The FEBS Journal

1	Hepatitis C virus NS5B triggers an MDA5-mediated innate immune response by
2	producing dsRNA without the replication of viral genomes.
3	Hiromichi Dansako ^{1*} , Masanori Ikeda ² , Yasuo Ariumi ³ , Yosuke Togashi ¹ , Nobuyuki
4	Kato ¹
5	
6	¹ Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and
7	Pharmaceutical Sciences, Okayama University, Japan
8	² Division of Biological Information Technology, Joint Research Center for Human
9	Retrovirus Infection, Kagoshima University, Japan
10	³ Management Department of Biosafety, Laboratory Animal, and Pathogen Bank,
11	National Institute of Infectious Diseases, Japan
12	
13	* Corresponding author
14	E-mail: dansako@md.okayama-u.ac.jp (HD)
15	

16 **Running title**: NS5B activates MDA5 by producing non-viral dsRNA.

17	Abbreviations: dsRNA, double-stranded RNA; RdRp, RNA-dependent RNA
18	polymerase; IFN, interferon; IRF, IFN regulatory factor; RIG-I, retinoic acid-induced
19	gene-I; TLR3, Toll-like receptor 3; MDA5, melanoma differentiation-associated gene 5;
20	HCV, hepatitis C virus; GBV-B, GB virus B; E1, envelope 1; NS2, nonstructural protein
21	2; CARD, caspase recruitment domain; TRAF, TNF receptor-associated factor; ISGs,
22	interferon-stimulated genes; PKR, protein kinase R; TERT, telomerase reverse
23	transcriptase; siRNA, small interfering RNA; PI, propidium iodide; DAPI, 4'-6-diamino-
24	2-phenylindole.
25	
26	Keywords: Hepatitis C virus; double-stranded RNA; RNA virus; RIG-I-like receptor;
27	innate immunity
28	
29	Conflict of Interest: The authors declare that the research was conducted in the absence
30	of any commercial or financial relationships that could be construed as a potential conflict
31	of interest.
32	

33 Abstract

34	During the replication of viral genomes, RNA viruses produce double-stranded RNA
35	(dsRNA), through the activity of their RNA-dependent RNA polymerases (RdRps) as
36	viral replication intermediates. Recognition of viral dsRNA by host pattern recognition
37	receptors - such as retinoic acid-induced gene-I (RIG-I)-like receptors and Toll-like
38	receptor 3 (TLR3) – triggers the production of interferon (IFN)- β via the activation of
39	IFN regulatory factor (IRF)-3. It has been proposed that, during the replication of viral
40	genomes, each of RIG-I and melanoma differentiation-associated gene 5 (MDA5) form
41	homodimers for the efficient activation of a downstream signaling pathway in host cells.
42	We previously reported that, in the non-neoplastic human hepatocyte line PH5CH8, the
43	RNA-dependent RNA polymerase NS5B derived from hepatitis C virus (HCV) could
44	induce IFN- β expression by its RdRp activity without the actual replication of viral
45	genomes. However, the exact mechanism by which HCV NS5B produced IFN- β
46	remained unknown. In the present study, we first showed that NS5B derived from another
47	Flaviviridae family member, GB virus B (GBV-B), also possessed the ability to induce
48	IFN- β in PH5CH8 cells. Similarly, HCV NS5B, but not its G317V mutant, which lacks

49	RdRp activity, induced the dimerization of MDA5 and subsequently the activation of
50	IRF-3. Interestingly, immunofluorescence analysis showed that HCV NS5B produced
51	dsRNA. Like HCV NS5B, GBV-B NS5B also triggered the production of dsRNA and
52	subsequently the dimerization of MDA5. Taken together, our results show that HCV
53	NS5B triggers an MDA5-mediated innate immune response by producing dsRNA
54	without the replication of viral genomes in human hepatocytes.
55	
56	Introduction
57	Hepatitis C virus (HCV) is an enveloped positive single-stranded RNA virus belonging
58	to the <i>Flaviviridae</i> family. The HCV genome encodes a large polyprotein precursor of
59	approximately 3000 amino acid residues, which is co- and post-translationally cleaved
60	into at least ten proteins in the following order: core, envelope 1 (E1), E2, p7,
61	nonstructural protein 2 (NS2), NS3, NS4A, NS4B, NS5A, and NS5B. NS5B is otherwise
62	known as RNA-dependent RNA polymerase (RdRp), which plays an important role in
63	the replication of viral genomes. During the replication of viral genomes, HCV frequently
64	causes chronic hepatitis, which finally progresses to liver cirrhosis and hepatocellular

Page 5 of 39

65	carcinoma [1, 2]. To understand how these HCV-related liver diseases occur, it will be
66	necessary to gather more information about the host innate immune response against the
67	replication of viral genomes.
68	During the replication of viral genomes, RNA viruses are known to produce double-
69	stranded RNA (dsRNA) as viral replication intermediates via the actions of their RdRps.
70	DsRNA is recognized by the host pattern recognition receptors, retinoic acid-induced
71	gene I (RIG-I)-like receptors and Toll-like receptor 3 (TLR3) [3]. RIG-I-like receptors,
72	RIG-I and melanoma differentiation-associated gene 5 (MDA5), contain the N-terminal
73	caspase recruitment domain (CARD), the central DexD/H-box helicase domain, and the
74	C-terminal regulatory domain. The binding of dsRNA to the helicase domain has been
75	proposed to cause the conformational change and subsequently the dimerization of RIG-
76	I or MDA5, respectively [4, 5, 6]. After dimerization, RIG-I or MDA5 interacts with their
77	adaptor protein Cardif (also called IPS-1, VISA or MAVS) through the CARD-CARD
78	interaction [7]. The interaction between RIG-I/MDA5 and Cardif recruits downstream
79	signaling molecules such as TNF receptor-associated factor (TRAF) family members
80	(TRAF3 and TRAF6) and IKK family members (IKK ϵ , TBK1, and IKK α) to activate

81	IFN regulatory factor (IRF)-3 and NF- κ B, respectively. TRAF3 and TRAF6 are E3
82	ubiquitin ligases, and they function as the major regulators for the activation of IRF-3 and
83	NF- κ B, respectively. Finally, phosphorylated IRF-3 forms a dimer and subsequently
84	translocates to the nucleus to induce IFN-β.
85	We previously reported that HCV NS5B induced IFN- β by its RdRp activity without the
86	replication of viral genomes in the non-neoplastic human hepatocyte lines PH5CH8 and
87	NKNT-3 [8, 9]. However, these previous studies did not elucidate exactly how HCV
88	NS5B induced IFN- β . In the present study, we showed that HCV NS5B triggered the
89	MDA5-mediated innate immune response by producing dsRNA without the replication
90	of viral genomes. Like HCV NS5B, NS5B derived from another Flaviviridae family
91	member, namely GB virus B (GBV-B), also triggered both the production of dsRNA and
92	the dimerization of MDA5, leading to the induction of IFN- β . Here, we propose the novel
93	mechanism by which HCV NS5B triggers the MDA5-mediated host innate immune
94	response by producing dsRNA without the replication of viral genomes.
95	

96 Results

97	Like HCV NS5B, GBV-B NS5B possesses the ability to in	duce IFN-β.

98	We previously reported that in both PH5CH8 and NKNT-3 cells, NS5B derived from
99	HCV could induce IFN- β by its RdRp activity without the actual replication of viral
100	genomes [8, 9]. As one of its biological functions, IFN- β is known to show antiviral
101	activity against HCV. By using our OR6 assay system, which is capable of measuring
102	HCV RNA replication levels by Renilla luciferase activity [10], we first examined
103	whether the culture media derived from HCV NS5B-expressing PH5CH8 cells
104	(hereinafter PH5CH8/NS5B cells) showed antiviral activity against HCV. HCV RNA
105	replication levels were decreased by the addition of the culture media derived from
106	PH5CH8/NS5B cells but not the G317V mutant of HCV NS5B-expressing PH5CH8 cells
107	(hereinafter PH5CH8/NS5B G317V cells: NS5B G317V lacks RdRp activity) in OR6
108	cells (Fig. 1A). Consistent with this result, interferon-stimulated genes (ISGs) such as
109	RIG-I, MDA5, LGP2, and IRF-7 were also induced in PH5CH8/NS5B cells but not in
110	PH5CH8/NS5B G317V cells (Fig. 1B). We next examined whether NS5B derived from
111	GBV-B, a member of the <i>Flaviviridae</i> family, induced IFN- β mRNA in PH5CH8 cells.
112	IFN- β mRNA (Fig. 1C) and subsequently, ISGs (Fig. 1D), were induced in GBV-B

113	NS5B-expressing PH5CH8 cells (hereinafter PH5CH8/HA-NS5B (GBV-B) cells), just
114	as in HCV NS5B-expressing PH5CH8 cells (hereinafter PH5CH8/HA-NS5B (HCV)
115	cells). These results suggested that, like HCV NS5B, GBV-B NS5B possessed the ability
116	to induce IFN-β in PH5CH8 cells.
117	
118	HCV NS5B triggered the phosphorylation and dimerization of IRF-3 to induce IFN- β .
119	We previously reported that HCV NS3-4A completely blocked HCV NS5B-mediated
120	IFN- β induction in PH5CH8 cells [8]. HCV NS3-4A is known to prevent IFN- β induction
121	to block the phosphorylation and subsequently the dimerization of IRF-3 [11]. From these
122	results, we predicted that IRF-3 was required for HCV NS5B-mediated IFN- β induction.
123	Quantitative RT-PCR analysis revealed that the knockdown of IRF-3 drastically
124	decreased the induction of IFN- β mRNA in PH5CH8/NS5B cells (Fig. 2A). However,
125	unexpectedly, we could not detect the dimerization of endogenous IRF-3 in
126	PH5CH8/NS5B cells (Fig. 2B). One possible explanation is that phosphorylated IRF-3 is
127	degraded after its nuclear translocation in PH5CH8/NS5B cells. By using pEGFP-
128	C1/IRF-3 mNLS vector that abrogates the nuclear localization signal of phosphorylated

129	IRF-3 [12], we detected the phosphorylation and subsequent dimerization of exogenous
130	IRF-3 in PH5CH8/NS5B cells (Fig. 2C). Another possibility is that the phosphorylated
131	IRF-3 is regulated by TRAF3 or TRAF6 in PH5CH8/NS5B cells. The knockdown of
132	TRAF6, but not TRAF3, caused the dimerization of endogenous IRF-3 in PH5CH8/NS5B
133	cells (Figs. 2D and 2E). Consistent with the enhancement of IRF-3 dimer, the induction
134	of IFN- β mRNA was also increased by the knockdown of TRAF6 in PH5CH8/NS5B
135	cells (Fig. 2F). These results suggested that the dimerization of IRF-3 was regulated at
136	multiple steps during HCV NS5B-mediated IFN- β induction.
137	
138	HCV NS5B triggered the dimerization of MDA5 to induce IFN- β .

139 IRF-3 is phosphorylated through a TLR3-mediated signaling pathway (M-polyIC) and/or

140 RIG-I/MDA5-mediated signaling pathway (T-polyIC) in PH5CH8 cells ([13], Fig. 2C).

141 We previously reported that, in PH5CH8 cells, HCV NS5B could induce IFN- β via TLR3

142 but not via RIG-I [9]. However, we have no information about whether HCV NS5B

- 143 induces IFN-β via MDA5. Quantitative RT-PCR analysis revealed that the knockdown
- 144 of MDA5 drastically decreased the induction of IFN-β mRNA in PH5CH8/NS5B cells

145	(Fig. 3A). The binding of dsRNA to MDA5 is proposed to cause the dimerization
146	necessary to activate its downstream signaling pathway [5, 6]. We detected a clear single
147	band of MDA5 in unstimulated PH5CH8 cells (T-polyIC (-)) while we also detected a
148	slow migrating band of MDA5 in PH5CH8 cells transfected with polyIC (T-polyIC (+))
149	(Fig. 3B), suggesting that intracellular polyIC triggers the dimerization of MDA5. The
150	dimerization of MDA5 was also detected in both PH5CH8/NS5B cells (Fig. 3B) and
151	PH5CH8/HA-NS5B (GBV-B) cells (Fig. 3C). These results suggested that HCV NS5B
152	triggered the dimerization of MDA5 to induce IFN- β .
153	
154	HCV NS5B produced dsRNA by its RdRp activity without viral genomes.

By immunofluorescence analysis using a monoclonal antibody specific for dsRNA [14], the intracellular viral dsRNA has been observed in cells infected by vesicular stomatitis virus (VSV), encephalomyocarditis virus (EMCV), and HCV (JFH-1 strain) [15, 16]. To confirm the specificity and sensitivity of immunofluorescence analysis using this monoclonal antibody, we first tried to detect intracellular dsRNA in PH5CH8 cells transfected with the dsRNA analog, polyIC. As a result, intracellular polyIC but not the

The FEBS Journal

161	dsDNA analog, polydAdT, was detected in PH5CH8 cells (Fig. 4A). PolyIC was also
162	detected in the cytoplasm of PH5CH8 cells when it was added to the culture media (Fig.
163	4A). Interestingly, intracellular dsRNA was detected in PH5CH8/NS5B cells but not in
164	PH5CH8/NS5B G317V cells, suggesting that its RdRp activity was required for dsRNA
165	production (Fig. 4B). Intracellular dsRNA was also detected in PH5CH8/HA-NS5B
166	(GBV-B) cells as well as PH5CH8/HA-NS5B (HCV) cells (Fig. 4C). These results
167	suggested that HCV NS5B produced dsRNA by its RdRp activity without the replication
168	of viral genomes in PH5CH8 cells.

169

170 Discussion

171 RNA viruses produce viral dsRNA as the replication intermediates by their RdRps. HCV NS5B forms the replication complex with other HCV nonstructural proteins and 172 subsequently produces viral dsRNA by its RdRp during the replication of viral genomes 173 174 on the lipid raft [17]. In the present study, we introduce the novel discovery that HCV NS5B through its RdRp activity possesses the ability to produce dsRNA without the 175 176 replication of viral genomes, leading to the induction of IFN-ß through an MDA5-

177	mediated innate immune response (Fig. 5). The dsRNA structure was partially composed
178	of several stem-loop structures within the NS5B-coding region [18]. In our experiments,
179	however, since the NS5B G317V mutant did not induce the dimerization of either MDA5
180	(Fig. 3B) or, subsequently, IRF-3 (Fig. 2C), we were able to exclude the possibility that
181	MDA5 recognized the dsRNA structure within the NS5B-coding region.
182	HCV NS5B has been reported to activate protein kinase R (PKR) without the replication
183	of viral genomes via its RdRp activity [19]. Since PKR is activated by dsRNA, HCV
184	NS5B-produced dsRNA was predicted to activate PKR. On the other hand, interestingly,
185	human telomerase reverse transcriptase (TERT) also possesses RdRP activity and
186	produces dsRNA that can be processed into small interfering RNA (siRNA) duplexes in
187	a Dicer-dependent manner [20, 21]. However, it is uncertain whether an siRNA duplex is
188	also generated from the HCV NS5B-produced dsRNA. RIG-I and MDA5 were previously
189	reported to recognize different lengths of dsRNA [15]: shorter dsRNA, which serves as a
190	ligand for RIG-I, and longer dsRNA, the ligand for MDA5. Since HCV NS5B-mediated
191	IFN- β induction did not require RIG-I [9], HCV NS5B may produce only long dsRNA.
192	On the other hands, both HCV NS5B and siRNA are reported to localize at the perinuclear

1:

193	region under the transient expression in the cells, respectively [22, 23]. HCV NS5B,
194	which is not involved in the replication complex, may generate siRNA duplex via the
195	production of dsRNA at the perinuclear region. We need to further examine whether
196	siRNA duplexes are generated from HCV NS5B-produced dsRNA as has been shown for
197	human TERT.
198	At the early stage of viral infection, IRF-3 is phosphorylated at two C-terminal phospho-
199	accepter clusters (Ser385-Ser386 and Ser396-Ser398-Ser402-Thr404-Ser405), causing
200	the activation of IRF-3 (dimerization and subsequent nuclear translocation), leading to
201	the induction of IFN- β . On the other hand, to control the induction of IFN- β , IRF-3 is
202	also phosphorylated at Ser339, which causes polyubiquitination and subsequent
203	degradation in a proteasome-dependent manner [24]. In the present study, we showed that
204	the dimerization of phosphorylated IRF-3 was regulated at multiple steps. One is the
205	regulation of phosphorylated IRF-3 after its translocation to the nucleus (Fig. 2C); the
206	other is the regulation of phosphorylated IRF-3 by TRAF6 (Fig. 2E). TRAF6 possesses
207	E3 ubiquitin ligase activity and controls signal transduction by promoting K48- or K63-
208	linked ubiquitination of target host factors [25-28]. In contrast to K63-linked

ubiquitination, K48-linked ubiquitination is known to induce the proteasome-dependent

210	degradation of target host factors. TRAF6 forms a complex with CD40 and TRANCE-R
211	(also known as RANK) through the P-X-E-X-X-(aromatic/acidic residue) TRAF6-
212	binding motif for signal transduction [26]. Since this TRAF6-binding motif is present in
213	other IRF family members, IRF-5 (392-PFEIFF-397) and IRF-7 (211-PGEGQE-216,
214	334-PAELPD-339), IRF-5 and IRF-7, are positively regulated by TRAF6-mediated K63-
215	linked ubiquitination, respectively [27, 28]. On the other hands, since this TRAF6-
216	binding motif is also present in IRF-3 (198-PGEEWE-203), TRAF6 may negatively
217	regulate IFN- β induction through ubiquitination of phosphorylated IRF-3. We need to
218	examine further the exact mechanism by which TRAF6 controls IFN- β induction through
219	the regulation of phosphorylated IRF-3.
220	In conclusion, we suggest that HCV NS5B triggered an MDA5-mediated innate immune
221	response by producing dsRNA without the replication of viral genomes. Our findings
222	provide novel insights into the molecular mechanisms of host innate immunity against
223	HCV.

224

225	Materials	and]	Methods
-----	-----------	-------	---------

226 Cell culture

227	The non-neoplastic human hepatocyte line, PH5CH8 (RRID: CVCL_VL00) [29] were
228	cultured as reported previously [30]. The human hepatoma cell line, OR6 (RRID

229 CVCL_VN30), which efficiently replicate genome-length HCV-O RNA with Renilla

230 luciferase, were cultured in Dulbecco's modified Eagle's medium (Invitrogen, Carlsbad,

CA) supplemented with 10% fetal bovine serum [10]. These cell lines were obtained from

- the properly maintained frozen mycoplasma-free stock in Okayama University. These
- 233 cell lines were also used at low passages without further authentication or testing for
- 234 mycoplasma contamination.

235

236 Construction of expression vectors

The retroviral vector pCX4bsr (accession no. AB086384) [31], which contains the resistance gene for blasticidin, was used to construct the various expression vectors. To construct pCX4bsr/NS5B G317V, the BamHI-NotI fragment of pCXbsr/NS5B G317V [8] was replaced with the BamHI-NotI region of pCX4bsr. To construct pCX4bsr/HA-

241	NS5B (HCV), the EcoRI-NotI fragment of pCXbsr/HA-NS5B (HCV) [9] was replaced
242	with the EcoRI-NotI region of pCX4bsr. To construct pCX4bsr/HA-NS5B (GBV-B),
243	DNA fragments encoding GBV-B NS5B were amplified from the infectious clone of
244	GBV-B (pGBB) [32] by PCR using KOD-plus DNA polymerase (Toyobo, Osaka, Japan)
245	[33]. pEGFP-C1/IRF-3 mNLS vector was constructed from pEGFP-C1/IRF-3 vector [13]
246	by PCR mutagenesis with primers containing base alterations. The nucleotide sequence
247	was confirmed by Big Dye termination cycle sequencing using an ABI Prism 310 genetic
248	analyzer (Applied Biosystems, Foster City, CA).
249	
250	Preparation of PH5CH8 cells stably expressing HCV or GBV-B NS5B
251	Five retroviral vectors, pCX4bsr, pCX4bsr/NS5B, pCX4bsr/NS5B G317V,
252	pCX4bsr/HA-NS5B (HCV), and pCX4bsr/HA-NS5B (GBV-B), were used for the
253	retrovirus infection [34]. At two days post-infection, PH5CH8 cells were supplied with

- 254 fresh medium containing blasticidin (20 μ g/mL), and the culture was continued for seven
- 255 days to select PH5CH8 cells expressing NS5B, NS5B G317V, HA-NS5B (HCV), and
- 256 HA-NS5B (GBV-B), respectively. As negative control, PH5CH8/Cont cells were also

257	prepared by the retroviral transfer of pCX4bsr. The culture media were harvested from
258	PH5CH8/NS5B cells to examine the antiviral activity as described below.
259	
260	OR6 assay system
261	PH5CH8/NS5B cells were cultured in 10 mL of fresh medium without blasticidin for 5
262	days. The culture media of PH5CH8/NS5B cells (50 $\mu L)$ was added to that (2 mL) of
263	OR6 cells, and 72 h later, Renilla luciferase activity was measured according to the
264	manufacturer's protocol (Promega, Madison, WI). Luciferase activity was calculated
265	relative to the activity in OR6 cells treated without IFN- β , which was set at 100. Data are
266	the means \pm SD from three independent experiments.
267	
268	Western blot analysis and the antibody used in this study
269	Preparation of cell lysates, SDS-PAGE, and immunoblotting were performed as described
270	previously [35]. Immunocomplexes were detected by a Renaissance enhanced
271	chemiluminescence assay (Perkin-Elmer Life Sciences, Waltham, MA).
272	Anti-NS5B antibody was a gift from Dr. M. Kohara. Anti-RIG-I antibody, anti-MDA5

273	antibody, and anti-LGP2 antibody were purchased from Immuno-Biological Laboratories
274	(Gunma, Japan). Anti-IRF-3 antibody (FL-425) and anti-IRF-7 antibody (H-246) were
275	purchased from Santa Cruz Biotechnology (Dallas, Tx). Anti-phospho-IRF-3 (Ser386)
276	antibody (Upstate Biotechnology, Lake Placid, NY) was used for the detection of
277	phosphorylated IRF-3 at Ser386. Anti-HA antibody (3F10; Roche, Mannheim, Germany)
278	was used for the detection of HA-tagged NS5B. Monoclonal antibody (K1) specific for
279	dsRNA was purchased from English and Scientific Consulting (Szirák, Hungary). Anti-
280	EGFP antibody (JL-8) was purchased from Clontech (Takara Bio Inc., Shiga, Japan).
281	Anti-TRAF3 antibody and anti-TRAF6 antibody were purchased from Cell Signaling
282	Technology (Danvers, MA).
283	
284	RNA interference and real-time LightCycler PCR
285	SiRNA duplexes targeting the coding regions of MDA5 (M-013041-00), IRF-3 (M-
286	006875-01), TRAF3 (M-005252-00), TRAF6 (M-004712-00), and luciferase GL2 (D-

- 287 001100-01) as a control were purchased from Horizon Discovery (Cambridge, UK). Cells
- 288 were transfected with the indicated siRNA duplex using DharmaFECT transfection

289	reagent (Horizon Discovery) [36]. The extraction of total cellular RNA and real-time
290	LightCycler PCR of IFN- β were performed as described previously [37]. Data are the
291	means \pm SD from three independent experiments.
292	
293	Dimerization analysis of IRF-3 or MDA5
294	Preparation of cell lysates, native-polyacrylamide gel electrophoresis and
295	immunoblotting was performed as described previously [13]. Anti-MDA5 antibody, anti-
296	IRF-3 antibody, and anti-EGFP antibody were used to detect the activation of MDA5 and
297	IRF-3, respectively.
298	
299	Immunofluorescence analysis
300	The intracellular localizations of NS5B and dsRNA were photographed under a confocal
301	laser-scanning microscope (LSM510; Carl Zeiss, Oberkochen, Germany) as previously
302	described [38]. Anti-HA antibody (3F10; Roche) and FITC-conjugated donkey anti-rat
303	secondary antibody were used for the visualization of HA-tagged NS5B. Monoclonal
304	antibody (K1) specific for dsRNA together with Cy2- (or FITC)-conjugated donkey anti-

305	mouse secondary antibody were used for the visualization of intracellular dsRNA.
306	Propidium iodide (PI: Sigma-Aldrich, St. Louis, MO) or 4'-6-diamino-2-phenylindole
307	(DAPI: Sigma-Aldrich) was used for the visualization of nuclei. As a control for the
308	visualization of dsRNA, PH5CH8 cells were treated with the dsRNA analog, polyIC, or
309	the dsDNA analog, polydAdT (Invivogen, Pak Shek Kok, Hong Kong).
310	
311	Statistical analysis
312	To determine the significance of differences among groups, statistical analysis was
313	performed by using Student's t-test. Values of P<0.05 were considered statistically
314	significant.
315	
316	Author contributions
317	HD designed this research, performed all experiments, and wrote the paper. MI provided
318	OR6 cells. NK provided PH5CH8 cells. HD, MI, YA, YT, and NK analyzed and
319	discussed the results. HD, MI, YA, YT, and NK reviewed the manuscript.
320	

321 Acknowledgments

322	We are grateful to Dr. Tsuyoshi Akagi for providing the pCX4bsr vectors and Dr.
323	Michinori Kohara for providing anti-NS5B antibody. We thank Toshiko Maeta and
324	Takashi Nakamura for their technical assistance. This research was supported by the
325	Japan Agency for Medical Research and Development (AMED) under grant numbers
326	jp22fk0210108.
327	
328	Data availability statement
329	The representative data are included in this article. The data that support the findings of
330	this study are available from the corresponding author (dansako@md.okayama-u.ac.jp)
331	upon reasonable request.
332	
333	References
334	1. Choo QL, Kuo G, Weiner AJ, Overby LR, Bradley DW & Houghton M (1989)
335	Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis
336	genome. <i>Science</i> 244, 359-362.

337	2. Kuo G, Choo QL, Alter HJ, Gitnick GL, Redeker AG, Purcell RH, Miyamura T,
338	Dienstag JL, Alter MJ, Stevens CE, Tegtmeier GE, Bonino F, Colombo WS, Lee WS,
339	Kuo C, Berger K, Shuster JR, Overby LR, Bradley DW & Houghton M (1989) An
340	assay for circulating antibodies to a major etiologic virus of human non-A, non-B
341	hepatitis. <i>Science</i> 244, 362-364.
342	3. Meylan E & Tschopp J (2006) Toll-like receptors and RNA helicases: two parallel
343	ways to trigger antiviral responses. Mol Cell 22, 561-569.
344	4. Cui S, Eisenacher K, Kirchhofer A, Brzozka K, Lammens A, Lammens K, Fujita T,
345	Conzelmann KK, Krug A & Hopfner KP (2008) The C-terminal regulatory domain is
346	the RNA 5'-triphosphate sensor of RIG-I. Mol Cell 29, 169–179.
347	5. Berke IC & Modis Y (2012) MDA5 cooperatively forms dimers and ATP-sensitive
348	filaments upon binding double-stranded RNA. <i>EMBO J</i> 31, 1714-1726.
349	6. Peisley A, Lin C, Wu B, Orme-Johnson M, Liu M, Walz T & Hur S (2013) Cooperative
350	assembly and dynamic disassembly of MDA5 filaments for viral dsRNA recognition.
351	Proc Natl Acad Sci USA 108, 21010-21015.
352	7. Saito T, Hirai R, Loo YM, Owen D, Johonson CL, Sinha SC, Akira S, Fujita T & Gale
	2:

353	M, Jr (2007) Regulation of innate antiviral defenses through a shared repressor domain
354	in RIG-I and LGP2. Proc Natl Acad Sci USA 104, 582-587.
355	8. Dansako H, Naka K, Ikeda M & Kato N (2005) Hepatitis C virus proteins exhibit
356	conflicting effects on the interferon system in human hepatocyte cells. Biochem
357	Biophys Res Commun 336, 458-468.
358	9. Naka K, Dansako H, Kobayashi N, Ikeda M & Kato N (2006) Hepatitis C virus NS5B
359	delays cell cycle progression by inducing interferon- β via Toll-like receptor 3
360	signaling pathway without replicating viral genomes. Virology 346, 348-362.
361	10. Ikeda M, Abe K, Dansako H, Nakamura T, Naka K & Kato N (2005) Efficient
362	replication of a full-length hepatitis C virus genome, strain O, in cell culture, and
363	development of a luciferase reporter system. Biochem Biophys Res Commun 329,
364	1350-1359.
365	11. Meylan E, Curran J, Hofmann K, Moradpour D, Binder M, Bartenschlager R &
366	Tschopp J (2005) Cardif is an adaptor protein in the RIG-I antiviral pathway and is
367	targeted by hepatitis C virus. Nature 437, 1167-1172.
368	12. Kumar KP, McBride KM, Weaver BK, Dingwall C & Reich NC (2000) Regulated

369	nuclear-cytoplasmic localization of interferon regulatory factor 3, a subunit of double-
370	stranded RNA-activated factor 1. Mol Cell Biol 20, 4159-4168.
371	13. Dansako H, Ikeda M & Kato N (2007) Limited suppression of the interferon- β
372	production by hepatitis C virus serine protease in cultured human hepatocytes. FEBS
373	J. 274, 4161-4176.
374	14. Schonborn J, Oberstrass J, Breyel E, Tittgen J, Schumacher J & Lukacs N (1991)
375	Monoclonal antibodies to double-stranded RNA as probes of RNA structure in crude
376	nucleic acid extracts. Nucleic Acids Research 19, 2993-3000.
377	15. Kato H, Takeuchi O, Mikamo-Satoh E, Hirai R, Kawai T, Matsushita K, Hiiragi A,
378	Dermody TS, Fujita T & Akira S (2008) Length-dependent recognition of double-
379	stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma
380	differentiation-associated gene 5. J Exp Med 205, 1601-1610.
381	16. Targett-Adams P, Boulant S & McLauchlan J (2008) Visualization of double-stranded
382	RNA in cells supporting hepatitis C virus RNA replication. J Virol 82, 2182-2195.
383	17. Aizaki H, Lee KJ, Sung VM, Ishiko H & Lai MM. (2004) Characterization of the
384	hepatitis C virus RNA replication complex associated with lipid rafts. Virology 324,

- 385 450-461.
- 386 18. You S, Stump DD, Branch AD & Rice CM. (2004) A cis-acting replication element
- in the sequence encoding the NS5B RNA-dependent RNA polymerase is required for
- hepatitis C virus RNA replication. *J Virol* 78, 1352-1366.
- 389 19. Suzuki R, Matsuda M, Shimoike T, Watashi K, Aizaki H, Kato T, Suzuki T,
- 390 Muramatsu M & Wakita T (2019) Activation of protein kinase R by hepatitis C virus
- 391 RNA-dependent RNA polymerase. *Virology* 529, 226-233.
- 392 20. Maida Y, Yasukawa M, Furuuchi M, Lassmann T, Possemato R, Okamoto N, Kasim
- 393 V, Hayashizaki Y, Hahn WC & Masutomi K (2009) An RNA-dependent RNA
- polymerase formed by TERT and the RMRP RNA. *Nature* 461, 230-235.
- 395 21. Maida Y, Yasukawa M & Masutomi K (2016) De Novo RNA Synthesis by RNA-
- 396 Dependent RNA Polymerase Activity of Telomerase Reverse Transcriptase. *Mol Cell*
- *Biol* 36, 1248-1259.
- 398 22. Hirano M, Kaneko S, Yamashita T, Luo H, Qin W, Shirota Y, Nomura T, Kobayashi
- 399 K & Murakami S. (2003) Direct interaction between nucleolin and hepatitis C virus
- 400 NS5B. *J Biol Chem.* 278, 5109-5115.

23. Chiu YL, Ali A, Chu CY, Cao H & Rana TM. (2004) Visualizing a correlation

401

402	between siRNA localization, cellular uptake, and RNAi in living cells. Chem Biol. 11,
403	1165-1175.
404	24. Saitoh T, un-Kyi A, Ryo A, Yamamoto M, Finn G, Fujita T, Akira S, Yamamoto N,
405	Lu KP & Yamaoka S (2006) Negative regulation of interferon-regulatory factor 3-
406	dependent innate antiviral response by the prolyl isomerase Pin1. Nat immunol7, 598-
407	605.
408	25. Wang YT, Liu TY, Shen CH, Lin SY, Hung CC, Hsu LC & Chen GC (2022)
409	K48/K63-linked polyubiquitination of ATG9A by TRAF6 E3 ligase regulates
410	oxidative stress-induced autophagy. Cell Rep 38, 110354.
411	26. Ye H, Arron JR, Lamothe B, Cirilli M, Kobayashi T, Shevde NK, Segal D, Dzivenu
412	OK, Vologodskaia M, Yim M, Du K, Singh S, Pike JW, Darnay BG, Choi Y & Wu H
413	(2002) Distinct molecular mechanism for initiating TRAF6 signaling. Nature 418,
414	443-447.
415	27. Kawai T, Sato S, Ishii KJ, Coban C, Hemmi H, Yamamoto M, Terai K, Matsuda M,

416 Inoue J, Uematsu S, Takeuchi O & Akira S (2004) Interferon-alpha induction through

417	Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nat
418	<i>Immunol.</i> 5, 1061-1068.
419	28. Balkhi MY, Fitzgerald KA & Pitha PM (2008) Functional regulation of MyD88-
420	activated interferon regulatory factor 5 by K63-linked polyubiquitination. Mol Cell
421	<i>Biol</i> 28, 7296-7308.
422	29. Ikeda M, Sugiyama K, Mizutani T, Tanaka T, Tanaka K, Sekihara H, Shimotohno K
423	& Kato N (1998) Human hepatocyte clonal cell lines that support persistent replication
424	of hepatitis C virus. Virus Res 56, 157-167.
425	30. Noguchi M & Hirohashi S (1996) Cell lines from non-neoplastic liver and
426	hepatocellular carcinoma tissue from single patient. In Vitro Cell Dev Biol Anim 32,
427	135-137.
428	31. Akagi T, Sasai K & Hanafusa H (2003) Refractory nature of normal human diploid
429	fibroblasts with respect to oncogene-mediated transformation. Proc Natl Acad Sci
430	USA 100, 13567-13572.
431	32. Bukh J, Apgar CL & Yanagi M (1999) Toward a surrogate model for hepatitis C
432	virus: an infectious molecular clone of the GB virus-B hepatitis agent. Virology 262,

433 470-478.

434	33. Dansako H,	Ueda Y,	Okumura N,	Satoh S,	Sugiyama	M, 1	Mizokami M,	Ikeda M &
-----	----------------	---------	------------	----------	----------	------	-------------	-----------

- 435 Kato N (2016) The cyclic GMP-AMP synthetase-STING signaling pathway is
- 436 required for both the innate immune response against HBV and the suppression of
- 437 HBV assembly. *FEBS J* 283, 144-156.

438 34. Dansako H, Yamane D, Welsch C, McGivern DR, Hu F, Kato N & Lemon SM (2013)

439 Class A scavenger receptor 1 (MSR1) restricts hepatitis C virus replication by

- 440 mediating toll-like receptor 3 recognition of viral RNAs produced in neighboring cells.
- 441 *PLoS Pathog* 9, e1003345.
- 442 35. Dansako H, Naganuma A, Nakamura T, Ikeda F, Nozaki A & Kato N (2003)
- 443 Differential activation of interferon-inducible genes by hepatitis C virus core protein
- 444 mediated by the interferon stimulated response element. *Virus Res* 97, 17-30.
- 445 36. Dansako H, Ueda Y, Satoh S & Kato N (2021) Extracellular vesicles activate ATM-
- 446 Chk2 signaling pathway through the intercellular transfer of mitochondrial DNA in
- 447 HBV-infected human hepatocytes. *FASEB J.* 35, e21680.
- 448 37. Dansako H, Ikeda M, Ariumi Y, Wakita T & Kato N (2009) Double-stranded RNA-

449	induced interferon-beta and inflammatory cytokine production modulated by hepatitis
450	C virus serine proteases derived from patients with hepatic diseases. Arch Virol 154,
451	801-810.
452	38. Dansako H, Hiramoto H, Ikeda M, Wakita T & Kato N (2014) Rab18 is required for
453	viral assembly of hepatitis C virus through trafficking of the core protein to lipid
454	droplets. Virology 462-463, 166-174.
455	
456	Figure legends
457	Fig. 1. Like HCV NS5B, GBV-B NS5B induced IFN- β in PH5CH8 cells. (A)
458	Quantitative anti-HCV analysis of the culture media by an OR6 assay system. The culture
459	media were harvested from PH5CH8/Cont (which lacks the exogenous expression of
460	NS5B), PH5CH8/NS5B, and PH5CH8/NS5B G317V (which lacks RdRp activity of
461	NS5B) cells, respectively. <i>Renilla</i> luciferase activity was measured 72 h after the addition
462	of culture media as described in the Materials and Methods section. Data are the means
463	\pm SD from three independent experiments. Student's t-test: *** <i>P</i> <0.001; NS, not
464	significant versus OR6 cells added culture media derived from PH5CH8/Cont cells. (B)

465	Western blot analysis of ISGs in PH5CH8/NS5B cells. β -actin was used as a control for
466	the amounts of protein loaded per lane. Representative results of at least two independent
467	experiments are shown. (C) Quantitative RT-PCR analysis of IFN- β mRNA in
468	PH5CH8/HA-NS5B (HCV) cells and PH5CH8/HA-NS5B (GBV-B) cells.
469	PH5CH8/Cont cells were used as a control. The IFN- β mRNA level was calculated
470	relative to the level in PH5CH8/HA-NS5B (HCV) cells, which was set at 1. Data are the
471	means \pm SD from three independent experiments. Student's t-test: *** <i>P</i> <0.001 versus
472	PH5CH8/HA-NS5B (HCV) cells. (D) Western blot analysis of ISGs in PH5CH8/HA-
473	NS5B (HCV) cells and PH5CH8/HA-NS5B (GBV-B) cells. PH5CH8/Cont cells were
474	used as a control. β -actin was used as a control for the amounts of protein loaded per lane.
475	Representative results of at least two independent experiments are shown.
476	
477	Fig. 2. HCV NS5B triggered the phosphorylation and dimerization of IRF-3 to induce
478	IFN- β . (A) Quantitative RT-PCR analysis of IFN- β mRNA in IRF-3-knocked-down
479	PH5CH8/NS5B cells. The levels of IRF-3 and IFN- β mRNA were calculated relative to

480 the level in luciferase GL2-transfected PH5CH8/NS5B cells, which was set at 1,

481	respectively. Data are the means \pm SD from three independent experiments. Student's t-
482	test: ***P<0.001 versus luciferase GL2-transfected PH5CH8/Cont, PH5CH8/NS5B, or
483	PH5CH8/NS5B G317V cells, respectively. (B) Dimerization analysis of endogenous
484	IRF-3 in PH5CH8/NS5B cells. The preparation of cell lysates and Native-PAGE were
485	performed as described in the Materials and Methods section. (C) Dimerization analysis
486	of exogenous IRF-3 in PH5CH8/NS5B cells transfected with pEGFP- C1/IRF-3 mNLS
487	vector that abrogated the nuclear localization signal of IRF-3. (D) Western blot analysis
488	of TRAF3 and TRAF6 in TRAF3 or TRAF6-knocked-down PH5CH8/NS5B cells.
489	Luciferase GL2-transfected PH5CH8/NS5B cells were used as a control. β -actin was used
490	as a control for the amounts of protein loaded per lane. (E) Dimerization analysis of
491	endogenous IRF-3 in TRAF3- or TRAF6-knocked-down PH5CH8/NS5B cells.
492	Luciferase GL2-transfected PH5CH8/NS5B cells were used as a control. Representative
493	results of two independent experiments are shown in B-E. (F) Quantitative RT-PCR
494	analysis of IFN- β mRNA in TRAF6-knocked-down PH5CH8/NS5B cells. The levels of
495	IFN- β mRNA were calculated relative to the level in luciferase GL2-transfected
496	PH5CH8/NS5B cells, which was set at 1. Data are the means \pm SD from three independent

497 experiments. Student's t-test: ***P<0.01* versus luciferase GL2-transfected
498 PH5CH8/NS5B cells.

499

500	Fig. 3. HCV NS5B triggered the dimerization of MDA5 to induce IFN- β . (A) Quantitative
501	RT-PCR analysis of IFN- β mRNA in MDA5-knocked-down PH5CH8/NS5B cells. The
502	levels of MDA5 and IFN- β mRNA were calculated relative to the level in luciferase GL2-
503	transfected PH5CH8/NS5B cells, which was set at 1. Data are the means \pm SD from three
504	independent experiments. Student's t-test: ***P<0.001 versus luciferase GL2-transfected
505	PH5CH8/NS5B cells. (B) Dimerization analysis of MDA5 in PH5CH8/NS5B cells. The
506	preparation of cell lysates and Native-PAGE were performed as described in the Materials
507	and Methods section. Endogenous IRF-3 was used as a control for the amounts of protein
508	loaded per lane. (C) Dimerization analysis of MDA5 in PH5CH8/HA-NS5B (HCV) cells
509	and PH5CH8/HA-NS5B (GBV-B) cells. Representative results of at least two
510	independent experiments are shown in B-C.
511	

512 Fig. 4. HCV NS5B produced dsRNA by its RdRp activity in the absence of viral genomes.

The FEBS Journal

513	(A) Immunofluorescence analysis of intercellular dsRNA in PH5CH8 cells. PH5CH8
514	cells were treated as indicated below: untreated, polyIC transfection (5µg, T-polyIC),
515	polyIC addition (50 mg/mL, M-polyIC), and polydAdT transfection (5 μ g, T-polydAdT),
516	respectively. The cells were stained as described in the Materials and Methods section.
517	The white bar indicates 20 μ m. The white arrowhead indicates cells introducing dsRNA.
518	Green: dsRNA, Red: nucleus. (B) Immunofluorescence analysis of dsRNA produced in
519	PH5CH8/NS5B cells and PH5CH8/NS5B G317V cells. The white bar indicates 20 $\mu m.$
520	The white arrowhead indicates cells producing dsRNA. Green: dsRNA, Red: nucleus. (C)
521	Immunofluorescence analysis of dsRNA produced in PH5CH8/HA-NS5B (HBV) cells
522	and PH5CH8/HA-NS5B (GBV-B) cells. The white bar indicates 20 $\mu m.$ The white
523	arrowhead indicates cells producing dsRNA. Red: dsRNA, Green: HA-NS5B, Blue:
524	nucleus. Representative results of at least two independent experiments are shown in A-
525	C.

526

527 Fig. 5. The proposed model of IFN-β inductions through dsRNA produced by HCV NS5B. 528 The solid lines with arrow show the canonical signaling pathway in MDA5-mediated

- 529 innate immune response. The dashed line with arrow shows the production of non-viral
- 530 dsRNA by the RdRp activity of NS5B. T-shaped dashed line shows the inhibition of IRF-
- 531 3 dimerization by TRAF6. Both the dashed line with arrow and T- shaped dashed line
- 532 show the results in the present study.

Dansako et al. Figs. 1

В

С

 NS5B
 Cont
 NS5B
 G317V
 (+)

 Native
 (MDA5)2
 (MDA5)2
 MDA5

 IB: MDA5
 MDA5
 135 kDa

 IB: IRF-3
 50 kDa

T-polyIC

Dansako et al. Figs. 3

В

С

dsRNA

HA-NS5B

merged

HA-NS5B (HCV)

Dansako et al. Figs. 4

Dansako et al. Fig. 5