 patients with MMPRTs-determined based on magnetic
72	resonance imaging (MRI) findings-were screened between July 2018 and November 2021.
73	Indications for transtibial pullout repair of the MMPRT were as follows: continuous knee pain,
74	femorotibial angle \leq 180°, and Kellgren–Lawrence grade 0–2 in the absence of subchondral
75	insufficiency fracture and severe cartilage degeneration. The following patients were excluded:
76	patients who did not meet the surgical indications for arthroscopic pullout repair of MMPRTs (n=31),
77	patients with BMI changes of $<0.5 \text{ kg/m}^2$ (n=71), patients with a history of knee surgery (n=3), and
78	patients with unavailable postoperative clinical and MRI data (n=43). Finally, 129 patients with
79	MMPRT with posteromedial painful popping sensation, isolated MM posterior root repair, and second-
80	look arthroscopy were included in the analysis. The patients were then retrospectively divided into
81	weight loss and weight gain groups, and the postoperative clinical outcomes were compared between
82	the two groups. The weight loss group was defined as that including patients with a decrease in BMI
83	of at least 0.5 kg/m ² 12 months after primary repair, while the weight gain group was defined as that
84	including patients with an increase in BMI of at least 0.5 kg/m ² 12 months after primary repair [25].
85	All patients underwent an arthroscopic second-look evaluation of meniscal healing 1 year
86	postoperatively.

89	A single surgeon performed each transtibial pullout repair procedure for MMPRTs and
90	subsequent second-look arthroscopic evaluations to determine the meniscal healing status; MMPRT
91	types were classified in detail. Different suture configurations were employed for transtibial pullout
92	repairs performed during different time periods. Specifically, between July 2018 and July 2019, a
93	pullout technique involving two simple stitches using no. 2 polyethylene sutures was used in 37
94	patients. Between August 2019 and May 2020, a technique involving two simple stitches combined
95	with an additional posteromedial pullout repair using an all-inside meniscal repair device was used in
96	47 patients. Between June 2020 and November 2021, a pullout technique using two cinch stitches with
97	no. 2 polyethylene sutures was used in 46 patients. Tibial fixation of pullout sutures was then
98	performed using an interference screw with an initial tension of 10–30 N at 20°–30° of knee flexion.
99	Aiming devices were used to create a tibial tunnel at the location of the root attachment for all tear
100	types. The patients were initially kept non-weightbearing with a knee immobiliser for 2 weeks after
101	surgery. Between 2 and 4 weeks postoperatively, knee flexion was gradually increased to 30°, 60°, and
102	90° under partial weight-bearing conditions (1/3, 1/2, and 2/3 of the patient's body weight). After 5 or
103	6 weeks, the patients were allowed full weight-bearing and 120° of knee flexion.

104 Patient-reported outcomes

All patients underwent clinical evaluation at the time of initial surgery and during secondlook arthroscopy (mean time from initial arthroscopy, 12 months; range, 11 to 14 months for both

107	groups). Patient-reported outcomes were obtained through pre- and postoperative clinical scores using
108	the Japan Knee Injury and Osteoarthritis Outcome Score (KOOS), International Knee Documentation
109	Committee (IKDC) subjective knee evaluation form, and visual analogue scale (VAS) for pain
110	assessment. Pain intensity was rated on a 100-mm VAS, ranging from 0 (no pain) to 100 (worst pain).
111	The postoperative change in each clinical score was calculated by subtracting the preoperative score
112	from the postoperative score. The postoperative change in VAS scores was represented as a positive
113	value when pain decreased and as a negative value when pain increased.
114	
115	Arthroscopic meniscal healing status and scores
116	On second-look arthroscopy, the arthroscopic healing status of MMPRs was assessed using a
117	scoring system previously reported in the literature [9]. This system comprised three evaluation criteria,
118	including the anteroposterior width of the bridging tissue between the MM posterior horn and root
119	attachment (scored as 0, 2, or 4 points), repaired MMPR stability (scored as 0-4 points), and synovial
120	coverage of the sutured area (scored as 0–2 points). Total scores ranged from 0 to 10 points, with higher
121	scores indicating better outcomes with respect to the evaluated criteria. Additionally, the absolute value
122	of the anteroposterior width of the bridging tissue was measured in millimetres.
123	

124 Radiographic measurement

125	An MRI evaluation was performed using the Achieva 1.5T system (Philips, Amsterdam, the
126	Netherlands) with a knee coil. MRI-based measurements of MME were performed by determining the
127	distance from the medial margin of the tibial plateau to the MM outer border, crossing the midpoint in
128	its anteroposterior length. MME were calculated preoperatively and 12 months postoperatively using
129	MRI. In cases where an osteophyte was present in the medial tibial plateau, the tibial margin was not
130	determined. MME progression was defined as delta-MME (Δ MME) and calculated as the difference
131	between the pre-and postoperative MME values. All measurements were rounded to one decimal place.
132	
133	Statistical analysis
134	Statistical analyses were conducted using SPSS version 29.0 (IBM Corp., Armonk, NY, USA).
135	For between-group comparisons of clinical scores, arthroscopic healing, and MME, a one-way analysis
136	of variance (ANOVA) with Tukey's post hoc test was employed. Furthermore, Fisher's exact test was
137	used to assess differences in the sex ratio. Values of p <0.05 were considered statistically significant.
138	The interrater reliability of the measurements was evaluated by two examiners who retrospectively
139	assessed MME in a blinded manner. Additionally, to assess test-retest reliability, MME was re-
140	measured after 2 weeks. Each observer measured MME twice, with a minimum interval of 2 weeks
141	between measurements. Moreover, measurement reliability was assessed by calculating intraclass
142	correlation coefficients (ICCs); a value of >0.80 indicated that the measurement was reliable. In this
143	study, the statistical power of one-way ANOVA was calculated using the mean value, overall standard

144	deviation, and sample size ratio of each group. Sample size calculations were performed to determine
145	the minimum number of patients required to achieve 80% statistical power, with an alpha value of 0.05
146	for detecting postoperative Δ MME differences using a one-way ANOVA. Based on the sample size
147	calculations, a minimum of 114 patients were required to achieve 80% statistical power with an alpha
148	value of 0.05 for detecting postoperative Δ MME differences using one-way ANOVA; post hoc power
149	analysis showed that the achieved power was 0.84, with an alpha value of 0.05 for Δ MME (effect size:
150	0.47). Interrater and test-retest reliability of MME measurements was satisfactory, with mean ICC
151	values of 0.84 and 0.85, respectively.
152	
153	Results
154	All demographic variables of the weight loss and weight gain groups were similar at baseline
155	(Table 1). Furthermore, no significant between-group differences in pre- or postoperative clinical
156	scores were observed (Figures 1, 2). However, all clinical scores improved significantly
157	postoperatively in both groups. The present study revealed a significant difference between the two
158	groups (p=0.034). This suggests that weight loss (29.4 \pm 23.7) had a more pronounced influence on
159	postoperative changes in the KOOS-QOL scores compared to that of weight gain (23.9 \pm 27.6). No

160 significant differences between the groups were observed in postoperative changes in other clinical

161 scores (Figure 3).

162	A significant between-group difference was observed in the total arthroscopic healing score
163	(weight loss, 7.6 \pm 1.0; weight gain, 7.2 \pm 1.5; p=0.048) and related subscales, including the
164	anteroposterior width of bridging tissues (point) (weight loss, 4.0 ± 0.0 ; weight gain, 3.8 ± 0.7 ;
165	p=0.004) and MMPR stability (weight loss, 2.6 ± 0.7 ; weight gain, 2.4 ± 0.7 ; p=0.041) (Table 2).
166	Additionally, there was a significant between-group difference in postoperative MME (weight loss,
167	3.9 ± 1.7 ; weight gain, 4.2 ± 1.2 ; p=0.043) and Δ MME (weight loss, 0.8 ± 0.8 ; weight gain, 1.2 ± 0.9 ;
168	p=0.002), while there were no differences in preoperative MME values between the groups (Table 3).
169	
170	Discussion
171	The most important findings of the present study were that patients with weight loss during
172	the postoperative period after arthroscopic MMPRT repair exhibited better meniscal healing and better
173	prevention of MME progression than those with weight gain; therefore, our hypothesis was partially
174	validated. This underscores the crucial role of weight management in patients undergoing meniscal
175	repair and highlights the potential benefits of incorporating weight management interventions into
176	postoperative care.
177	BMI has been recognised as a critical factor in orthopaedic surgery, including meniscal
178	surgery. In this study, a sub-analysis using Spearman's rank correlation was performed to assess the
179	correlation between preoperative BMI and clinical outcomes, including clinical scores, the
180	arthroscopic healing score, and postoperative MME. No significant correlation between BMI and post-

181 operative clinical outcomes was observed. This finding contradicts the results of previous studies and 182 may be explained by the short-term follow-up and small sample size of the present study. Several 183 studies have explored the impact of BMI on meniscal surgery outcomes, revealing significant 184 differences in the BMI levels of patients with and without unfavourable clinical outcomes after 185 undergoing pullout repair of MMPRTs [30]. For example, Brophy et al. observed that an elevated BMI 186 is linked to worsened clinical outcomes and higher rates of subsequent surgery following MMPRT repairs [3]. Novaretti et al. also found a positive association between BMI elevation and the correction 187 188 of preoperative MME in patients who underwent meniscal surgery after a minimum follow-up period 189 of 5 years [21]. Furthermore, patients with elevated BMI experienced worsened preoperative knee pain 190 and functioning after MM partial meniscectomy [28]. Lizaur-Utrilla et al. reported an increased odds 191 ratio for the progression of osteoarthritis (OA) in obese patients, as measured by a change in the 192 Kellgren-Lawrence grade both pre- and postoperatively [18]. Obese patients are also known to be at 193 a significantly increased risk of experiencing unspecified complications in the early postoperative 194 period [7] and high failure rates, including progression to knee arthroplasty or worsened IKDC scores 195 after meniscectomy [15]. These findings indicate that high BMI values may be a risk factor for adverse 196 outcomes, including worsened clinical scores, meniscal extrusion, OA progression, and increased 197 failure rates following meniscal surgery.

The impact of BMI on meniscal surgery outcomes is well-established; however, the effect of
changes in BMI following meniscal surgery remains unclear. However, several studies have examined

200	the relationship between changes in body weight-BMI in particular-and meniscal repair outcomes.
201	In a meta-analysis, Ahmad et al. investigated intrasubstance meniscal changes and showed that weight
202	gain is associated with an increased risk of knee OA, which underscores the need for early detection
203	and management [1]. Accordingly, weight loss in overweight or obese individuals may slow down the
204	progression of cartilage degeneration [11] and reduce the risk of meniscal intrasubstance degeneration
205	progression [12] in the knee joint. Munugoda et al. analysed data from the Intensive Diet and Exercise
206	for Arthritis trial and found that weight loss reduced the progression of meniscal extrusion in patients
207	with knee OA [20]. Additionally, Teichtahl et al. found that weight loss was associated with reduced
208	knee pain and cartilage loss in community-based adults with or without meniscal tears [26]. These
209	findings indicate that changes in body weight may significantly impact meniscal repair outcomes,
210	which supports the findings of the current study.
210 211	which supports the findings of the current study. This study is the first to describe the clinical impact of weight change following MMPRT
211	This study is the first to describe the clinical impact of weight change following MMPRT
211 212	This study is the first to describe the clinical impact of weight change following MMPRT repair and emphasises the importance of weight management in patients undergoing meniscal repair.
211 212 213	This study is the first to describe the clinical impact of weight change following MMPRT repair and emphasises the importance of weight management in patients undergoing meniscal repair. The specific mechanisms by which weight changes impact meniscal or articular cartilage conditions
211212213214	This study is the first to describe the clinical impact of weight change following MMPRT repair and emphasises the importance of weight management in patients undergoing meniscal repair. The specific mechanisms by which weight changes impact meniscal or articular cartilage conditions and symptoms in the knee joint are not yet fully understood. However, it is postulated that
 211 212 213 214 215 	This study is the first to describe the clinical impact of weight change following MMPRT repair and emphasises the importance of weight management in patients undergoing meniscal repair. The specific mechanisms by which weight changes impact meniscal or articular cartilage conditions and symptoms in the knee joint are not yet fully understood. However, it is postulated that biomechanical factors play a significant role in this process. One potential explanation for this is that

219	can significantly reduce knee joint stress [19]. Another potential mechanism for the observed findings
220	is BMI reduction, as it may have anti-inflammatory effects that protect the menisci because weight
221	loss decreases the production of inflammatory cytokines such as interleukin (IL)-6 and tumour necrosis
222	factor α and increases the production of anti-inflammatory cytokines such as IL-10 in subcutaneous
223	adipose tissue [23]. Furthermore, a study by Richette et al. demonstrated that significant weight loss
224	in obese patients with knee OA led to improvements in systemic inflammation and cartilage turnover,
225	potentially reducing clinical symptoms and improving meniscal integrity [24]. Overall, current
226	evidence suggests that BMI reduction may have multiple benefits for meniscal health through both
227	mechanical and biological pathways. However, further research is needed to identify the specific
228	mechanisms underlying these effects and determine optimal BMI reduction strategies for preserving
229	meniscal health. In this study, patients with weight loss during the postoperative period after
230	arthroscopic MMPRT repair exhibited better meniscal healing and better prevention of MME
231	progression than those with weight gain, which is consistent with previous reports. This study did not
232	conduct a detailed evaluation of the progression of the cartilage condition. However, weight loss after
233	MMPRT repair will have the potential to prevent OA progression, according to evidence suggesting
234	that MME is a risk factor for the initiation and progression of OA and that prevention of MME
235	progression and better meniscus healing are associated with prevention of OA progression [22, 29].
236	Limitations

237	This study has several limitations. First, the follow-up period after MMPRT pullout repair
238	was relatively short, which may have limited our ability to fully evaluate clinical outcomes. Second,
239	the study had inherent limitations because of its retrospective design. Third, the mean age of patients
240	in this study was higher than that in other reports, which may have introduced selection bias. Fourth,
241	different suture configurations were used during transtibial pullout repairs, which could have
242	introduced bias. However, no significant difference in postoperative outcomes was observed in this
243	study, consistent with previous reports [8]. Fifth, patients with no BMI change postoperatively were
244	excluded from this study. The exclusion of these patients is a limitation, constraining a holistic
245	understanding of its potential impact on observed distinctions. Finally, the study did not consider the
246	potential impact of the tibial tunnel aperture, which may have influenced the clinical results.

248 Conclusions

In summary, this study showed that patients who underwent weight loss had better meniscal healing and less MME progression after MMPRT repair, which underscores the significance of weight management in individuals who undergo meniscal surgery. These findings provide valuable insights regarding the clinical significance of weight loss in the success of transtibial pullout repair for MMPRTs.

References

255	1.	Ahmad R (2021) Intra-substance meniscal changes and their clinical significance: A meta-
256		analysis. Sci Rep 11:3642.
257	2.	Bernard CD, Kennedy NI, Tagliero AJ, Camp CL, Saris DBF, Levy BA, Stuart MJ, Krych AJ
258		(2020) Medial meniscus posterior root tear treatment: A matched cohort comparison of
259		nonoperative management, partial meniscectomy, and repair. Am J Sports Med 48:128-132.
260	3.	Brophy RH, Wojahn RD, Lillegraven O, Lamplot JD (2019) Outcomes of arthroscopic posterior
261		medial meniscus root repair: Association with body mass index. J Am Acad Orthop Surg 27:104-
262		111.
263	4.	Chung KS, Ha JK, Ra HJ, Kim JG (2016) A meta-analysis of clinical and radiographic outcomes
264		of posterior horn medial meniscus root repairs. Knee Surg Sports Traumatol Arthrosc 24:1455-
265		1468.
266	5.	Chung KS, Ha JK, Ra HJ, Kim JG (2016) Prognostic factors in the midterm results of pullout
267		fixation for posterior root tears of the medial meniscus. Arthroscopy 32:1319-1327.
268	6.	Chung KS, Noh JM, Ha JK, Ra HJ, Park SB, Kim HK, Kim JG (2018) Survivorship analysis
269		and clinical outcomes of transtibial pullout repair for medial meniscus posterior root tears: A 5-
270		to 10-year follow-up study. Arthroscopy 34:530-535.

271	7.	Erdil M, Bilsel K, Sungur M, Dikmen G, Tuncer N, Polat G, Elmadag NM, Tuncay I, Asik M
272		(2013) Does obesity negatively affect the functional results of arthroscopic partial
273		meniscectomy? A retrospective cohort study. Arthroscopy 29:232-237.
274	8.	Furumatsu T, Hiranaka T, Okazaki Y, Kintaka K, Kodama Y, Kamatsuki Y, Ozaki T (2022)
275		Medial meniscus posterior root repairs: A comparison among three surgical techniques in short-
276		term clinical outcomes and arthroscopic meniscal healing scores. J Orthop Sci 27:181-189.
277	9.	Furumatsu T, Miyazawa S, Fujii M, Tanaka T, Kodama Y, Ozaki T (2019) Arthroscopic scoring
278		system of meniscal healing following medial meniscus posterior root repair. Int Orthop 43:1239-
279		1245.
280	10.	Furumatsu T, Okazaki Y, Okazaki Y, Hino T, Kamatsuki Y, Masuda S et al (2019) Injury patterns
281		of medial meniscus posterior root tears. Orthop Traumatol Surg Res 105:107-111.
282	11.	Gersing AS, Schwaiger BJ, Nevitt MC, Joseph GB, Chanchek N, Guimaraes JB et al (2017) Is
283		weight loss associated with less progression of changes in knee articular cartilage among obese
284		and overweight patients as assessed with MR imaging over 48 months? Data from the
285		osteoarthritis initiative. Radiology 284:508-520.
286	12.	Guimaraes JB, Nevitt MC, McCulloch CE, Schwaiger BJ, Gersing AS, Facchetti L et al (2018)
287		Association of weight change with progression of meniscal intrasubstance degeneration over 48
288		months: Data from the Osteoarthritis Initiative. Eur Radiol 28:953-962.

289	13.	Hiranaka T, Furumatsu T, Yokoyama Y, Kintaka K, Higashihara N, Tamura M et al (2023) The
290		clinical and radiographic outcomes of type 2 medial meniscus posterior root tears following
291		transtibial pullout repair. Knee Surg Sports Traumatol Arthrosc 31:2323-2330.
292	14.	Kim YM, Joo YB, An BK, Song JH (2022) Age and meniscal extrusion are determining factors
293		of osteoarthritis progression after conservative treatments for medial meniscus posterior root tear.
294		J Pers Med 12:2004.
295	15.	Krych AJ, Johnson NR, Mohan R, Dahm DL, Levy BA, Stuart MJ (2018) Partial meniscectomy
296		provides no benefit for symptomatic degenerative medial meniscus posterior root tears. Knee
297		Surg Sports Traumatol Arthrosc 26:1117-1122.
298	16.	Krych AJ, LaPrade MD, Hevesi M, Rhodes NG, Johnson AC, Camp CL, Stuart MJ (2020)
299		Investigating the chronology of meniscus root tears: Do medial meniscus posterior root tears
300		cause extrusion or the other way around? Orthop J Sports Med 8:2325967120961368.
301	17.	Krych AJ, Song BM, Nauert RF, 3rd, Cook CS, Levy BA, Camp CL, Stuart MJ, Smith PA (2022)
302		Prospective consecutive clinical outcomes after transtibial root repair for posterior meniscal root
303		tears: A multicenter study. Orthop J Sports Med 10:23259671221079794.
304	18.	Lizaur-Utrilla A, Miralles-Muñoz FA, Gonzalez-Parreño S, Lopez-Prats FA (2019) Outcomes
305		and patient satisfaction with arthroscopic partial meniscectomy for degenerative and traumatic
306		tears in middle-aged patients with no or mild osteoarthritis. Am J Sports Med 47:2412-2419.

1/

307	19.	Messier SP, Gutekunst DJ, Davis C, DeVita P (2005) Weight loss reduces knee-joint loads in
308		overweight and obese older adults with knee osteoarthritis. Arthritis Rheum 52:2026-2032.
309	20.	Munugoda IP, Beavers DP, Wirth W, Aitken DA, Loeser RF, Miller GD et al (2020) The effect
310		of weight loss on the progression of meniscal extrusion and size in knee osteoarthritis: A post-
311		hoc analysis of the Intensive Diet and Exercise for Arthritis (IDEA) trial. Osteoarthr Cartil
312		28:410-417.
313	21.	Novaretti JV, Astur DC, Cavalcante ELB, Kaleka CC, Amaro JT, Cohen M (2022) Preoperative
314		meniscal extrusion predicts unsatisfactory clinical outcomes and progression of osteoarthritis
315		after isolated partial medial meniscectomy: A 5-year follow-up study. J Knee Surg 35:393-400.
316	22.	Ozeki N, Koga H, Sekiya I (2022) Degenerative meniscus in knee osteoarthritis: From pathology
317		to treatment. Life (Basel) 12:603.
318	23.	Reed JL, De Souza MJ, Williams NI (2010) Effects of exercise combined with caloric restriction
319		on inflammatory cytokines. Appl Physiol Nutr Metab 35:573-582.
320	24.	Richette P, Poitou C, Garnero P, Vicaut E, Bouillot JL, Lacorte JM et al (2011) Benefits of
321		massive weight loss on symptoms, systemic inflammation and cartilage turnover in obese
322		patients with knee osteoarthritis. Ann Rheum Dis 70:139-144.
323	25.	Shang L, Hattori M, Fleming G, Jaskowiak N, Hedeker D, Olopade OI, Huo D (2021) Impact of
324		post-diagnosis weight change on survival outcomes in Black and White breast cancer patients.
325		Breast Cancer Res 23:18.

326	26.	Teichtahl AJ, Wluka AE, Tanamas SK, Wang Y, Strauss BJ, Proietto J et al (2015) Weight change
327		and change in tibial cartilage volume and symptoms in obese adults. Ann Rheum Dis 74:1024-
328		1029.
329	27.	Vincent HK, Heywood K, Connelly J, Hurley RW (2012) Obesity and weight loss in the
330		treatment and prevention of osteoarthritis. PM R 4 Supplement:S59-67.
331	28.	Zhang T, Jauregui JJ, Foster M, Packer JD, Meredith SJ, Leong NL, Henn RF, 3rd (2021)
332		Outcomes of partial meniscectomy in obese patients: A systematic review and meta-analysis.
333		Cartilage 13:216S-227S.
334	29.	Zhang X, Furumatsu T, Hiranaka T, Okazaki Y, Xue H, Kintaka K, Miyazawa S, Ozaki T (2023)
335		The stability of repaired meniscal root can affect postoperative cartilage status following medial
336		meniscus posterior root repair. J Orthop Sci 28:1060-1067.
337	30.	Zhang X, Furumatsu T, Okazaki Y, Hiranaka T, Kodama Y, Xue H, Okazaki Y, Ozaki T (2021)
338		High body mass index is a risk factor for unfavorable clinical outcomes after medial meniscus
339		posterior root repair in well-aligned knees. J Orthop Sci 26:430-434.
340		

342 Figure legends

344	Figure 1. Clinical scores of weight loss at preoperative and postoperative evaluation. The light blue
345	and dark blue bars denote the preoperative and postoperative scores, respectively. ADL, activities of
346	daily living; Sport/Rec, sport and recreation function; QOL, knee-related quality of life; IKDC,
347	International Knee Documentation Committee; VAS, visual analogue scale. ** p < 0.01.
348	
349	Figure 2. Clinical scores of weight gain at preoperative and postoperative evaluation. The light orange
350	and dark orange bars denote the preoperative and postoperative scores, respectively. ADL, activities
351	of daily living; Sport/Rec, sport and recreation function; QOL, knee-related quality of life; IKDC,
352	International Knee Documentation Committee; VAS, visual analogue scale. ** p < 0.01 .
353	
354	Figure 3. Difference in postoperative changes in clinical scores. The blue bars denote the weight loss
355	group, and orange bars denote the weight gain group. ADL, activities of daily living; Sport/Rec, sport
356	and recreation function; QOL, knee-related quality of life; IKDC, International Knee Documentation
357	Committee; VAS, visual analogue scale. * $p < 0.05$.

	Weight loss	Weight gain	p-value
Cases (number)	63	66	
Sex (male/female)	8/55	7/59	0.788
Age (years)	64.9 ± 8.4	66.0 ± 9.2	0.250
Height (m)	1.56 ± 0.1	1.55 ± 0.1	0.944
Weight at primary repair (kg)	63.8 ± 12.1	60.3 ± 12.9	0.065
Weight at 2nd-look arthroscopy (kg)	61.4 ± 11.8	62.7 ± 13.1	0.938
Weight change (kg)	-2.4 ± 1.8	2.4 ± 1.4	< 0.001*
BMI at primary repair (kg/m ²)	26.2 ± 4.3	24.9 ± 3.9	0.429
BMI at second-look arthroscopy (kg/m ²)	25.1 ± 4.1	25.9 ± 3.9	0.332
BMI change (kg/m ²)	-1.1 ± 0.7	1.1 ± 0.5	< 0.001*
Duration from injury to operation (days)	62.5 ± 55.7	68.0 ± 59.9	0.328

360 Values are presented as mean \pm standard deviation or numbers.

361 BMI body mass index, n.s. not significant

362 *p<0.05

363 **Table 2.** Comparison of meniscal healing status at second-look arthroscopy in the weight loss and gain

364	groups
364	groups

Meniscal healing status	Weight loss	Weight gain	p-value
Arthroscopic healing score (points)	7.6 ± 1.0	7.2 ± 1.5	0.048 [*]
• Anteroposterior width of bridging tissues (points)	4.0 ± 0.0	3.8 ± 0.7	0.004*
 Stability of the medial meniscus posterior root (points) 	2.6 ± 0.7	2.4 ± 0.7	0.041*
• Synovial coverage of the sutures (points)	1.0 ± 0.5	0.9 ± 0.6	0.402
Anteroposterior width of bridging tissues (mm)	7.3 ± 1.7	6.8 ± 2.1	0.221

365 Values are presented as mean \pm standard deviation. Arthroscopic healing score, 0–10 points;

366 anteroposterior width of bridging tissues, 0/2/4 points; stability of the medial meniscus posterior root,

 $367 \quad 0/1/2/3/4$ points; synovial coverage of the sutures, 0/1/2 points

368 n.s.: not significant

369 *p < 0.05

MME measurement type	Weight loss	Weight gain	p-value
Preoperative MME	3.1 ± 1.1	3.0 ± 1.2	0.208
Postoperative MME	3.9 ± 1.7	4.2 ± 1.2	0.043*
ΔΜΜΕ	0.8 ± 0.8	1.2 ± 0.9	0.002*

Table 3. Comparison of the MME measurements in the weight loss and gain groups

372 Values are presented as mean \pm standard deviation.

373 MME, Medial meniscus extrusion; n.s., not significant