E(2)-LOCAL PICARD GRADED BETA ELEMENTS AT THE PRIME THREE

Ryo Kato

ABSTRACT. Let E(2) be the second Johnson-Wilson spectrum at the prime 3. In this paper, we show that some beta elements exist in the homotopy groups of the E(2)-localized sphere spectrum with a grading over the Picard group of the stable homotopy category of E(2)-local spectra.

1. Introduction

Let S denote the stable homotopy category of spectra. For spectra A and B, we denote by [A, B] the group of morphisms from A to B in S, and $[A, B]_* = \bigoplus_{k \in \mathbb{Z}} [\Sigma^k A, B]$ where Σ is the suspension functor. For the n-th Johnson-Wilson spectrum E(n) at a prime number p, we consider the E(n)-local stable homotopy category $\mathcal{L}_n = L_n(S)$, where $L_n : S \to S$ is the Bousfield localization functor with respect to E(n).

A spectrum $X \in \mathcal{L}_n$ is *invertible* if there exists $Y \in \mathcal{L}_n$ such that $X \wedge Y = L_n S^0$. Hereafter, for $k \in \mathbb{Z}$, S^k denotes the k-dimensional sphere spectrum. The *Picard group* $Pic(\mathcal{L}_n)$ of \mathcal{L}_n is defined to be the collection of isomorphism classes of invertible spectra in \mathcal{L}_n . Throughout this paper, for a spectrum A, we denote

$$\pi_X^n(A) = [X, L_n A] \text{ for } X \in \text{Pic}(\mathcal{L}_n) \text{ and } \pi_{\star}^n(A) = \bigoplus_{X \in \text{Pic}(\mathcal{L}_n)} \pi_X^n(A).$$

Remark that, for the ordinary homotopy group $\pi_k(L_nA)$ for $k \in \mathbb{Z}$, there exists an isomorphism $\pi_k(L_nA) = \pi_{L_nS^k}^n(A)$. Since any L_nS^k is in $\text{Pic}(\mathcal{L}_n)$, we have a monomorphism

(1.1)
$$i_n^A \colon \pi_*(L_n A) = \bigoplus_{k \in \mathbb{Z}} [S^k, L_n A] \\ = \bigoplus_{k \in \mathbb{Z}} [L_n S^k, L_n A] \\ \xrightarrow{\subseteq} \bigoplus_{X \in \operatorname{Pic}(\mathcal{L}_n)} [X, L_n A] = \pi_*^n(A).$$

Note that we have natural transformations $\eta_k^n \colon L_n \to L_k$ for $k \leq n$. They give rise to inverse systems $s(A) = \{\pi_*(L_n A) \xleftarrow{(\eta_n^{n+1})_*} \pi_*(L_{n+1} A)\}_n$ and $s'(A) = \{\pi_*^n(A) \xleftarrow{(\eta_n^{n+1})_*} \pi_*^{n+1}(A)\}_n$. From the homomorphism $(i_n^A)_n \colon s(A) \to a$

Mathematics Subject Classification. Primary 55Q45; Secondary 55Q52. Key words and phrases. Stable homotopy of spheres, Picard group.

s'(A) of these systems, we obtain a monomorphism

$$\lim_{n} (i_n^A) \colon \lim_{n} \pi_*(L_n A) \to \lim_{n} \pi_*^n(A).$$

By the chromatic convergence theorem (cf. [9, Th. 7.5.7]), for a finite spectrum V, the universal homomorphism $u_V \colon \pi_*(V) \to \lim_n \pi_*(L_n V)$ is an isomorphism. The homotopy groups $\pi_*(V)$ are contained in $\lim_n \pi_*^n(V)$ under the composite

(1.2)
$$\pi_*(V) \xrightarrow{u_V} \lim_n \pi_*(L_n V) \xrightarrow{\lim_n (i_n^V)} \lim_n \pi_*^n(V).$$

From this point of view, we expect that the groups $\pi_{\star}^{n}(V)$ have new information of $\pi_{\star}(V)$. For example, at (p,n)=(2.1), the element $\alpha_{4t+2/2}$ in $\pi_{\star}(L_{1}S^{0})$ is expressed as the product $2_{Q}A_{4t+2/3}$ in $\pi_{\star}^{1}(S^{0})$ [7, (1.3)].

We note that $\operatorname{Pic}(\mathcal{L}_0) = \mathbb{Z}$ generated by $L_0 S^1$. The natural transformation $\eta_0^n \colon L_n \to L_0$ induces the homomorphism

$$\ell_0 \colon \operatorname{Pic}(\mathcal{L}_n) \to \operatorname{Pic}(\mathcal{L}_0) = \mathbb{Z}$$

of groups. Since this homomorphism admits a section $\mathbb{Z} \to \operatorname{Pic}(\mathcal{L}_n)$, which sends k to $L_n S^k$, the homomorphism ℓ_0 is a splitting epimorphism. Put $\operatorname{Pic}^0(\mathcal{L}_n) = \ker \ell_0$, and the group $\operatorname{Pic}^0(\mathcal{L}_n)$ is decomposed as

(1.3)
$$\operatorname{Pic}(\mathcal{L}_n) = \mathbb{Z} \oplus \operatorname{Pic}^0(\mathcal{L}_n).$$

Here, the summand \mathbb{Z} is generated by L_nS^1 . The group $\operatorname{Pic}^0(\mathcal{L}_n)$ is known as follow.

Theorem 1.1 ([5, Th. A and Th. 6.1], [6, Cor. 1,4], [2, Th. 1.2]).

- (1) If p > 2 and $2p 2 \ge n^2 + n$, then $Pic^0(\mathcal{L}_n) = 0$.
- (2) At p=2, $\operatorname{Pic}^0(\mathcal{L}_1)=\mathbb{Z}/2$.
- (3) At p=3, $\operatorname{Pic}^0(\mathcal{L}_2)=\mathbb{Z}/3\oplus\mathbb{Z}/3$.

For the homology theory $BP_*(-)$ represented by the Brown-Peterson spectrum BP at p, we have

$$BP_* = BP_*(S^0) = \mathbb{Z}_{(p)}[v_1, v_2, \dots],$$

 $BP_*(BP) = BP_*[t_1, t_2, \dots]$

with $|v_i| = |t_i| = 2(p^i - 1)$. The homology theory $E(n)_*(-)$ represented by E(n) satisfies that

$$E(n)_* = E(n)_*(S^0) = v_n^{-1}BP_*/(v_{n+1}, v_{n+2}, \dots) = \mathbb{Z}_{(p)}[v_1, v_2, \dots, v_{n-1}, v_n^{\pm 1}],$$

$$E(n)_*(E(n)) = E(n)_* \otimes_{BP_*} BP_*(BP) \otimes_{BP_*} E(n)_*$$

with $|v_i| = |t_i| = 2(p^i - 1)$. The E(n)-based Adams spectral sequence for a spectrum A is of the form

$$E_2^{s,t} = \operatorname{Ext}_{E(n)_*(E(n))}^{s,t}(E(n)_*, E(n)_*(A)) \Longrightarrow \pi_{t-s}(L_n A).$$

Hereafter, we denote by $E(n)_r^{s,t}(A)$ the E_r -term of this spectral sequence. For an $E(n)_*(E(n))$ -comodule M, we abbreviate

$$H^{*,*}M = \operatorname{Ext}_{E(n)_*(E(n))}^{*,*}(E(n)_*, M).$$

Let I_k denote the ideal $(v_0, v_1, \ldots, v_{k-1})$ of $E(n)_*$, where $v_0 = p$. Consider the following $E(n)_*(E(n))$ -comodules:

(1.4)
$$N_k^0 = E(n)_*/I_k,$$

$$N_k^{i+1} = \operatorname{Coker}\left(N_k^i \xrightarrow{\subset} M_k^i\right) \quad \text{and} \quad M_k^i = v_{k+i}^{-1} N_k^i \quad \text{for } i \geq 0.$$

In particular, $N_k^i = M_k^i$ if k+i=n. The short exact sequence $N_0^i \to M_0^i \to N_0^{i+1}$ gives rise to the connecting homomorphism

(1.5)
$$\delta_i \colon H^* N_0^{i+1} \to H^{*+1} N_0^i$$

For $k \leq n$, the k-th algebraic Greek letter elements are defined by

$$\overline{\alpha}_{e_k/e_{k-1},\dots,e_1,e_0}^{(k)} = \delta_0 \delta_1 \cdots \delta_{k-1} \left(v_k^{e_k} / p^{e_0} v_1^{e_1} \cdots v_{k-1}^{e_{k-1}} \right) \in H^k N_0^0 = E(n)_2^k (S^0)$$

if $v_k^{e_k}/p^{e_0}v_1^{e_1}\cdots v_{k-1}^{e_{k-1}}$ is in $H^0N_0^k$. In particular, we denote

$$\overline{\alpha}_{t/a} = \overline{\alpha}_{t/a}^{(1)}, \quad \overline{\beta}_{t/a,b} = \overline{\alpha}_{t/a,b}^{(2)}, \quad \overline{\beta}_{t/a} = \overline{\beta}_{t/a,1} \quad \text{and} \quad \overline{\beta}_t = \overline{\beta}_{t/1}.$$

By [6, Th. 1.1], for any invertible spectrum $X \in \text{Pic}^0(\mathcal{L}_n)$, we have

$$E(n)_2^{*,*}(X) = E(n)_2^{*,*}(S^0)\{g_X\}$$
 with $|g_X| = (0,0)$.

If the element

$$\overline{\alpha}_{e_k/e_{k-1},\dots,e_1,e_0}^{(k)} g_X \in E(n)_2^{*,*}(X)$$

detects an element of $\pi_*(X)$, then we may consider that the element is in $\pi^n_*(S^0)$ as follow:

$$\pi_*(X) = \bigoplus_k [S^k, X] = \bigoplus_k [\Sigma^k L_n S^0, X] = \bigoplus_k [\Sigma^k X^{-1}, L_n S^0] \subset \pi_*^n(S^0).$$

In the case for p > 2 and n = 1, we have $\pi_*(L_1S^0) = \pi_*^1(S^0)$ since $\operatorname{Pic}(\mathcal{L}_1) = \{L_1S^k : k \in \mathbb{Z}\} \cong \mathbb{Z}$. In this case, any nonzero $\overline{\alpha}_{t/a}$ in $E(1)_2^1(S^0)$ detects a nonzero element in $\pi_*(L_1S^0) = \pi_*^1(S^0)$. At (p, n) = (2, 1), for a nonzero integer t, we define

$$\nu_2(t) = \max\{i \in \mathbb{Z} : 2^i \mid t\} \quad \text{and} \quad a(t) = \begin{cases} 1 & \nu_2(t) = 0, \\ \nu_2(t) + 2 & \nu_2(t) > 0. \end{cases}$$

The elements $\overline{\alpha}_{t/a}(\neq 0)$ for $a \leq a(t)$ are defined. (For any a > 0, the element $\overline{\alpha}_{0/a}$ is defined, and however this is 0.) For

$$b(t) = \begin{cases} a(t) - 1 & t \equiv 2 \mod (4), \\ a(t) & \text{otherwise,} \end{cases}$$

the element $\overline{\alpha}_{t/a}$ survives to $\pi_*(L_1S^0)$ if and only if

$$(0 \neq) t \equiv 0, 1, 2 \mod (4)$$
 and $a \leq b(t)$.

This fact implies that some nonzero algebraic alpha elements don't survive to $\pi_*(L_1S^0)$ at p=2. The author calculated $\pi^1_*(S^0)$ at p=2 [7, Th. 2]. In particular, for the generator Q of $\operatorname{Pic}^0(\mathcal{L}_1)=\mathbb{Z}/2$, the element $\overline{\alpha}_{t/a}g_Q\in E(1)^1_2(Q)$ survives to $\pi_*(Q)\cong [Q,L_1S^0]_*\subset \pi^1_*(S^0)$ if and only if

$$t \neq 0$$
 and $a \leq b'(t)$ where $b'(t) = \begin{cases} a(t) - 1 & t \equiv 0, 1 \mod (4), \\ a(t) & t \equiv 2, 3 \mod (4). \end{cases}$

This implies that, for any $t \neq 0$ and $a \leq a(t)$, at least one of $\overline{\alpha}_{t/a}$ and $\overline{\alpha}_{t/a}g_Q$ survives to $\pi^1_{\star}(S^0)$.

Conjecture 1.2 ([7, Conj. 4]). For any algebraic Greek letter element $\overline{\alpha}_{t/e_{n-1},e_{n-2},...,e_0}^{(n)}$ with $t \neq 0$, there exists $X \in \text{Pic}^0(\mathcal{L}_n)$ such that $\overline{\alpha}_{t/e_{n-1},e_{n-2},...,e_0}^{(n)} g_X$ survives to $\pi_{\star}^n(S^0)$.

Conjecture 1.3. If the element $\overline{\alpha}_{t/e_{n-1},e_{n-2},...,e_0}^{(n)} g_X$ survives to $A_{t/e_{n-1},e_{n-2},...,e_0}^{(n)}$ of $\pi_{\star}^n(S^0)$, then $A_{t/e_{n-1},e_{n-2},...,e_0}^{(n)}$ is in the image of $\lim_n \pi_{\star}^n(S^0) \to \pi_{\star}^n(S^0)$.

If these conjectures hold, then every algebraic Greek letter element detects an element of $\lim_n \pi_{\star}^n(S^0)$, and we may express $\pi_{\star}(S^0)$ as a subring of $\lim_n \pi_{\star}^n(S^0)$ under the monomorphism (1.2) at $V = S^0$.

In this paper, we consider Conjecture 1.2 for $\overline{\beta}_{t/a} = \overline{\alpha}_{t/a,1}^{(2)}$ at (p,n) = (3,2). For a nonzero integer t, we define

(1.6)
$$\nu_3(t) = \max\{i \in \mathbb{Z} : 3^i \mid t\}, \qquad a_0(t) = \begin{cases} 1 & 3 \nmid t, \\ 4 \cdot 3^{\nu_3(t) - 1} - 1 & 3 \mid t, \end{cases}$$

and

(1.7)
$$b_0(t) = \begin{cases} a_0(t) - 1 & t \equiv 3 \mod (9), \\ a_0(t) & \text{otherwise.} \end{cases}$$

By [8, Th. 6.1], the element $v_2^t/3v_1^a$ is in $H^0N_0^2 = H^0M_0^2$ if and only if t = 0 or $a \le a_0(t)$. Therefore,

$$\overline{\beta}_{t/a}(\neq 0)$$
 is in $E(2)_2^2(S^0)$ if and only if $a \leq a_0(t)$.

Remark that the element $\overline{\beta}_{0/a} \in E(2)_2^2(S^0)$ is defined for any a > 0, and $\overline{\beta}_{0/a} = 0$. By [11, Th. 2.13], the element $\overline{\beta}_{t/a}$ survives to an element $\beta_{t/a}$ in $\pi_*(L_2S^0)$ if and only if $0 \neq t \equiv 0, 1, 2, 3, 5, 6 \mod (9)$ and $a \leq b_0(t)$. For an

E(2)-local spectrum A and an integer $u \geq 0$, we denote

$$A^0 = L_2 S^0$$
 and $A^u = \underbrace{A \wedge \cdots \wedge A}_{u}$ if $u > 0$.

Recall (3) of Theorem 1.1, and we have

$$\operatorname{Pic}^{0}(\mathcal{L}_{2}) = \mathbb{Z}/3\{X_{1}\} \oplus \mathbb{Z}/3\{X_{2}\}$$

at p = 3. Here, X_1 is the invertible spectrum X given by Kamiya and Shimomura [6, Prop. 1.5].

Theorem 1.4. At (p,n)=(3,2), Conjecture 1.2 holds for the algebraic beta elements $\overline{\beta}_{t/a}$. More details, the element $\overline{\beta}_{t/a}g_{X_1^u}$ survive to $\pi^2_{\star}(S^0)$, where

$$u = \begin{cases} 0 & 0 \neq t \equiv 0, 1, 2, 5, 6 \mod (9), \\ 1 & t \equiv 4, 8 \mod (9), \\ 2 & t \equiv 3, 7 \mod (9). \end{cases}$$

Acknowledgements. The author would like to thank the referee for many useful comments.

2. Algebraic beta elements
$$\overline{\beta}_{t/a}$$

We fix (p,n)=(3,2). For the mod 3 Moore spectrum V(0), the Adams v_1 -periodic map $\alpha \colon \Sigma^4 V(0) \to V(0)$ exists. For $k \geq 1$, we consider the cofiber sequences

(2.1)
$$\Sigma^{4k}V(0) \xrightarrow{\alpha^k} V(0) \xrightarrow{i_1^{(k)}} V(1)_k \xrightarrow{j_1^{(k)}} \Sigma^{4k+1}V(0).$$

In particular, $V(1)_1$ is the first Smith-Toda spectrum V(1). We then have

Put

$$(2.2) W = \text{hocolim}_{v_1} V(1)_{\ell},$$

and the diagram gives rise to the cofiber sequence

(2.3)
$$V(1)_k \xrightarrow{f^{(k)}} \Sigma^{4k} W \xrightarrow{v_1^k} W \xrightarrow{\partial_k} \Sigma V(1)_k.$$

By applying $E(2)_2^{*,*}(-)$, the cofiber sequence (2.3) at k=1 induces the exact sequence

$$(2.4) \qquad \cdots \xrightarrow{(\partial_1)_*} H^*M_2^0 \xrightarrow{f_*^{(1)}} H^*M_1^1 \xrightarrow{v_1} H^*M_1^1 \xrightarrow{(\partial_1)_*} H^{*+1}M_2^0 \xrightarrow{f_*^{(1)}} \cdots$$

of the Ext goups of the comodules in (1.4). We also have the short exact sequences

$$(2.5) 0 \to N_1^0 \to M_1^0 \to M_1^1 \to 0$$

and

$$(2.6) 0 \to N_0^0 \xrightarrow{3} N_0^0 \to N_1^0 \to 0.$$

These short exact sequences give rise to the connecting homomorphims

(2.7)
$$\delta' : H^*M_1^1 \to H^{*+1}N_1^0 \text{ and } \delta : H^*N_1^0 \to H^{*+1}N_0^0 (= E(2)_2^{*+1}(S^0)),$$

respectively. For elements in $H^*M_1^1$, we use the notation of Behrens' type [1]: For $x \in H^*M_2^0$, the element $x_{t/a} \in H^*M_1^1$ for a > 0 is defined by

$$v_1^{a-1}x_{t/a} = v_2^t x/v_1.$$

By [8, Th. 5.3], for an integer t,

$$1_{t/a} \in H^0 M_1^1$$
 is defined if and only if $t = 0$ or $a \le a_0(t)$

where $a_0(t)$ is the integer in (1.6).

Lemma 2.1.
$$\delta \delta'(1_{t/a}) = \overline{\beta}_{t/a}$$
.

Proof. Consider the commutative diagrams

$$0 \longrightarrow N_1^0 \longrightarrow M_1^0 \longrightarrow M_1^1 \longrightarrow 0$$

$$-/3 \downarrow \qquad -/3 \downarrow \qquad -/3 \downarrow$$

$$0 \longrightarrow N_0^1 \longrightarrow M_0^1 \longrightarrow M_0^2 \longrightarrow 0$$

and

$$0 \longrightarrow N_0^0 \stackrel{3}{\longrightarrow} N_0^0 \longrightarrow N_1^0 \longrightarrow 0$$

$$\parallel \qquad -/3 \downarrow \qquad -/3 \downarrow$$

$$0 \longrightarrow N_0^0 \longrightarrow M_0^0 \longrightarrow N_0^1 \longrightarrow 0$$

From them, for δ_i in (1.5), we obtain $\delta\delta'(1_{t/a}) = \delta_0 \left(\delta'(1_{t/a})/3\right) = \delta_0 \delta_1 \left((1_{t/a})/3\right) = \delta_0 \delta_1 \left((1_{t/a})/3\right) = \delta_0 \delta_1 \left((1_{t/a})/3\right) = \overline{\beta}_{t/a}$.

3. Recollection of $\operatorname{Pic}^0(\mathcal{L}_2)$

We recall the following result:

Theorem 3.1 ([10, Th. 5.8]). Let $K(2)_* = E(2)_*/(3, v_1) = \mathbb{Z}/3[v_2^{\pm 1}]$. As a $K(2)_*$ -module, we have an isomorphism

$$E(2)_{2}^{*,*}(V(1)) = P(b_0) \otimes E(\zeta_2) \otimes \{1, h_0, h_1, b_1, \xi, \psi_0, b_1 \xi\}.$$

Here, P(-) and E(-) are polynomial and exterior algebras, respectively. The generators satisfy that

$$|v_2| = (0, 16), |h_0| = (1, 4), |h_1| = (1, 12),$$

 $|b_0| = (2, 12), |b_1| = (2, 36), |\xi| = (2, 8),$
 $|\psi_0| = (3, 16) \text{ and } |\psi_1| = (3, 24).$

For the summand $Pic^0(\mathcal{L}_2)$ in (1.3), we have the monomorphism

(3.1)
$$\varphi \colon \operatorname{Pic}^{0}(\mathcal{L}_{2}) \to E(2)_{2}^{5,4}(S^{0}) = \mathbb{Z}/3\{\chi_{1}\} \oplus \mathbb{Z}/3\{\chi_{2}\}$$

by [6, Th. 1.2]. Here, the generators χ_1 and χ_2 satisfy that

(3.2)
$$\iota(\chi_1) = v_2^{-2} b_0^2 h_1 \quad \text{and} \quad \iota(\chi_2) = v_2^{-1} b_0 \zeta_2 \xi,$$

where ι is a homomorphism $E(2)_2^{*,*}(S^0) \to E(2)_2^{*,*}(V(1))$ induced by the composite $S^0 \xrightarrow{i} V(0) \xrightarrow{i_1^{(1)}} V(1)$. Here, the first map i is given by the cofiber sequence

$$(3.3) S^0 \xrightarrow{3} S^0 \xrightarrow{i} V(0) \xrightarrow{j} S^1,$$

and the second map $i_1^{(1)}$ is in (2.1). Note that (3) of Theorem 1.1 implies that the monomorphism (3.1) is an isomorphism. By this fact, we may consider that the generators X_1 and X_2 of $\operatorname{Pic}^0(\mathcal{L}_2)$ satisfy

$$\varphi(X_i) = \chi_i$$

and

(3.4)
$$X_i^3 = L_2 S^0$$
, $E(2)_2^{*,*}(X_i) = E(2)_2^{*,*}(S^0)\{g_{X_i}\}$ with $|g_{X_i}| = (0,0)$, and $d_5(g_{X_i}) = \chi_i g_{X_i}$

where $i \in \{1,2\}$, and d_5 is the 5-th Adams differential $E(2)_5^{0,0}(X_i) \rightarrow E(2)_5^{5,4}(X_i)$.

4. On the elements
$$\overline{\beta}_{t/a}g_{X_1}$$
 and $\overline{\beta}_{t/a}g_{X_1^2}$

For the generator $X_i \in \operatorname{Pic}^0(\mathcal{L}_2)$, we have

$$E(2)_2^{0,0}(X_i^2) = E(2)_2^{0,0}(S^0)\{g_{X_1^2}\}.$$

Note that

$$g_{X_i^2} = (g_{X_i})^2$$

under the paring $E(2)_2^{*,*}(X_i) \otimes E(2)_2^{*,*}(X_i) \to E(2)_2^{*,*}(X_i^2)$, and $g_{S^0} = 1 \in E(2)_2^{0,0}(S^0)$.

Lemma 4.1. Let $u \in \{0,1,2\}$. For the spectrum W in (2.2), if $(g_{X_i^u})_{t/a} \in E(2)_2^0(W \wedge X_i^u)$ is a permanent cycle, then $\overline{\beta}_{t/a}g_{X_i^u} \in E(2)_2^2(X_i^u)$ is a permanent cycle.

Proof. We note that the short exact sequences (2.5) and (2.6) are obtained from the cofiber sequences

$$(4.1) V(0) \to L_1 V(0) \to W \xrightarrow{\partial'} \Sigma V(0)$$

and (3.3), respectively. Therefore, by Lemma 2.1 and the geometric boundary theorem, our claim at u=0 is shown. Similarly, our claim holds at u=1,2.

Theorem 4.2 ([11, Th. 2.8]). The element $1_{t/a} \in E(2)_2^0(W) = H^0M_1^1$ is a permanent cycle if $t \equiv 0, 1, 2, 3, 5, 6 \mod (9)$ and $a \leq b_0(t)$ in (1.7).

Proposition 4.3. If $v_2^t \in E(2)_2^0(V(1))$ is a permanent cycle, then $(g_{X_1})_{t+3/1} \in E(2)_2^0(W \wedge X_1)$ and $(g_{X_1^2})_{t+6/1} \in E(2)_2^0(W \wedge X_1^2)$ are permanent cycles.

Proof. Consider the cofiber sequence

$$\Sigma^4 V(1) \xrightarrow{v_1} V(1)_2 \to V(1) \to \Sigma^5 V(1).$$

If $v_2^t \in E(2)_2^0(V(1))$ is a permanent cycle, then the element $v_1v_2^t \in E_2^0(V(1)_2)$ is a permanent cycle. Since $V(1)_2$ is a ring spectrum, we have the paring

$$E(2)_r^{*,*}(V(1)_2) \otimes E(2)_r^{*,*}(V(1)_2 \wedge X_1) \to E(2)_r^{*,*}(V(1)_2 \wedge X_1).$$

By [3, Lemma 3.4],

(4.2) $v_2^3 g_{X_1} \in E(2)_2^0(V(1)_2 \wedge X_1)$ is a permanent cycle.

Therefore,

 $(4.3) v_1 v_2^{t+3} g_{X_1} = (v_1 v_2^t)(v_2^3 g_{X_1}) \in E(2)_2^0(V(1)_2 \wedge X_1) \text{ is permanent.}$

For the map $f^{(2)}$ in (2.3), we have

$$d_r((g_{X_1})_{t+3/1}) = d_r f_*^{(2)}(v_1 v_2^{t+3} g_{X_1}) = f_*^{(2)} d_r(v_1 v_2^{t+3} g_{X_1}) = 0$$

for any r. We also have the pairing

$$E(2)_r^{*,*}(V(1)_2 \wedge X_1) \otimes E(2)_r^{*,*}(V(1)_2 \wedge X_1) \to E(2)_r^{*,*}(V(1)_2 \wedge X_1^2).$$

Therefore, by [3, Lemma 3.4] and (4.3),

$$d_r((g_{X_1^2})_{t+6/1}) = d_r f_*^{(2)}(v_1 v_2^{t+6} g_{X_1}^2) = f_*^{(2)} d_r((v_1 v_2^{t+3} g_{X_1})(v_2^3 g_{X_1})) = 0$$
 for any r .

By [10, Th. A],

(4.4) $t \equiv 0, 1, 5 \mod (9) \Rightarrow v_2^t \in E(2)_2^0(V(1))$ survives to $\pi_*(L_2V(1))$.

Therefore, by Lemma 4.1 and Proposition 4.3, we have the following:

Corollary 4.4. (1) If $t \equiv 3, 4, 8 \mod (9)$, then $\overline{\beta}_t g_{X_1}$ survives to $\pi^2_{\star}(S^0)$. (2) If $t \equiv 2, 6, 7 \mod (9)$, then $\overline{\beta}_t g_{X_1^2}$ survives to $\pi^2_{\star}(S^0)$.

Lemma 4.5. $\pi_{31}(W \wedge X_1^2) = 0.$

Proof. By [11, Th. 2.5], we have $\bigoplus_{t-s=31} E(2)_2^{s,t}(W) = \mathbb{Z}/3 \{ (b_0^2 h_0)_{1/2}, (b_0^4 h_1)_{-1/1} \}$. (In [11, Th. 2.5], $(b_0^2 h_0)_{1/2}$ and $(b_0^4 h_1)_{-1/1}$ are denoted by $v_2 b_{10}^2 h_{10}/v_1^2$ and $v_2^{-1} b_{10}^4 h_{11}/v_1$ in $F \otimes \mathbb{Z}/3[b_{10}]$, respectively.) This implies that

$$\bigoplus_{t-s=31} E(2)_2^{s,t}(W \wedge X_1^2) = \mathbb{Z}/3 \left\{ (b_0^2 h_0 g_{X_1^2})_{1/2}, (b_0^4 h_1 g_{X_1^2})_{-1/1} \right\}.$$

From [11, (8.3) and Prop. 8.9] and [3, Lemma 3.4], we obtain

$$\begin{array}{lll} v_1 d_9((b_0^2 h_0 g_{X_1^2})_{1/2}) & = & v_1 f_*^{(2)} d_9(v_2^{-5} b_0^2 h_0(v_2^3 g_{X_1})^2) \\ & = & f_*^{(1)} (\widetilde{i}_1)_* (d_9(v_2^{-5} b_0^2 h_0)(v_2^3 g_{X_1})^2) \\ & = & f_*^{(1)} (v_2^{-8} b_0^7)(v_2^3 g_{X_1})^2 \\ & = & (b_0^7 g_{X_1^2})_{-2/1} \\ & \neq & 0, \\ (b_0^4 h_1 g_{X_1^2})_{-1/1} & = & f_*^{(1)} (v_2^{-7} b_0^4 h_1(v_2^3 g_{X_1})^2) \\ & = & f_*^{(1)} d_5(v_2^{-5} b_0^2(v_2^3 g_{X_1})^2) \\ & = & d_5 f_*^{(1)} (v_2^{-5} b_0^2(v_2^3 g_{X_1})^2) \\ & = & d_5 ((b_0^2 g_{X_1^2})_{1/1}). \end{array}$$

Therefore, both $(b_0^2 h_0 g_{X_1^2})_{1/2}$ and $(b_0^4 h_1 g_{X_1^2})_{-1/1}$ don't survive to $\pi_{31}(W \wedge X_1^2)$.

By [4, Th. 2.24], $\pi_*(L_2V(1)_2)$ contains the part huP(5). In particular, we have the element $hu \in \pi_*(L_2V(1)_2)$. By [4, (2.13)] and [4, p.3], this element is detected by $uh = \overline{h}_0 = v_2^5 h_0$ in $E(2)_2^1(V(1)_2)$. We also note that v_2^{-9} and $v_2^3 g_{X_1}$ are permanent cycles by [3, Lemma 1.6] and (4.2), respectively. Thus, the element

$$\overline{y} = v_2^{-9}(v_2^5 h_0)(v_2^3 g_{X_1})^2 \in E(2)_2^1(V(1)_2 \wedge X_1^2)$$

is a permanent cycle. We denote by $y \in \pi_*(V(1)_2 \wedge X_1^2)$ an element detected by \overline{y} .

Proposition 4.6. $(g_{X_1^2})_{3/3} \in E(2)_2^0(W \wedge X_1^2)$ is a permanent cycle.

Proof. Consider the cofiber sequence

$$V(1) \xrightarrow{f^{(1)}} \Sigma^4 W \xrightarrow{v_1} W \xrightarrow{\partial_1} \Sigma V(1).$$

By [8, Prop. 5.4], we have

$$(\partial_1)_*((g_{X_1^2})_{3/3}) = v_2^2 h_0 g_{X_1^2} = (\widetilde{i}_1)_*(\overline{y}),$$

which detects $(\tilde{i}_1 \wedge 1_{X_1^2})y$. By Lemma 4.5, the element $f_*^{(1)}((\tilde{i}_1 \wedge 1_{X_1^2})y) \in \pi_{31}(W \wedge X_1^2)$ is trivial. Therefore, there exists $\xi \in \pi_{36}(W \wedge X_1^2)$ such that $\partial_1 \xi = (\tilde{i}_1 \wedge 1_{X_1^2})y$. Since $E(2)_2^{0,36}(W \wedge X_1^2) = \mathbb{Z}/3\{(g_{X_1^2})_{3/3}\}$ by [11, Th. 2.5], the element ξ is detected by $\pm (g_{X_1^2})_{3/3}$.

Proof of Theorem 1.4. By [11, Th. 2.13], for $0 \neq t \equiv 0, 1, 2, 5, 6 \mod (9)$, we know that $\overline{\beta}_{t/a}$ for $a \leq a_0(t)$ survives to $\pi_*(L_2S^0) \subset \pi_*^2(S^0)$.

By Corollary 4.4, if $t \equiv 4, 8 \mod (9)$, then $\overline{\beta}_{t/a_0(t)}g_{X_1} = \overline{\beta}_t g_{X_1}$ survives to $\pi^2_{\star}(S^0)$. Corollary 4.4 also implies that if $t \equiv 7 \mod (9)$, then $\overline{\beta}_{t/a_0(t)}g_{X_1^2} = \overline{\beta}_t g_{X_1^2}$ survives to $\pi^2_{\star}(S^0)$.

We turn to the last case $\overline{\beta}_{t/a}$ for $t \equiv 3 \mod (9)$ and $a \leq 3$. Proposition 4.6 implies that the element $(g_{X_1^2})_{3/a} = v_1^{3-a}(g_{X_1^2})_{3/3}$ detects an element in $\pi_*(W \wedge X_1^2)$. Put t = 9s + 3, and

$$d_r((g_{X_1^2})_{t/a}) = d_r f_*^{(a)}(v_2^{9s+3}g_{X_1^2}) = f_*^{(a)}d_r(v_2^{9s}(v_2^3g_{X_1^2}))$$

$$= f_*^{(a)}(v_2^{9s}d_r(v_2^3g_{X_1^2})) = (v_2^{9s}d_r(v_2^3g_{X_1^2}))/v_1^a$$

$$= v_2^{9s}(d_r(v_2^3g_{X_1^2})/v_1^a) = v_2^{9s}d_r((g_{X_1^2})_{3/a})$$

$$= 0$$

for any r > 1. Therefore, by Lemma 4.1, the element $\overline{\beta}_{t/3}g_{X_1^2}$ survives to $\pi_{\star}^2(S^0)$.

5. A NOTE ON
$$\pi^2_{\star}(V(0))$$

Note that

$$E(2)_{2}^{*,*}(V(0) \wedge X_{1}) = E(2)_{2}^{*,*}(V(0))\{g'\}.$$

Here, $g' = i_*(g_1)$ where i_* is induced by i in (3.3). In this section, we consider the element v_1g' in the E_2 -term.

The cofiber sequence (4.1) induces the long exact sequence

$$0 \to H^0 N_1^0 \to H^0 M_1^0 \to H^0 M_1^1 \xrightarrow{\delta'} H^1 N_1^0 \to \cdots$$

Note that v_1 survives to $\pi_*(L_2V(0))$, and $d_5(g_{X_1}) = \chi_1 g_{X_1} = \eta(v_2^{-1}h_1b_0/3v_1)g_{X_1}$. Here, η is the composite $H^*M_0^2 \xrightarrow{\delta''} H^{*+1}N_0^1 \xrightarrow{\delta} H^{*+2}N_0^0$ where δ'' is the connecting homomorphism associated with the short exact sequence $N_0^1 \to M_0^1 \to M_0^2$. We then have

$$d_5(v_1g') = v_1(i_*d_5(g_{X_1})) = v_1i_*(\chi_1)g_{X_1}.$$

We denote by $B_{t/a}$ an element of $\pi^2_{\star}(S^0)$ detected by $\overline{\beta}_{t/a}g_{X_1^u}$ in Theorem 1.4.

Conjecture 5.1. (1) The element $v_1g' \in E(2)_2^0(V(0) \wedge X_1)$ detects a nonzero element $w_1 \in \pi^2_{\star}(V(0))$.

(2)
$$i_*(\overline{\beta}_{t/a}) \neq 0$$
 for $a \leq a_0(t)$.

As an analogue of [7, (1.3)], we see the following.

Proposition 5.2. If Conjecture 5.1 holds, then the homomorphism $i_2^{V(0)}$: $\pi_*(L_2V(0)) \rightarrow \pi_*^2(V(0))$ in (1.1) satisfies that

$$i_2^{V(0)} i_*(\beta_{t/a}) = \begin{cases} w_1 i_*(B_{t/a+1}) & 3 \neq t \equiv 3 \mod (9), \\ i_*(B_{t/a}) & otherwise, \end{cases}$$

up to higher filtration.

Proof. Let t = 9s + 3, and suppose that v_1g' converges to $w_1 \in \pi_4(V(0) \land X_1) = [\Sigma^4 X_1^2, L_2V(0)] \subset \pi_{\star}^2(V(0))$. We note that

$$(v_1g')i_*(\overline{\beta}_{t/a+1}g_{X_1^2}) = i_*((v_1g_{X_1})\overline{\beta}_{t/a+1}g_{X_1^2}) = i_*(v_1^{3-a}v_2^{t-3}b_1) = i_*(\overline{\beta}_{t/a}).$$

Therefore, if $i_*(\overline{\beta}_{t/a}) \neq 0$, then $w_1 i_*(B_{t/a+1}) = i_*(\beta_{t/a})$ up to higher filtration.

References

- [1] M. Behrens, The homotopy groups of $S_{E(2)}$ at $p \geq 5$ revisited, Adv. Math. **230** (2012), 458–492.
- [2] P. Goerss, H.-W. Henn, M. Mahowald and C. Rezk, On Hopkins' Picard groups of the prime 3 and chromatic level 2, J. Topol. 8 (2015), 267–294.
- [3] I. Ichigi and K. Shimomura, E(2)-invertible spectra smashing with the Smith-Toda spectrum V(1) at the prime 3, Proc. Amer. Math. Soc. **132** (2004), 3111–3119.
- [4] I. Ichigi and K. Shimomura, On the Picard graded homotopy groups of a finite type two K(2)-local spectrum at the prime three, to appear in Homology, Homotopy and Applications.
- [5] M. Hovey and H. Sadofsky, Invertible spectra in the E(n)-local stable homotopy category, J. London Math. Soc. **60** (1999), 284–302.
- [6] Y. Kamiya and K. Shimomura, A relation between the Picard group of the E(n)-local homotopy category and E(n)-based Adams spectral sequence, Homotopy theory: relations with algebraic geometry, group cohomology, and algebraic K-theory, Contemp. Math., **346** (Amer. Math. Soc., Providence, RI, 2004), 321–333.
- [7] R. Kato, The E(1)-local Picard graded homotopy groups of the sphere spectrum at the prime two, Hiroshima Math. J. **50** (2020), 137–150.
- [8] H. R. Miller, D. C. Ravenel and W. S. Wilson, Periodic phenomena in the Adams-Novikov spectral sequence, Ann. of Math. **106** (1977), 469–516.
- [9] D. C. Ravenel, *Nilpotence and periodicity in stable homotopy theory*, Annals of Mathematics Studies, 128 (Princeton University Press, Princeton, NJ, 1992).
- [10] K. Shimomura, The homotopy groups of L_2 -localized Toda-Smith spectrum V(1) at the prime 3, Trans. Amer. Math. Soc. **349** (1997), 1821–1850.
- [11] K. Shimomura, The homotopy groups of the L_2 -localized mod 3 Moore spectrum, J. Math. Soc. Japan **52** (2000), 65–90.

Ryo Kato

FACULTY OF FUNDAMENTAL SCIENCE
NATIONAL INSTITUTE OF TECHNOLOGY, NIIHAMA COLLEGE
NIIHAMA, 792-8580 JAPAN

 $e\text{-}mail\ address: ryo_kato_1128@yahoo.co.jp$

(Received March 30, 2021) (Accepted October 30, 2021)