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Abstract. Increased heart dose during postoperative radio‑
therapy (RT) for left‑sided breast cancer (BC) can cause 
cardiac injury, which can decrease patient survival. The deep 

inspiration breath‑hold technique (DIBH) is becoming increas‑
ingly common for reducing the mean heart dose (MHD) in 
patients with left‑sided BC. However, treatment planning and 
DIBH for RT are laborious, time‑consuming and costly for 
patients and RT staff. In addition, the proportion of patients 
with left BC with low MHD is considerably higher among 
Asian women, mainly due to their smaller breast volume 
compared with that in Western countries. The present study 
aimed to determine the optimal machine learning (ML) model 
for predicting the MHD after RT to pre‑select patients with 
low MHD who will not require DIBH prior to RT planning. 
In total, 562 patients with BC who received postoperative RT 
were randomly divided into the trainval (n=449) and external 
(n=113) test datasets for ML using Python (version 3.8). 
Imbalanced data were corrected using synthetic minority 
oversampling with Gaussian noise. Specifically, right‑left, 
tumor site, chest wall thickness, irradiation method, body 
mass index and separation were the six explanatory variables 
used for ML, with four supervised ML algorithms used. Using 
the optimal value of hyperparameter tuning with root mean 
squared error (RMSE) as an indicator for the internal test data, 
the model yielding the best F2 score evaluation was selected 
for final validation using the external test data. The predictive 
ability of MHD for true MHD after RT was the highest among 
all algorithms for the deep neural network, with a RMSE 
of 77.4, F2 score of 0.80 and area under the curve‑receiver 
operating characteristic of 0.88, for a cut‑off value of 300 cGy. 
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The present study suggested that ML can be used to pre‑select 
female Asian patients with low MHD who do not require 
DIBH for the postoperative RT of BC.

Introduction

Postoperative radiotherapy (RT) forms a significant compo‑
nent in the standard treatment regimen of breast cancer 
(BC). Postoperative RT for early‑stage BC can not only 
reduce postoperative recurrence, but it can also improve the 
survival rate (1,2). However, increased cardiac irradiation 
dose during postoperative RT in patients with left‑sided BC 
has been reported to cause cardiac injury, which is classified 
as a late adverse event and can lead to a decreased survival 
rate (3). Therefore, the deep inspiration breath‑hold tech‑
nique (DIBH) is becoming an increasingly preferred method 
for reducing the mean heart dose (MHD) in patients with 
left‑sided BC (4‑6). In DIBH, the patients are requested to 
hold their breath with deep inspiration during irradiation, 
so that the lungs between the anterior chest wall and heart 
are filled with air (7). This causes the heart to move away 
from the anterior chest wall, which then reduces the irradia‑
tion dose to the heart (4‑6). However, treatment planning for 
DIBH is time‑consuming, laborious and costly for both the 
patient and the radiation therapist in terms of treatment plan‑
ning and implementation (8). In particular, Asian countries 
tend to have fewer personnel and facilities for RT compared 
with the United States (9,10), limiting the application of 
DIBH. Furthermore, although MHD is greatly influenced by 
breast volume (11,12), patients of Asian ethnicities such as 
Japanese (12), Korean (13) and Chinese (14) tend to have less 
breast volume (12‑14) compared with patients in the United 
States and Europe (11,15,16). Therefore, the MHD also tends 
to be lower in patients of Asian ethnicities (12) compared with 
that in the United States and Europe, limiting the number of 
patients with left BC with high MHD who require DIBH. Only 
~26% of Asian patients with left‑sided BC receive high MHD 
(>300 cGy) after left‑sided BC RT, with an average MHD of 
304 cGy following calculation by the wedge method (W) and 
251 cGy by the field‑in‑field method (FIF) (12). Therefore, 
it is desirable to select Asian patients who may not require 
DIBH prior to RT planning for left‑sided BC. DIBH can be 
used more efficiently if MHD can be predicted in advance, 
where patients with MHD who do not require DIBH can be 
accurately selected.

Over the past decade, artificial intelligence (AI) and 
machine learning (ML) techniques are increasing being 
applied in the field of RT (17‑20). However, few studies have 
applied ML for predicting the MHD during RT using patient 
information (21‑23). Therefore, the purpose of the present study 
is to compare the various ML models for predicting MHD to 
select patients who may not require DIBH and to present the 
optimal model for predicting MHD.

Materials and methods

Patients and RT. The present study included 577 female (a 
mean age of 55 years and standard deviation of 11 years) 
patients with BC who received RT at Okayama University 
Hospital (Okayama, Japan) between April 2009 and March 

2016. Fifteen patients were excluded based on the exclu‑
sion criteria of some missing data. All patients underwent 
whole‑breast irradiation after partial breast resection, where 
167 patients underwent the wedge method and 395 patients 
underwent the FIF method. In FIF, two types of methods 
were used. The one‑reference point FIF method (FIF‑1RP) 
was used for 142 patients, where one reference point (RP) was 
set at the mid‑level between the upper and lower edges of the 
irradiation field or 2 cm apart from the deepest point and upper 
edge of the irradiation field. The other method was the FIF 
with two RP (FIF‑2RP) method (24), which was applied on 
253 patients. The FIF‑2RP method involves 2RPs set for each 
patient, specifically one RP for the main beam at a point 2 cm 
apart from the deepest point and upper edge of the irradiation 
field, the other RP for the FIF at the mid‑level between the 
upper and lower edges of the irradiation field (24). All patients 
were irradiated with 2 Gy per fraction, 25 fractions, for a total 
of 50 Gy. Some patients were irradiated with an additional 
10 Gy boost on the tumor bed. The heart dose during the 
50‑Gy whole‑breast irradiation (12) was the subject of the 
present study.

Data collection. As explanatory variables, data including 
right‑left, tumor site (upper‑inner quadrant, lower‑inner quad‑
rant, upper‑outer quadrant, lower‑outer quadrant and central 
portions) (25), chest wall thickness (CWT), irradiation method 
(W, FIF‑1RP and FIF‑2RP), body mass index (BMI), separation 
(SEP), age, height and weight were collected retrospectively, 
whilst as an objective variable, MHD (12) was collected retro‑
spectively. CWT and SEP were measured using a nipple‑level 
one‑slice simulated CT image for treatment planning (Fig. 1). 
SEP was defined as the distance along the posterior edge of 
the tangent fields at the nipple level. CWT was defined as the 
distance from the nipple surface to the lung, on a perpendicular 
line of breast separation. Data on the right and left sides, tumor 
site, irradiation method and BMI were collected from clinical 
records, whilst MHD was collected from the RT planning 
system. In the present study, MHD ≥300 cGy was defined as 
high MHD, whereas MHD <300 cGy would be defined as low 
MHD, following the QUANTEC cardiac guidelines (3). There 
were 76 patients (14%) of high MHD and 486 patients (86%) 
of low MHD.

Instruments used for ML. Python (version 3.8, Python 
Software Foundation) and the Python open source ML library; 
scikit‑learn (version 0.24.1, https://scikit‑learn.org/stable/index.
html), TensorFlow (version 1.15.3, https://www.tensorflow.
org/install?hl=ja) and extreme gradient boosting (XGB, 
version 1.4.2) (26), were used.

Data partitioning and model building. Fig. 2 shows the data 
preparation process. All data were split into datasets used for 
model building using Python by ML, hereafter defined as the 
‘trainval’ dataset and data used for evaluating the prediction 
model of final MHD, hereafter defined as the ‘external test’ 
dataset. The trainval dataset and the external test dataset were 
achieved by random splitting, to a ratio of 80:20 (27). A ratio 
of 80:20 is generally recommended in machine learning. 
In the pre‑study, when the trainval dataset was reduced to 
other ratios such as 70:30 and the external test dataset was 
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increased, the prediction performance deteriorated (data not 
shown) due to the occurrence of learning loss, so a ratio of 
80:20 was selected.

Correlation analysis of the explanatory and objective 
variables. For the analysis of correlation between the explana‑
tory and objective variables, the statistical software SPSS 
(v27.0, IBM Corp.) was used to calculate the Spearman's 
correlation coefficient (rs) for interval scaled variables and 
the Eta analysis correlation coefficient (η) for nominal scaled 
variables. Correlation coefficients of 1.0‑0.8, 0.8‑0.6, 0.6‑0.4, 
0.4‑0.2 and 0.2‑0.0 would be adjudged to be ‘very strong’, 
‘strong’, ‘normal’, ‘weak’ and ‘no’, respectively, for the corre‑
lation strength. Since right‑left, tumor site and irradiation 
method are categorical variables, they were converted to 0 or 1 
and used as dummy variables. The six explanatory variables 
used for ML were right‑left, tumor site, CWT, irradiation 
method, BMI and SEP.

Process of building models in ML.
ML algorithms. In total, four supervised ML algorithms were 
used: i) decision tree; ii) random forest (RF); iii) XGB; and 
iv) deep neural network (DNN).

Dealing with unbalanced data sets. Since the MHD data, the 
collected objective variable, are unbalanced data, the Python 
library synthetic minority oversampling with Gaussian noise 
(SMOGN) (28) was used to augment the number of patients 
of high MHD in the training dataset (Fig. 2). SMOGN is a 
common machine learning method for increasing the number 
of small number of high MHD cases (28).

Hyper‑parameter tuning. The trainval dataset was randomly 
divided into the ‘trainingval’ dataset and ‘internal test’ dataset 
at a ratio of 80:20. The training dataset was randomly divided 
into the training dataset and validation dataset using 5‑fold 
cross validation (5‑fold CV) at a ratio of 80:20 to avoid overfit‑
ting. The training dataset was used to increase the number of 
patients of high MHD using SMOGN, hereafter defined as the 
‘augmented’ training dataset. Using the augmented training 
dataset and validation dataset, hyperparameter tuning, which 
is a process of selecting the optimal parameters for each 
algorithm, was performed. GridSearchCV in scikit‑learn 
(version 0.24.1, https://scikit‑learn.org/stable/index.html) was 
used for all algorithms except for DNN. In DNN, hyperparam‑
eter tuning was performed manually. The root mean squared 
error (RMSE) was used as the evaluation metric for prediction. 
Hyperparameters with the best RMSE were determined for 
each algorithm.

Creating a model using the F2 score as the evaluation index. 
In the present study, a predictive model and RMSE as the 
evaluation metric were used. Since the aim of the present 
study was to select patients with low MHD to whom DIBH are 
not applicable, emphasis was placed on learning to minimize 
false negatives (FN), preventing the false reporting of high 
MHD as low MHD. Therefore, the F2 score obtained using 
the confusion matrix was used in conjunction with RMSE as 
the evaluation metric. The model was created to have the best 
F2 score using the optimal value of hyperparameter tuning 
with RMSE and the internal test data.

Final model validation using the external test data. The 
final model was validated using external test data from 
113 patients who were not used to train and build the 
model. In the final model validation, RMSE, MSE, MAE, rs, 
accuracy, precision, recall, specificity, AUC‑ROC, F1 score, 
and F2 score were evaluated for each algorithm using the 
confusion matrix.

Results

Correlations between explanatory and objective variables. 
Table I shows the rs‑ and η‑values between the explanatory 
variables and MHD as the objective variable. Among the 
explanatory variables, a strong correlation was found between 
right‑left and MHD (P<0.001). The correlation coefficients for 
the other variables were low, but a significant correlation was 
found between CWT and MHD (P=0.005).

Figure 1. SEP and CWT in the CT image at the nipple level. SEP was defined 
as the distance along the posterior edge of the tangent fields at the nipple 
level. CWT was defined as the distance from the nipple surface to the lung, on 
a perpendicular line of breast separation. SEP, breast separation; CWT, chest 
wall thickness.

Figure 2. Process of model building. White arrows, data preparation; gray 
arrows, machine learning data preparation; black arrows, machine learning 
process. Hyperparameters were adjusted using GridSearch for decision tree, 
random forest and extreme gradient boosting, whereas those for deep neural 
network were adjusted manually. RMSE, root mean squared error.
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Parameter optimization through hyperparameter tuning. 
Table II shows the optimal values of the hyperparam‑
eters for each algorithm. Each model with these optimal 
hyperparameters was then evaluated with an internal test 
dataset.

Evaluation of models in each algorithm using internal test 
data. Table III summarizes the optimal results out of 5‑fold 
CV for each algorithm using the internal test dataset, with 
F2 score as the evaluation metric. In addition to the F2 score, 
the results of other evaluation metrics, such as RMSE, were 
also indicated. The results of RMSE were the lowest for XGB 
at 67.4, followed by DNN at 69.5 and RF at 81.2. For the results 
of F2 scoring, DNN was the highest at 0.64, followed by RF at 
0.60 and decision tree at 0.48.

Final evaluation of the model of each algorithm using external 
test data. Table Ⅳ shows the results of the final evaluation of 
the model for each algorithm using the external test dataset. 
For RMSE, DNN had the lowest score of 77.5, followed by 
XGB with 85.6. For the F2 score, DNN had the highest score 
of 0.80, whilst RF had 0.64.

 Fig. 3A shows the correlation between the true and 
predicted MHDs in the external test dataset using the DNN, 
where a strong correlation was observed with a rs of 0.77. 
Fig. 3B shows the correlation between the true and predicted 
MHDs for the FIF‑2RP patients among the external test data 
using DNN, where a potent correlation was observed, with a 
rs of 0.83.

Fig. 4A shows the confusion matrix for the predicted 
MHD in the external test dataset using DNN, with 16 true 
positives and only 2 FN in the DNN, with a F2 score of 0.80. 
Fig. 4B shows the confusion matrix for predicted MHD in the 

FIF‑2RP patients of the external test dataset using the DNN. 
There were 10 true positives and only one FN, with a F2 score 
of 0.89.

Discussion

In the present study, four different ML algorithms were 
used based on the factors obtained from a single CT image 
slice and clinical factors to create models for predicting 
the MHD. Specific focus was placed on low MHD, which 
is not an indication for DIBH. The prediction performance 
of each model was then evaluated and compared. Among 
the algorithms tested, DNN was found to show the highest 
performance, with an F2 score of 0.80 and an area under 
the curve‑receiver operating characteristic score of 0.88. 
The present study revealed that DNN is the optimal model 
for predicting MHD to select patients who are less likely to 
require DIBH. Previously, FIF‑2RP was reported as a novel 
method of FIF that can significantly reduce the incidence of 
adverse skin events whilst slightly reducing MHD, compared 
with conventional FIF‑1RP (24). In DNN, which was the 
optimal predictor of MHD, the prediction accuracy for 
FIF‑2RP was higher compared with the analysis accuracy for 
all irradiation methods, where DNN appeared to be useful 
for selecting patients for whom DIBH was not applicable 
even for FIF‑2RP.

In the postoperative treatment of BC, RT contributes 
to the reduction of postoperative local recurrence and 
improves survival (1,2). However, RT for BC can also 
reduce the survival rate due to late cardiac adverse events in 
some patients with left BC (3). DIBH, which reduces MHD, 
is becoming used more frequently in clinical practice for 
reducing cardiac adverse events in left BC treatment (4‑6). 
DIBH involves asking the patient to hold their breath with 
deep inspiration during irradiation, causing the lung to 
expand with air and to enter between the heart and the chest 
wall (7). This dislodges the heart from the irradiation field, 
with the resultant reduction of heart dose (4‑6). However, 
DIBH imposes several burdens on both patients and the RT 
staff, such as the additional breath‑held CT imaging with 
deep inspiration and irradiation with respiratory synchro‑
nization, complex RT planning, extension treatment time 
and increasing costs (8). Furthermore, in Asian women, for 
FIF, the MHD of left BC is 257±90 cGy for FIF‑1RP and 
248±76 cGy for FIF‑2RP (24), such that only ~14% of the 
patients have high MHD requiring DIBH (24). Therefore, 
a simple and accurate MHD prediction method prior to RT 
planning is needed for selecting patients for DIBH in Asian 
women. The present study revealed the highly effective 
utility of DNN among the ML models tested.

In recent years, AI use is becoming increasingly common 
in radiological practice (17,18), including AI‑assisted imaging, 
RT planning and contouring, radiation exposure reduction 
and quality assurance. A number of studies have attempted 
the prediction of MHD in RT for BC (21‑23). Koide et al (21) 
used a convolutional neural network to predict the difference 
between MHD with and without DIBH and MHD without 
DIBH, using preoperative frontal and lateral chest radiographs 
of 103 patients with BC. The advantage of using chest radio‑
graphs is that they are simpler compared with CT. However, 

Table Ⅰ. Spearman's correlation coefficient (rs) and Eta correla‑
tion ratio (η) between explanatory variables and MHD.

Variables rs or η P‑value

Right and left 0.780a <0.001
Tumor site 0.126a 0.063
Chest wall thickness 0.118b 0.005
Irradiation method 0.103a 0.051
Age ‑0.039b 0.357
Body mass index 0.038b 0.370
Separation ‑0.027b 0.522
Weight 0.025b 0.560
Height ‑0.024b 0.572

Tumor site was defined according to the International Classification 
of Diseases for Oncology (third edition). Chest wall thickness (cm) 
was defined as the distance from the nipple surface to the lung, on 
a perpendicular line of breast separation. Irradiation methods are 
wedge or one‑reference point field‑in‑field, field‑in‑field with 2 
reference points. Body mass index is calculated as weight (kg)/height 
(m)2. Separation (cm) was defined as the distance along the posterior 
edge of the tangent fields at the nipple level. aEta correlation ratio (η); 
bSpearman's correlation coefficient (rs). MHD, mean heart dose (cGy).
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in this report, the correlation coefficient between true and 
predicted MHD without DIBH was 0.46 and the specificity 
was 0.77 (21), suggesting that results from the present study 
using the DNN‑based method were superior. Another 
report (22) of the use of ML for the RT of BC showed the dose 
distribution of volumetric modulated arc therapy was well 
predicted by deep learning, with resultant improvement of the 
radiation treatment process by reducing the time required for 
planning, while maintaining plan quality. For using ML, CT 

at DIBH was synthesized without imaging, where the effect of 
MHD reduction by DIBH was examined using MHD at DIBH 
calculated based on the synthesized CT (23).

A unique feature of the present study was the use of 
different ML models for prediction, which was able to predict 
the absolute value of MHD for each individual patient. In 
addition, the evaluation of the confusion matrix used in the 
classification model was incorporated into the model creation 
process during learning. To reduce the number of FNs that 

Table Ⅱ. Hyperparameters‑tuning results.

Machine learning algorithm Hyperparameter name Best value

Decision tree max_depth 15
 min_samples_leaf 3
 max_leaf_nodes 15
Random forest max_depth 5
 max_features auto
 min_samples_split 2
 n_estimators 100
Extreme gradient boosting colsample_bytree 0.700
 eta 0.05
 eval_metric RMSE
 max_depth 11
 min_child_weight 6
 subsample 0.500
Deep neural network Number of hidden layers 4
 Number of neurons in each hidden layer 256
 Activation function in the hidden layers ReLU
 Activation function in the output layer linear
 Loss function MSE
 Optimizer Adam

RMSE, root mean squared error; ReLU, rectified linear unit; MSE, mean squared error.

Table Ⅲ. Best evaluation results of each algorithm in 5 fold‑cross validation using internal test data.

 Decision Random Extreme gradient Deep neural
Metrics tree forest boosting network

RMSE 85.5 81.2 67.4 69.5
MSE 7311 6600 4545 4834
MAE 56.2 57.1 47.2 49.9
rs 0.722 0.770 0.749 0.804
Accuracy 0.75 0.72 0.79 0.76
Precision 0.35 0.34 0.30 0.40
Recall 0.53 0.73 0.20 0.75
Specificity 0.80 0.72 0.91 0.76
AUC‑ROC 0.67 0.73 0.55 0.75
F1 score 0.42 0.47 0.24 0.52
F2 score 0.48 0.60 0.21 0.64

RMSE, root mean squared error; MSE, mean squared error; MAE, mean absolute error; rs, Spearman's correlation coefficient; AUC‑ROC, area 
under receiver operating characteristic curve.
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incorrectly predicted patients with high MHD to be low MHD 
and to minimize the number of missed patients with high 
MHD for the selection of patients with low MHD who are not 

candidates for DIBH, the F2 score was used as the metric of 
the confusion matrix in the learning process.

Using the model created in the present study, the proposed 
RT flow for Asian women with left BC is shown in Fig. 5, 
where only a portion of patients have high MHD requiring 
DIBH. First, a simulated CT is taken during free breathing, 
before the MHD is predicted using the explanatory variables 
from a nipple‑level, one‑slice simulated CT image and the 
present model. If the patient is predicted to have low MHD, 
which is expected to be the case in >50% of all patients, then 
treatment planning should be done by free‑breathing CT. If 
the treatment planning result is low MHD, RT without DIBH 
would be administered according to the plan. If the treatment 
plan results in a rare FN with high MHD, then a simulated 
CT imaging for DIBH would be added and DIBH would be 
performed according to the DIBH treatment planning. For 
patients with high MHD, who are predicted to represent <50% 
of all patients, a simulated CT for DIBH would be taken and 
DIBH would be performed according to the DIBH treatment 

Figure 5. Radiotherapy flow using AI models in clinical practice. MHD 
≥300 cGy was defined as high MHD, whereas MHD <300 cGy would be 
defined as low MHD. AI, artificial intelligence; P, predictive; MHD, mean 
heart dose; FB, free‑breathing; DIBH, deep inspiration breath‑hold; TN, true 
negative; FN, false negative; FP, false positive; TP, true positive; A, actual.

Figure 3. Spearman's correlation analysis between true and predicted MHDs 
in the external test data. (A) DNN (all external test data). (B) DNN (external 
test data of field‑in‑field‑2 reference point). The dotted line indicates the 
regression line between true and predicted MHDs. MHD, mean heart dose; 
DNN, deep neural network.

Figure 4. Confusion matrix between true and predicted MHDs in the external 
test data. (A) DNN (all external test data). (B) DNN (external test data of 
field‑in‑field‑2 reference point). MHD ≥300 cGy was defined as high MHD, 
whereas MHD <300 cGy would be defined as low MHD. MHD, mean 
heart dose; DNN, deep neural network; FP, false positive; TP, true positive; 
TN, true negative; FN, false negative.

Table Ⅳ. The final evaluation results of each algorithm using external test data.

 Decision Random Extreme gradient Deep neural
Metrics tree forest boosting network

RMSE 97.6 88.8 85.6 77.5
MSE 9527 7878 7325 6000
MAE 57.9 58.6 50.8 48.7
rs 0.645 0.724 0.701 0.770
Accuracy 0.77 0.75 0.81 0.88
Precision 0.38 0.37 0.36 0.57
Recall 0.67 0.78 0.22 0.89
Specificity 0.79 0.75 0.93 0.87
AUC‑ROC 0.73 0.76 0.57 0.88
F1 score 0.48 0.50 0.28 0.70
F2 score 0.58 0.64 0.24 0.80

RMSE, root mean squared error; MSE, mean squared error; MAE, mean absolute error; rs, Spearman's correlation coefficient; AUC‑ROC, area 
under receiver operating characteristic curve.
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planning. This RT flow should assist in reducing the number 
of patients who will undergo both DIBH and free‑breathing 
treatment planning, increasing the cost and time effectiveness. 

The first limitation of the present study is the relatively 
small number of patients (562 patients). In existing reports on 
MHD prediction, even fewer patients were included compared 
with the present study, such as 103 (21) and 94 (23). In addi‑
tion, the data of the present study were unbalanced, with a high 
number of patients with low MHD. In response to this, data 
augmentation using SMOGN was performed, but it may be 
necessary to study with additional patients with high MHD to 
restore the balance.

To conclude, the present study enables the accurate predic‑
tion of MHD prior to RT planning by DNN using factors 
obtained from a single CT image slice and factors based on 
patient information. The present method is expected to be 
beneficial for selecting Asian patients with low MHD who do 
not require DIBH.
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