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E(2)-LOCAL PICARD GRADED BETA ELEMENTS AT THE
PRIME THREE

Ryo KaTo

ABSTRACT. Let E(2) be the second Johnson-Wilson spectrum at the
prime 3. In this paper, we show that some beta elements exist in the
homotopy groups of the F(2)-localized sphere spectrum with a grading
over the Picard group of the stable homotopy category of E(2)-local
spectra.

1. INTRODUCTION

Let S denote the stable homotopy category of spectra. For spectra A
and B, we denote by [A, B] the group of morphisms from A to B in S,
and [A, B, = @cz[E"A, B] where ¥ is the suspension functor. For the
n-th Johnson-Wilson spectrum E(n) at a prime number p, we consider the
E(n)-local stable homotopy category L, = L,(S), where L,,: S — S is the
Bousfield localization functor with respect to E(n).

A spectrum X € L, is invertible if there exists Y € L£,, such that X AY =
L,S°. Hereafter, for k € Z, S* denotes the k-dimensional sphere spectrum.
The Picard group Pic(L,,) of L,, is defined to be the collection of isomorphism
classes of invertible spectra in £,. Throughout this paper, for a spectrum
A, we denote

% (A) = [X,LpA] for X € Pic(L,) and wl(A)= € a%(A).
X€Pic(Ly)

Remark that, for the ordinary homotopy group mi(L,A) for k € Z, there
exists an isomorphism 7y (L, A) = 77 . (A). Since any L, S* is in Pic(L,),
we have a monomorphism

i (L) = DpeglS. Lol
DrezlLnS", LnA]
EBXePic(/;n) X, Ln Al = ! (A).

Note that we have natural transformations n;: L, — Ly for & < n. They

n+1
give rise to inverse systems s(A) = {m.(L,A) AU T(Lp+14)}, and

n+1
s'(A) = {7 (A) ) 77"+ (A)},,. From the homomorphism (i4),,: s(A) —

n

(1.1)

Nl
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s'(A) of these systems, we obtain a monomorphism
lim(i2): lim 7, (L, A) — lim 7™ (A).
n n n

By the chromatic convergence theorem (cf. [9, Th. 7.5.7]), for a finite spec-
trum V', the universal homomorphism uy : 7.(V') — lim, 7.(L, V) is an iso-
morphism. The homotopy groups 7, (V') are contained in lim,, 7 (V') under
the composite

) limy, (i)

(1.2) (V) 25 lim 7, (L, V lim 7 (V).

mono.
From this point of view, we expect that the groups (V') have new infor-
mation of m,(V). For example, at (p,n) = (2.1), the element ays /5 in
7, (L15°) is expressed as the product 29 Agyo/3 in m, (S°) [7, (1.3)].

We note that Pic(Lg) = Z generated by LyS'. The natural transformation
Ny : Ln — Lo induces the homomorphism

ly: Pic(L,) — Pic(Ly) = Z

of groups. Since this homomorphism admits a section Z — Pic(L,), which
sends k to L,S*, the homomorphism ¢ is a splitting epimorphism. Put
Pic(L,) = ker £y, and the group Pic’(£,,) is decomposed as

(1.3) Pic(L,) = Z @ Pic’(L,,).

Here, the summand Z is generated by L, S'. The group Pic’(£,,) is known
as follow.

Theorem 1.1 ([5, Th. A and Th. 6.1], [6, Cor. 1,4], [2, Th. 1.2]).
(1) If p> 2 and 2p — 2 > n? + n, then Pic’(L,) = 0.
(2) At p=2, Pic%(Ly) = 7Z/2.
(3) Atp =3, Pic% (L) =Z/3 D Z/3.

For the homology theory BP,.(—) represented by the Brown-Peterson
spectrum BP at p, we have

BP* = BP*(SO) = Z(p)[vl,vg, .. .],
BP,(BP) = BP,[ty,ts,...]

with |v;] = |[t;| = 2(p® — 1). The homology theory E(n).(—) represented by
E(n) satisfies that

E(n)* = E(n)*(SO) = v_lBP*/(Un+1, Un+25- - - ) = Z(p) [1)1, V2,...,Up—-1, 1)7:1:1],

n

E(n)«(E(n)) = E(n)« @pp, BP(BP) ®pp, E(n)s

with |v;| = [t;| = 2(p* — 1). The E(n)-based Adams spectral sequence for a
spectrum A is of the form

Eyt = Ext?)

B (B (E (), E(n)+(A)) = mi—s(LnA).



E(2)-LOCAL PICARD GRADED BETA ELEMENTS AT THE PRIME THREE 25

Hereafter, we denote by E(n)i*(A) the E,-term of this spectral sequence.
For an E(n).(F(n))-comodule M, we abbreviate

H* M — Exté(n)*(E(n))(E(n)*, M).
Let Ij denote the ideal (vg,v1,...,vx_1) of E(n),, where vy = p. Consider

the following E(n).(F(n))-comodules:
N = E(n). /Iy,

N}’i+1:Coker (N££>M11> and Mézvk_iiNli for + > 0.

(1.4)

In particular, N ,é =M ,f: if £k 4+ 1 = n. The short exact sequence Né — Mg —
NSH gives rise to the connecting homomorphism
(1.5) 6i: H*NJT — H*TIN(.
For k < n, the k-th algebraic Greek letter elements are defined by
a, = 0oy -G (o /p 00t uy)) € HENG = E(n)f(S°)

ek/€k—1,-€1,€0

if vk /peoost -0 * ) is in HONE. In particular, we denote

_ (1) 3 _(2 2 = = =7
Qt/g = 041(5/;; ﬁt/a,b = a,f/zl,b, Bt/a = Bt/a,l and f; = Bt/l'
By [6, Th. 1.1], for any invertible spectrum X € Pic®(£,,), we have
E(n)y"(X) = E(n)y"(S°){gx} with |gx|= (0,0).
If the element i
a, gx € BE(n);"(X)

€k/€k71,---,61,60
detects an element of m,(X), then we may consider that the element is in
(S as follow:

m.(X) = PIS*, X] = P L., X] = PI=F X, L,8° € 72 (S9).
k k k

In the case for p > 2 and n = 1, we have m,(L1S") = 71(SY) since
Pic(L1) = {L1S*: k € Z} = Z. In this case, any nonzero &/, in E(1)3(5°)
detects a nonzero element in m.(L1SY) = 71(S%). At (p,n) = (2,1), for a
nonzero integer t, we define

i : 1 Vg(t) = 0,
va(t) =max{i € Z: 2" |t} and a(t) =
2(t) { ) Q {z/g(t) +2 wy(t) > 0.

The elements @/, (# 0) for a < a(t) are defined. (For any a > 0, the element
@ /q is defined, and however this is 0.) For

b(t) {a(t) —1 t=2mod (4),

a(t) otherwise,
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the element @/, survives to m,(L1S5°) if and only if
(0#)t=0,1,2 mod (4) and a < b(t).

This fact implies that some nonzero algebraic alpha elements don’t survive
to m.(L1S°) at p = 2. The author calculated 71(S°) at p = 2 [7, Th. 2].
In particular, for the generator Q of Pic’(£1) = Z/2, the element @, /a9Q €
E(1)3(Q) survives to m.(Q) = [Q, L15°], C 7(SY) if and only if

£)—1 t=0,1mod (4
t#0 and a <V (t) where bV(t)= a(t) ;1 mod (4),
a(t) t=2,3 mod (4).
This implies that, for any t # 0 and a < a(t), at least one of @/, and @;/,9¢q
survives to m (SO)

Conjecture 1.2 ([7, Conj. 4]). For any algebraic Greek letter element
am with t # 0, there exists X € Pic%(L,,) such that am

t/en 1,En—2,..-,€0 t/en 1,En—2,.--,€0
survives to w(SY).

gx

—(n)

- (n)
t/en_1,en_o,..,e09X SUTVIVES to A,

t/en 1,En—2,..,€0
is in the image of lim, 77(S%) — 77(SY).

Conjecture 1.3. If the element @
of m7(S°), then AW

t/en—1,6n—2,---,€0

If these conjectures hold, then every algebraic Greek letter element de-
tects an element of lim,, 77(SY), and we may express 7,(S") as a subring of
lim,, 77(S°) under the monomorphism (1.2) at V = SY.

In this paper, we consider Conjecture 1.2 for Bt/a = agll at (p,n) =

(3,2). For a nonzero integer ¢, we define

. : 1 31t,
(1.6) v3(t) = max{i € Z: 3' | t}, ap(t) = {4 cqust)-1 _1 3 | ¢,
and
(.7 bo(t) = 4 2010 1 1 =8 mod (9)
ao(t) otherwise.

By [8, Th. 6.1], the element v} /3v¢ is in HONZ = H°MZ if and only if t = 0
or a < ag(t). Therefore,

Bt/a(# 0) is in £(2)3(SY) if and only if a < ag(t).
Remark that the element Bo/a € E(2)3(S%) is defined for any a > 0, and

EO/a = 0. By [11, Th. 2.13], the element Bt/a survives to an element (;/, in
7. (L2S°) if and only if 0 # ¢ = 0,1,2,3,5,6 mod (9) and a < by(t). For an
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E(2)-local spectrum A and an integer u > 0, we denote
A =L,8% and A" = AN---AAifu>0.
—_—

Recall (3) of Theorem 1.1, and we have
Pic®(Ly) = Z/3{ X1} ® Z./3{ X>}

at p = 3. Here, X; is the invertible spectrum X given by Kamiya and
Shimomura [6, Prop. 1.5].

Theorem 1.4. At (p,n) = (3,2), Conjecture 1.2 holds for the algebraic beta
elements Bt/a More details, the element Bt/agxu survive to m2(S°), where

0 0#¢t=0,1,2,5,6 mod (9),
u=41 t=4,8mod (9),
2 t=3,7 mod (9).

Acknowledgements. The author would like to thank the referee for many
useful comments.

2. ALGEBRAIC BETA ELEMENTS [3,/,

We fix (p,n) = (3,2). For the mod 3 Moore spectrum V(0), the Adams
v1-periodic map a: ¥4V (0) — V(0) exists. For k > 1, we consider the
cofiber sequences

. i) 0
(2.1) 2RV (0) 25 V(0) 2 V(1) 2 LY (0).

In particular, V'(1); is the first Smith-Toda spectrum V' (1). We then have

vt i 15)
SAHY (1), — 5 DWW (D)pe —— SV (1), —2 S5V (1),

H | | |

vt i, 0
SV (e == V(Dkpen — = V(e — V(L)

Put
(2.2) W = hocolim,, V (1),

and the diagram gives rise to the cofiber sequence

(2.3) V(1) +— O sy —> w2, SV (1)

By applying F(2)5"(—), the cofiber sequence (2.3) at k = 1 induces the
exact sequence

(1)
(24) oo 90 g0 S gt o et G0 g pgo S
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of the Ext goups of the comodules in (1.4). We also have the short exact
sequences

(2.5) 0— NY = M) — M} =0
and
(2.6) 0— N3 NO— N 0.

These short exact sequences give rise to the connecting homomorphims
(2.7) & H*M] — H*''N} and 6: H*NY — H*T'N{ (= E(2)511(S9)),

respectively. For elements in H*M{, we use the notation of Behrens’ type
[1]: For € H*M3, the element ;,, € H*M{ for a > 0 is defined by

vf_lxt/a = vba /vy,
By [8, Th. 5.3], for an integer ¢,
Ly/q € HOM} is defined if and only if t = 0 or a < ag(t)
where ag(t) is the integer in (1.6).
Lemma 2.1. 0§'(1;/,) = Et/a.
Proof. Consider the commutative diagrams

0 —— N) —— MY —— M} —— 0

-3 -3 -3

0 —— N} —— M} —— M2 —— 0

and
0 sy N9 — % N —— NV —— 0
| el
0 > N » M —— N} —— 0
From them, for 6; in (1.5), we obtain 66’ (1;/,) = do (8'(1/4)/3) = 001 ((1t/4)/3) =
5051 (’03/31)?) = Bt/a' ]

3. RECOLLECTION OF Pic’(Ly)
We recall the following result:

Theorem 3.1 ([10, Th. 5.8 ]). Let K(2), = E(2)./(3,v1) = Z/3[vF']. As
a K(2).-module, we have an isomorphism

E(2)77(V(1)) = P(by) ® E(C2) ® {1, ho, h1,b1,&, 100, b1€} .
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Here, P(—) and E(—) are polynomial and exterior algebras, respectively.
The generators satisfy that

|v2| = (07 16)7 |h0| = (174)7 |h1| = (17 12)7
bo| = (2,12), [ba] = (2,36), [¢§] =(2,8),
ol = (3,16) and |¢1] = (3,24).

For the summand Pic®(£5) in (1.3), we have the monomorphism

(3.1) o1 Pic%(L2) = E(2);7(5°) = Z/3{x1} & Z/3{x2}
by [6, Th. 1.2]. Here, the generators x; and xo satisfy that
(3.2) v(x1) = vy 2b2hy  and  o(x2) = vy DG,

where ¢ is a homomorphism E(2)5"(S%) — E(2)5*(V(1)) induced by the
; :(1)

composite S* & V(0) EAN V(1). Here, the first map i is given by the

cofiber sequence

(3.3) S0 3 50 L yv0) L st

and the second map igl) isin (2.1). Note that (3) of Theorem 1.1 implies that
the monomorphism (3.1) is an isomorphism. By this fact, we may consider
that the generators X; and Xy of Pic?(Ly) satisfy

P(Xi) = X
and
X7 =128%  E(2)y"(X;) = E(2)7"(8%){gx,} with [gx,| = (0,0),
and  ds(gx;) = Xigx,
where i € {1,2}, and d5 is the 5-th Adams differential E(Z)g’O(XZ-) —
B2)5" (X)),

(3.4)

4. ON THE ELEMENTS /,0x, AND B/, x>

For the generator X; € Pic®(L5), we have

E(2);”(X7) = B(2);"(5"){gxz}-

Note that
gx2 = (9x,)°

under the paring E(2)5"(X;) ® E(2)5"(X;) — E(2)5"(X?), and ggo = 1 €
E(2),”(S°).
Lemma 4.1. Let u € {0,1,2}. For the spectrum W in (2.2), if (gxu)/q €
E2)3(W A X!) is a permanent cycle, then Bt/agX;t € E(2)5(XY) is a per-
manent cycle.
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Proof. We note that the short exact sequences (2.5) and (2.6) are obtained
from the cofiber sequences

(4.1) V(0) = LV (0) = W L sv(0)

and (3.3), respectively. Therefore, by Lemma 2.1 and the geometric bound-
ary theorem, our claim at u = 0 is shown. Similarly, our claim holds at
u=1,2. [

Theorem 4.2 ([11, Th. 2.8]). The element 1;/, € E@2)Y(W)=H'M{ is a
permanent cycle if t =0,1,2,3,5,6 mod (9) and a < by(t) in (1.7).
Proposition 4.3. Ifvh € E(2)3(V (1)) is a permanent cycle, then (9x,)t+3/1 €
E(2)Y(W A X1) and (9x2)t+6/1 € E2)3(W A X2) are permanent cycles.
Proof. Consider the cofiber sequence

SV (1) 5 V(1) = V(1) — ZPV(1).

If v} € E(2)9(V (1)) is a permanent cycle, then the element viv5 € EJ(V (1))
is a permanent cycle. Since V(1) is a ring spectrum, we have the paring

EQ2);"(V(1)2) @ E2)7*(V(1)2 A Xa) = E(2);"(V(1)2 A X1).
By [3, Lemma 3.4],
(4.2) v3gx, € E(2)3(V(1)2 A X1) is a permanent cycle.
Therefore,
(4.3)  wvvbtgx, = (v1vh)(v3gx,) € E(2)3(V(1)2 A X1) is permanent.
For the map ) in (2.3), we have

dr((9x0)eespn) = def2 (01057 gx,) = £y (0105 gx,) = 0
for any r. We also have the pairing
E@2)7*(V(1)a A X1) ® BE2);*(V(1)2 A X1) = B2)7"(V(1)2 A XT).

Therefore, by [3, Lemma 3.4] and (4.3),

2 2
dr((gx2)er61) = def2 (0105 90%,) = £ (0105 3 gx, ) (v3gx, ) = 0

for any r. [
By [10, Th. A],

(4.4) t=0,1,5mod (9) = v} € E(2)3(V (1)) survives to m.(L2V (1)).

Therefore, by Lemma 4.1 and Proposition 4.3, we have the following:

Corollary 4.4. (1) Ift = 3,4,8 mod (9), then B:9x, survives to w2(S°).
(2) Ift=2,6,7 mod (9), then Bigx2 survives to 72(S9).
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Lemma 4.5. 731(W A X?) = 0.

Proof. By [11, Th. 2.5], we have @, _,_5; E(2)5" (W) = Z/3 {(b3ho)1/2, (bgh1) 11 }-
(In [11, Th. 2.5, (b§ho)1/2 and (bjh1)_1/1 are denoted by vabfyhio/vi and
vy tbighi1/v1 in F @ Z/3[b1g], respectively.) This implies that

P E@'WAXT)=12/3 {(bghogxgh/z, (bghlgxg)_1/1} :

t—s=31
From [11, (8.3) and Prop. 8.9] and [3, Lemma 3.4], we obtain
vidg((bghogx2)172) = o1 [ do (v3 °B3ho(v3gx, )?)

(1), (do (3 B2ho) (v3gx,)?)
N (03307 (v g, )2
(5(7)9)(12)—2/1

# 0,
(bihgxz) . = F 0y T (vdgx,)?)
= £V (03 8 (80, )
= &5/ (0 B (vdgx,)?)
= d5((bgx2)1/1)-
Therefore, both (b%hogX%)l/Q and (bghng%)_l/l don’t survive to w31 (W A
X2). 0

By [4, Th. 2.24], m.(L2V (1)2) contains the part huP(5). In particular, we
have the element hu € m,(L2V (1)2). By [4, (2.13)] and [4, p.3], this element
is detected by uh = hy = v3ho in E(2)3(V(1)2). We also note that v, ” and
v3gx, are permanent cycles by [3, Lemma 1.6] and (4.2), respectively. Thus,
the element

g =5 (v3ho)(v39x,)” € E(2)3(V(1)2 A X7)
is a permanent cycle. We denote by y € m.(V(1)2 A X?) an element detected
by ¥.
Proposition 4.6. (gx2)3/3 € E2)S(W A X2) is a permanent cycle.
Proof. Consider the cofiber sequence

) v
v) Lo stw 2w 2 sva).

By [8, Prop. 5.4], we have

(31)*((9)(12)3/3) = v%hogxf = (Zl)*(g),
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which detects (17 A ly2)y. By Lemma 4.5, the element f,El)((Zl Nlx2)y) €
w31 (W A X32) is trivial. Therefore, there exists & € m36(W A X?) such that
01€ = (i1 A1x2)y. Since E(2 )036(W/\X1) Z/3{(g9x2)3/3} by [11, Th. 2.5],
the element ¢ is detected by i(gX%)g, /3- O

Proof of Theorem 1.4. By [11, Th. 2.13], for 0 #¢ =0,1,2,5,6 mod (9), we
know that Bt/a for a < ag(t) survives to m,(L2S°) C 72(S9).

By Corollary 4.4, if t = 4,8 mod (9), then B/, 1 9x, = B:gx, survives to
72(SY). Corollary 4.4 also implies that if ¢ = 7 mod (9), then Bt/ao(t)gX% =
Bth% survives to 72(S9).

We turn to the last case 8/, for £ = 3 mod (9) and a < 3. Proposition
4.6 implies that the element (9X12)3/a = U?_a(gX%)g/ig detects an element in

(W A X2). Put t = 9s + 3, and
A ((axz)ya) = drf (03 axe) = £ (3 (vdgxz)

= S0 (vdgxp)) = (s (vBgx2)) /o
= Ugs(dr(vggxf)/v%) = Ugsdr((gxf)i%/a)
= 0

for any r > 1. Therefore, by Lemma 4.1, the element £, /39x?2 survives to

2(q0 '
e (57) O

5. A NOTE ON 72(V(0))

Note that
E(2),"(V(0) A X1) = E(2)7"(V(0){g'}-

Here, ¢’ = i.(g1) where i, is induced by 4 in (3.3). In this section, we
consider the element v1g’ in the Ey-term.
The cofiber sequence (4.1) induces the long exact sequence

0 — HONO — HOMO — HOM)! %5 HIND -

Note that vy survives to m,(L2V (0)), and ds(g9x,) = x19x, = n(vy 'hibo/3v1)gx, -

Here, 7 is the composite H*M2 RAN H*TINg LN H**2N{ where §" is

the connecting homomorphism associated with the short exact sequence
Ny — M} — ME. We then have
ds(v1g') = v1(ixds(gx,)) = viis(x1)9x, -

We denote by B/, an element of 72(SY) detected by Bt/ang in Theorem
1.4.
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Conjecture 5.1. (1) The element vig € E(2)3(V(0) A X;) detects a
nonzero element wy € w2(V(0)).

(2) i-(Buya) # 0 for a < ao(?).

As an analogue of [7, (1.3)], we see the following.

Proposition 5.2. If Conjecture 5.1 holds, then the homomorphism i;/(o) : i (LaV(0)) —
72(V(0)) in (1.1) satisfies that

04, (8,)) = 4 V1ixBuasy) 3£ =3 mod (9),
ix(Bt/a) otherwise,

up to higher filtration.

Proof. Let t = 9s + 3, and suppose that v1g’ converges to wy € mq(V(0) A
X1) = [21X%, LoV (0)] € #2(V(0)). We note that

(vlg,)i*(gt/a—l—ngl?) = i*((vngl)Bt/aHng) = i*(vi’_“vé_gbl) = i*(Bt/a)'

Therefore, if i, (Et/a) # 0, then w1ix(By/q41) = 1x(Bt/q) up to higher filtra-
tion. [J
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