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Betweenness centrality (BC) is a measure of the importance of a vertex in a graph, which is defined using
the number of the shortest paths passing through the vertex. Brandes proposed an efficient algorithm for
computing the BC scores of all vertices in a graph, which accumulates pair dependencies while traversing
single-source shortest paths. Although this algorithm works well on static graphs, its direct application to
dynamic graphs takes a huge amount of computation time because the BC scores must be computed from
scratch every time the structure of graph changes. Therefore, various algorithms for updating the BC scores
of all vertices have been developed so far. In this article, we propose a novel algorithm for updating the BC
scores of all vertices in a graph upon deletion of a single edge. We also show the validity and efficiency of
the proposed algorithm through theoretical analysis and experiments using various graphs obtained from
synthetic and real networks.
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1. Introduction

In the last two decades, complex networks have attracted a great deal of attention since they efficiently
describe a wide range of systems in biology, information technology, social science and so on [1].
Identifying important nodes in a network, such as super-spreaders of some disease in a population [2],
influencers in a social network [3] and central cities in an air transportation network [4], is a fundamental
task in network analysis. For this purpose, various centralities have been used so far [5]. Among them,
the betweenness centrality (BC) [6], which defines the importance of a node based on how often the node
appears on the shortest paths among all pairs of nodes, has been used for many applications including
transportation networks [7] and communication networks [8].

The most well-known algorithm for computing the BC scores of all nodes is the one proposed by
Brandes [9]. A key idea behind the Brandes algorithm is to compute the BC scores by accumulating pair
dependencies while traversing single-source shortest paths (SSSPs). Since the seminal paper of Brandes,
many variants of his algorithm have been proposed. Some of them parallelize the accumulation [10–15].
Some of the others approximate the BC scores by sampling and extrapolation [16–22] or by setting an
upper bound for the distance between nodes [23] or by using the hypergraph sketch [24].

The Brandes algorithm works efficiently on a network with a fixed topology. However, many networks
in the real world are dynamic in the sense that their nodes and/or links are added/deleted over time [25].
For such a dynamic network, it is very costly to compute the BC scores from scratch using the Brandes
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algorithm every time the network changes its structure. Therefore, various algorithms to efficiently update
and maintain the BC scores have been developed so far. One of the earliest algorithms is QUBE [26]
that caches maximum union cycles (MUCs). As far as exact algorithms are concerned, many of them
cache SSSPs to update the BC scores efficiently when an edge is added [27–32]. For example, Green
et al. [28] proposed an algorithm for unweighted graphs. Kas et al. [29] proposed an algorithm based on
the Ramalingam and Reps (RR) algorithm [33]. Nasre et al. [30] proposed an algorithm based on the idea
of Karger et al. [34]. Pontecorvi and Ramachandran [32] proposed an algorithm for fully dynamic graphs
based on the Demetrescu and Italiano (DI) algorithm [35]. Bergamini et al. [27] proposed an algorithm
based on the RR algorithm. As an algorithm that can deal with an edge deletion, Nasre et al. [31] proposed
an algorithm based on the DI algorithm. Other algorithms have also been proposed in the literature, such
as an MUC-based algorithm [36], an algorithm that updates the node BC scores and the edge BC scores
simultaneously [37], approximation algorithms [38–41] and a parallel algorithm [42].

In this article, we consider weighted directed/undirected graphs as mathematical models of net-
works and propose a novel algorithm for updating the BC scores of all vertices upon the deletion of a
directed/undirected single edge. We also show the efficiency of our algorithm through time complexity
analysis and experiments using various graphs obtained from synthetic and real networks. To be more
specific, we show that the worst-case time complexity of our algorithm is the same as the Brandes algo-
rithm, but the actual execution time is significantly reduced in many cases. Our algorithm makes use of the
RR algorithm [33], which has an advantage in memory consumption compared to the DI algorithm [35].
The space complexity of the RR algorithm is O(|V |2), where |V | denotes the number of vertices, while
that of the DI algorithm is O(|V |3) [35]. To the best of the authors’ knowledge, the RR algorithm has
not been used so far in any algorithm for updating the BC scores upon deletion of an edge, though some
existing algorithms [27, 29] use it to update the BC scores upon addition of an edge, as stated above.
Hence, our algorithm can be considered as a missing piece in the history of algorithms for updating the
BC scores on dynamic graphs. Our algorithm also makes use of the algorithm of Bergamini et al. [27] in
order to reduce memory requirements.

The remainder of this article is organized as follows. Section 2 presents the definition of the BC for
weighted strongly connected directed graphs and notations used in later discussions. Section 3 describes
our algorithm in detail and analyses its time complexity. Section 4 discusses the extension of the algorithm
to not strongly connected directed graphs and undirected graphs. Section 5 shows the efficiency of the
algorithm through experiments. Finally, Section 6 concludes this article with some remarks and future
challenges.

2. BC and Brandes algorithm

In this section, we focus our attention on simple weighted directed graphs (or digraphs) and introduce
the notion of the BC and the basic idea behind the Brandes algorithm for those graphs. A digraph G is
defined as an ordered pair (V , E), where V and E are the sets of vertices and directed edges, respectively.
Each member of E is an ordered pair (x, y) of vertices x and y, which represents the edge from x to y. A
digraph is said to be simple if it has neither self-loops nor multiple edges. A digraph is said to be weighted
if each edge (x, y) ∈ E has a weight (or length) denoted by w(x,y), which is assumed to be positive in this
article. A digraph is said to be strongly connected if, for any pair of two vertices s and t, there is a directed
path from s to t. The sets of successors and predecessors of vertex x in a digraph G = (V , E) are denoted
by SG(x) and PG(x), respectively, that is, SG(x) = {y | (x, y) ∈ E} and PG(x) = {y | (y, x) ∈ E}.

Let G = (V , E) be an weighted strongly connected digraph. The length of a path from vertex s to
vertex t is defined by the sum of the weights of the edges in the path. The length of the shortest paths
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AN ALGORITHM FOR UPDATING BC 3

from s to t, which is also called the distance from s to t, is denoted by dst . Also, the number of the shortest
paths from s to t is denoted by σst . For the sake of convenience, we define dss = 0 and σss = 1. The
number of the shortest paths from s to t that pass through x is denoted by σst(x). The shortest paths from
s to t form a subgraph of G. This subgraph is denoted by Gst = (Vst , Est), where Vst and Est are subsets
of V and E, respectively. The shortest paths from vertex s to all other vertices of G form a subgraph of
G. This subgraph is called the SSSPs from s and denoted by Gs = (V , Es), where Es is a subset of E.
The shortest paths to vertex t from all other vertices form a subgraph of G. This subgraph is called the
single-target shortest paths (STSPs) to t.

With these notations, the BC of vertex x is defined as

Bx =
∑

s∈V\{x}

( ∑
t∈V\{s,x}

σst(x)

σst

)
. (2.1)

In other words, Bx is the summation of the ratio of the number of the shortest paths from s to t which
pass through x, to the number of the shortest paths from s to t, over all pairs of s and t such that s �= x
and t �= s, x. The quantity σst(x)/σst is sometimes called the pair-dependency of s and t on x and denoted
by δst(x). Furthermore, the quantity

∑
t∈V\{s,x} δst(x) is called the dependency of s on x and denoted by

δs•(x). Using this notation, we can rewrite (2.1) as Bx =∑s∈V\{x} δs•(x).
Brandes [9] showed that δs•(x) is expressed in terms of the dependencies of s on the successors of x

on Gs as

δs•(x) =
∑

y∈SGs (x)

σsx

σsy
(1+ δs•(y)) (2.2)

and that if the number σsx of the shortest paths is computed for all x ∈ V when finding Gs then the value
of δs•(x) is obtained for all x ∈ V \ {s} by computing the right-hand side of (2.2) while traversing Gs from
sinks (vertices without successors) to the source s in the opposite direction of edges. Here, we should
note that δs•(x) = 0 if x is a sink, that is, SGs(x) = ∅. Making use of this idea, Brandes [9] developed
an efficient algorithm for computing the BC scores of all vertices that runs in O(|V ||E| + |V |2 log|V |)
time, where |V | is the number of vertices and |E| is the number of edges in G, while a straightforward
algorithm runs in O(|V |3) time, due to the explicit sum of the pair-dependencies δst(x) = σst(x)/σst .

3. Proposed algorithm

We propose a novel algorithm for updating the BC scores of all vertices in a simple weighted strongly
connected digraph G = (V , E) when a directed edge (u, v) ∈ E is deleted. It is assumed for simplicity
that the resulting digraph is also strongly connected in this section. However, this assumption will be
removed in Section 4. We first give some results of theoretical analysis which play important roles in our
algorithm and then explain the details of the algorithm.

In what follows, the prime symbol (′) is used when considering the digraph after the deletion of the
edge (u, v). For example, G′ = (V , E \ {(u, v)}) and d ′st represents the distance from s to t in G′. A vertex
s is called an affected source of a target t ∈ V if Gst is changed by the deletion of the edge. The set of
affected sources of t is denoted by S(t), and its complement is denoted by S(t) = V \ S(t). Similarly, a
vertex t is called an affected target of a source s ∈ V if Gst is changed by the deletion of the edge. The set
of affected targets of s is denoted by T(s), and its complement is denoted by T(s) = V \ T(s). How to
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find S(t) and T(s) is described in Section 3.2. The contribution of all t ∈ T(s)\ {x} to δs•(x) and δ′s•(x) are
denoted by �s•(x) =∑t∈T(s)\{x} δst(x) and �′s•(x) =

∑
t∈T(s)\{x} δ

′
st(x), respectively. Bergamini et al. [27]

proposed an algorithm to compute �s•(x) and �′s•(x) for all pairs of distinct vertices s and x. The details
of their algorithm are described also in Section 3.2.

3.1 Analysis

The next lemma characterizes the set of affected targets of a source s ∈ V and the set of affected sources
of a target t ∈ V when an edge is deleted.

Lemma 3.1 Let G = (V , E) be a simple weighted strongly connected digraph and suppose that an edge
(u, v) ∈ E is deleted from G. Then, the set of affected targets of a source s ∈ V and the set of affected
sources of a target t ∈ V are given by

T(s) = {t ∈ V | dst = dsu + w(u,v) + dvt}, (3.1)

S(t) = {s ∈ V | dst = dsu + w(u,v) + dvt}, (3.2)

respectively.

Proof. We consider only (3.1) because (3.2) can be proved in the same way. It is clear from the definition
of T(s) that t ∈ T(s) if and only if the subgraph Gst = (Vst , Est) of G, which consists of all the shortest
paths from s to t, contains the edge (u, v). It is also clear that Gst contains (u, v) if and only if

dst = dsu + w(u,v) + dvt . (3.3)

Therefore, t ∈ T(s) if and only if (3.3) holds, which means that S(t) is given by (3.1). �

The next lemma gives a sufficient condition for S(t) to be empty and one for T(s) to be empty.

Lemma 3.2 Let G = (V , E) be a simple weighted strongly connected digraph and suppose that an edge
(u, v) ∈ E is deleted from G. If s ∈ V is not an affected source of v, that is, s �∈ S(v), then T(s) is empty.
Similarly, if t ∈ V is not an affected target of u, that is, t �∈ T(u), then S(t) is empty.

Proof. Let us first suppose that s ∈ V is not an affected source of v. Then it follows from Lemma 3.1 that
dsv < dsu + w(u,v). Furthermore, for any vertex t ∈ V \ {s}, we have dst ≤ dsv + dvt < dsu + w(u,v) + dvt

which implies that t is not an affected target of s. Therefore, T(s) is empty. Let us next suppose that t ∈ V
is not an affected target of u. Then, it follows from Lemma 3.1 that dut < w(u,v) + dvt . Furthermore, for
any vertex s ∈ V \ {t}, we have dst ≤ dsu + dut < dsu +w(u,v) + dvt which implies that s is not an affected
source of t. Therefore, S(t) is empty. �

From Lemma 3.2, we obtain the following result which plays an important role when SSSPs are
updated in the algorithm we propose in this article.

Proposition 3.1 Let G = (V , E) be a simple weighted strongly connected digraph and suppose that an
edge (u, v) ∈ E is deleted from G. If G′st �= Gst for a pair of vertices s and t then s ∈ S(v) and t ∈ T(u).
In other words, if s �∈ S(v) or t �∈ T(u) then G′st = Gst .
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AN ALGORITHM FOR UPDATING BC 5

Proof. Suppose that G′st �= Gst for a pair of vertices s and t. Then, T(s) and S(t) are nonempty because
t ∈ T(s) and s ∈ S(t). Therefore, it follows from Lemma 3.2 that s ∈ S(v) and t ∈ T(u). �

From Lemma 3.2, we also obtain the following result, which plays a central role when the BC scores
are updated in the algorithm we propose in this article.

Proposition 3.2 Let G = (V , E) be a simple weighted strongly connected digraph and suppose that an
edge (u, v) ∈ E is deleted from G. Then,

B′x − Bx =
∑

s∈S(v)\{x}
(�′s•(x)−�s•(x)) (3.4)

for all x ∈ V .

Proof. For each x ∈ V , the amount of change in the BC score is expressed as follows:

B′x − Bx =
∑

s∈V\{x}

(
δ′s•(x)− δs•(x)

)

=
∑

s∈S(v)\{x}

(
δ′s•(x)− δs•(x)

)+ ∑
s∈S(v)\{x}

(
δ′s•(x)− δs•(x)

)

=
∑

s∈S(v)\{x}

⎛
⎝ ∑

t∈T(s)\{x}

(
δ′st(x)− δst(x)

)+ ∑
t∈T(s)\{s,x}

(
δ′st(x)− δst(x)

)⎞⎠

+
∑

s∈S(v)\{x}

⎛
⎝ ∑

t∈T(s)\{x}

(
δ′st(x)− δst(x)

)+ ∑
t∈T(s)\{s,x}

(
δ′st(x)− δst(x)

)⎞⎠ .

Here, for each s ∈ V \{x}, it is clear from the definition of T(s) that δ′st(x) = δst(x) for all t ∈ T(s)\{s, x}.
Also, as shown in Lemma 3.2, if s �∈ S(v) then T(s) is empty. Therefore, we have

B′x − Bx =
∑

s∈S(v)\{x}

⎛
⎝ ∑

t∈T(s)\{x}

(
δ′st(x)− δst(x)

)⎞⎠

=
∑

s∈S(v)\{x}

⎛
⎝ ∑

t∈T(s)\{x}
δ′st(x)−

∑
t∈T(s)\{x}

δst(x)

⎞
⎠

=
∑

s∈S(v)\{x}

(
�′s•(x)−�s•(x)

)

which completes the proof. �

D
ow

nloaded from
 https://academ

ic.oup.com
/com

net/article/10/4/cnac033/6658440 by O
kayam

a U
niversity user on 03 February 2023



6 Y. SATOTANI ET AL.

Algorithm 1 Update BC scores in a digraph upon deletion of an edge
Input: G = (V , E), w(x,y) for all (x, y) ∈ E, dxy and σxy for all x, y ∈ V , Bx for all x ∈ V , (u, v) ∈ E
Output: dxy and σxy for all x, y ∈ V , Bx for all x ∈ V

1. if duv = w(u,v) then
2. find S(v) using Algorithm 2 with t = v
3. for s ∈ S(v) do
4. find T(s) using Algorithm 3
5. end for
6. for s ∈ S(v) do
7. set Bx ← Bx −�s•(x) for all x ∈ V \ {s} using Algorithm 4 with M = −1
8. end for
9. for s ∈ S(v) do

10. update dsx and σsx for all x ∈ T(s) using Algorithm 5
11. end for
12. set G← (V , E \ {(u, v)})
13. for s ∈ S(v) do
14. set Bx ← Bx +�s•(x) for all x ∈ V \ {s} using Algorithm 4 with M = 1
15. end for
16. end if
17. return dxy and σxy for all x, y ∈ V and Bx for all x ∈ V

3.2 Algorithm

The algorithm we propose in this article is formally described in Algorithm 1. It receives a simple weighted
strongly connected digraph G = (V , E), the weight w(x,y) of every edge (x, y) ∈ E, the length dxy and the
number σxy of the shortest paths from x to y for every pair of vertices x and y, the BC score Bx of every
vertex x ∈ V and an edge (u, v) to be deleted from G as inputs, and returns the length d ′xy and the number
σ ′xy of the shortest paths from x to y in G′ = (V , E \ {(u, v)}) for every pair of vertices x and y, and the
BC score B′x of every x ∈ V in G′ as outputs.

Algorithm 1 first checks whether the equality duv = w(u,v) holds or not (see Line 1). If duv < w(u,v), then
it returns dxy and σxy for all x, y ∈ V and Bxy for all x ∈ V (see Line 17) because the deletion of the edge
(u, v) does not affect any shortest path between vertices. Otherwise, it finds S(v) using Algorithm 2 with
t = v (see Line 2). Algorithm 2 is a depth-first search for the set S(t) of affected sources of a given target
t ∈ V . Algorithm 1 next finds T(s) for each s ∈ S(v) using Algorithm 3 (see Lines 3–5). Algorithm 3 is a
depth-first search for the set T(s) of affected targets of a given source s ∈ V . Algorithm 1 then decreases
the BC score Bx by

∑
s∈S(v)\{x}�s•(x) for each x ∈ V using the algorithm of Bergamini et al. [27] (see

Lines 6–8). It then updates the values of dsx and σsx for each pair of vertices s and x such that s ∈ S(v) and
x ∈ T(s) using the RR algorithm (see Lines 9–11). The new values of dsx and σsx are equal to the length
d ′sx and the number σ ′sx of the shortest paths from s to x in G′ = (V , E \ {(u, v)}). Note that we do not need
to consider updating the values of dsx and σsx with s �∈ S(v) because s �∈ S(v) implies T(s) = ∅ as shown
in Lemma 3.2. Algorithm 1 then deletes the edge (u, v) (see Line 12) and increases the BC score Bx by∑

s∈S(v)\{x}�s•(x) for each x ∈ V using the algorithm of Bergamini et al. [27] (see Lines 13–15), where
we should note that �s•(x) is computed for G′ = (V , E \ {(u, v)}) and thus equal to �′s•(x). It finally
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Algorithm 2 Find affected sources of a target in a digraph
Input: G = (V , E), w(x,y) for all (x, y) ∈ E, dxy for all x, y ∈ V , (u, v) ∈ E, t ∈ V
Output: S(t)

1. S(t)← ∅

2. if dut = w(u,v) + dvt then
3. S(t)← {u}
4. create an empty stack A and then push u to A
5. R← ∅

6. while A is nonempty do
7. pop x from A
8. for y ∈ PG(x) \ R do
9. if dyt = dyu + w(u,v) + dvt then

10. S(t)← S(t) ∪ {y}
11. push y to A
12. end if
13. end for
14. R← R ∪ {x}
15. end while
16. end if
17. return S(t)

returns the values of dxy(= d ′xy) and σxy(= σ ′xy) for all x ∈ V and y ∈ V , and the value of Bx(= B′x) for all
x ∈ V (see Line 17).

In what follows, we explain Algorithms 2–5 in detail. Algorithm 2 receives a simple weighted strongly
connected digraph G = (V , E), the weight w(x,y) of every edge (x, y) ∈ E, the length dxy of the shortest
paths from x to y for every pair of vertices x and y, an edge (u, v) to be deleted from G, and a target t ∈ V
as inputs and returns the set of affected source S(t) as an output. It first sets S(t) ← ∅ (see Line 1). It
next checks whether the equality dut = w(u,v) + dvt holds or not, in other words, whether t ∈ T(u) or
not (see Line 2). If dut < w(u,v) + dvt then it returns S(t) = ∅ (see Line 17) because t �∈ T(u) implies
S(v) = ∅ as shown in Lemma 3.2. Otherwise, it sets S(t)← {u} (see Line 3) and performs a depth-first
search traversing vertices from u in the opposite direction of edges (see Lines 4–15). It finally returns
S(t) (see Line 17).

Algorithm 3 receives a simple weighted strongly connected digraph G = (V , E), the weight w(x,y) of
every edge (x, y) ∈ E, the length dxy of the shortest paths for every pair of x ∈ V and y ∈ V , an edge
(u, v) to be deleted from G, and a source s ∈ V as inputs, and returns the set of affected targets T(s) as
an output. The basic idea of this algorithm is the same as Algorithm 2.

Algorithm 4 receives a simple weighted strongly connected digraph G = (V , E), the weight w(x,y) of
every edge (x, y) ∈ E, the length dxy and the number σxy of the shortest paths for every pair of x ∈ V
and y ∈ V , the BC score Bx for all x ∈ V , a vertex s ∈ V , the set T(s) of affected targets of s, and
M ∈ {−1, 1,−2, 2} as inputs, and returns the updated BC score Bx for all x ∈ V . The value of M
determines the mode of this algorithm. When M = −1 (1, resp.), it decrements (increments, resp.) Bx by
�s•(x) for all x ∈ V \ {s}. The values M = −2 and M = 2 are used only when Algorithm 1 is extended
so that it can handle undirected graphs (see Section 4.2 for details). Algorithm 4 is based on a theorem
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Algorithm 3 Find affected targets of a source in a digraph
Input: G = (V , E), w(x,y) for all (x, y) ∈ E, dxy for all x, y ∈ V , (u, v) ∈ E, s ∈ V
Output: T(s)

1. T(s)← ∅

2. if dsv = dsu + w(u,v) then
3. T(s)← {v}
4. create an empty stack A and then push v to A
5. R← ∅

6. while A is nonempty do
7. pop x from A
8. for y ∈ SG(x) \ R do
9. if dsy = dsu + w(u,v) + dvy then

10. T(s)← T(s) ∪ {y}
11. push y to A
12. end if
13. end for
14. R← R ∪ {x}
15. end while
16. end if
17. return T(s)

given by Bergamini et al. [27] which says that �s•(x) is expressed in terms of �s•(y) with y ∈ SGs(x) as

�s•(x) =
∑

y∈SGs (x)∩T(s)

σsx

σsy
(1+�s•(y))+

∑
y∈SGs (x)\T(s)

σsx

σsy
�s•(y). (3.5)

Algorithm 4 first initializes �s•(x) to zero for all x ∈ V (see Lines 1–3). It next creates an empty priority
queue Q (see Line 4), and then enqueues each t ∈ T(s) to Q with priority dst (see Lines 5–7). It then
computes the right-hand side of (3.5) while traversing Gs from vertices in T(s) to the source s in the
opposite direction of edges, and decrements or increments, depending on the value of M, the BC score
of each vertex in Q when dequeued (see Lines 8–23). It finally returns the new BC scores of all vertices.

Algorithm 5 receives a simple weighted strongly connected digraph G = (V , E), the weight w(x,y) of
every edge (x, y) ∈ E, the length dxy and the number σxy of the shortest paths for every pair of x ∈ V and
y ∈ V , an edge (u, v) to be deleted, a vertex s ∈ V and the set T(s) of affected targets of s as inputs, and
returns the new values of dxy and σxy for all x ∈ V and y ∈ V . It first checks whether T(s) is empty or
not (see Line 1). If T(s) is empty then it just returns the values of dsx and σsx for all x ∈ V (see Line 25)
because Gs = G′s follows from Proposition 3.1. Otherwise, it initializes the values of dsx and σsx to H
and 0, respectively, where H is a sufficiently large number (see Lines 2–4). This process is necessary
only when G′ = (V , E \ {(u, v)}) is not strongly connected (see Section 4 for details) and thus can be
skipped under the assumption that G′ is strongly connected. It then updates the values of dsx and σsx in
increasing order of distance from vertex s to vertex x in G′ = (V , E ′) = (V , E \ {(u, v)}) using the idea
of RR algorithm [33] (see Lines 5–24). It finally returns the updated values of dxy and σxy for all x ∈ V
and y ∈ V (see Line 25).
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AN ALGORITHM FOR UPDATING BC 9

Algorithm 4 Update BC scores with respect to a source in a digraph
Input: G = (V , E), w(x,y) for all (x, y) ∈ E, dxy and σxy for all x, y ∈ V , Bx for all x ∈ V , s ∈ V , T(s),

M ∈ {−1, 1,−2, 2}
Output: Bx for all x ∈ V

1. for x ∈ V do
2. �s•(x)← 0
3. end for
4. create an empty priority queue Q
5. for t ∈ T(s) do
6. enqueue t to Q with priority dst

7. end for
8. while Q is nonempty do
9. dequeue x with the highest priority from Q

10. Bx ← Bx +M ·�s•(x)
11. for y ∈ PG(x) do
12. if y �= s and dsx = dsy + w(y,x) then
13. if x ∈ T(s) then
14. �s•(y)← �s•(y)+ (σsy/σsx) · (1+�s•(x))
15. else
16. �s•(y)← �s•(y)+ (σsy/σsx) ·�s•(x)
17. end if
18. if y is not in Q then
19. enqueue y to Q with priority dsy.
20. end if
21. end if
22. end for
23. end while
24. return Bx for all x ∈ V

3.3 Complexity analysis

Here, we examine the efficiency of the proposed algorithm in terms of time complexity. For the con-
venience of further discussion, we begin with introducing some notations. The set of vertices visited in
Line 7 of Algorithm 1 is denoted by τ(s) = T(s)∪ {x |�s•(x) > 0}. Analogously, the set of vertices vis-
ited in Line 14 of Algorithm 1 is denoted by τ ′(s) = T(s)∪ {x |�′s•(x) > 0}. For the digraph G = (V , E)

and a subset W of V , the sum of the number of vertices in W and their indegrees and outdegrees is
denoted by ‖W‖G, that is, ‖W‖G = |W | +∑v∈W (|PG(v)| + |SG(v)|). When considering only indegrees
(outdegrees, resp.), we use the notation ‖W‖in

G (‖W‖out
G , resp.), that is, ‖W‖in

G = |W | +
∑

v∈W |PG(v)| and
‖W‖out

G = |W | +
∑

v∈W |SG(v)|. For the digraph G′ = (V , E \ {(u, v)}) and a subset W of V , we use the
notations ‖W‖G′ , ‖W‖in

G′ and ‖W‖out
G′ in the same way as above.

Proposition 3.3 The time complexity of Algorithm 1 is given by

O
(
‖S(v)‖in

G +
∑

s∈S(v)

(
‖τ(s)‖G + |τ(s)| log |τ(s)| + ∥∥τ ′(s)∥∥in

G′ +
∣∣τ ′(s)∣∣ log

∣∣τ ′(s)∣∣)
)

. (3.6)
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10 Y. SATOTANI ET AL.

Algorithm 5 Update SSSPs with respect to a source in a digraph
Input: G = (V , E), w(x,y) for all (x, y) ∈ E, dxy and σxy for all x, y ∈ V , (u, v) ∈ E, s ∈ V , T(s)
Output: dsx and σsy for all x ∈ V

1. if T(s) �= ∅ then
2. for x ∈ T(s) do
3. set dsx ← H, where H is a sufficiently large number, and σsx ← 0
4. end for
5. G′ ← (V , E \ {(u, v)})
6. create an empty priority queue Q
7. for x ∈ T(s) do
8. if PG′(x) \ T(s) �= ∅ then
9. enqueue x to Q with priority miny∈PG′ (x)\T(s){dsy + w(y,x)}

10. end if
11. end for
12. while Q is nonempty do
13. dequeue x with the lowest priority d from Q
14. dsx ← d
15. σsx ←∑

y∈{z∈PG′ (x) | dsx=dsz+w(z,x)} σsy

16. for y ∈ SG′(x) ∩ T(s) do
17. if y does not exist in Q then
18. enqueue y to Q with priority dsx + w(x,y)

19. else if dsx + w(x,y) is less than the priority of y in Q then
20. update the priority of y in Q to dsx + w(x,y)

21. end if
22. end for
23. end while
24. end if
25. return dsx and σsx for all x ∈ V

Proof. In Algorithm 1, the process of finding S(v) in Line 2 runs in O (‖S(v)‖in
G

)
time because all

vertices in S(v) and their predecessors are scanned (see Algorithm 2). The process of finding T(s) for
all s ∈ S(v) in Lines 3–5 runs in O (∑

s∈S(v) ‖T(s)‖out
G

)
time, because for each s ∈ S(v) all vertices in

T(s) and their successors are scanned (see Algorithm 3). Since ‖T(s)‖out
G = |T(s)| +∑v∈T(s) |SG(v)| ≤

|T(s)|+∑v∈T(s) (|PG(v)| + |SG(v)|) = ‖T(s)‖G ≤ ‖τ(s)‖G, where the last inequality follows from the fact
that T(s) ⊆ τ(s), we can replace O (∑

s∈S(v) ‖T(s)‖out
G

)
in the previous sentence with O (∑

s∈S(v) ‖τ(s)‖G

)
.

In the following analysis, we assume that a binary max heap is used for the priority queue in Algorithm 4
and a binary min heap is used in Algorithm 5. Then, the process of decreasing the BC scores of all
s ∈ S(v) in Lines 6–8 runs in

O
(∑

s∈S(v)

(‖τ(s)‖in
G + |τ(s)| log |τ(s)|)

)
(3.7)

D
ow

nloaded from
 https://academ

ic.oup.com
/com

net/article/10/4/cnac033/6658440 by O
kayam

a U
niversity user on 03 February 2023



AN ALGORITHM FOR UPDATING BC 11

and the process of increasing the BC scores of all s ∈ S(v) in Lines 13–15 runs in

O
(∑

s∈S(v)

(∥∥τ ′(s)∥∥in

G′ +
∣∣τ ′(s)∣∣ log

∣∣τ ′(s)∣∣)
)

.

These results are based on the work of Bergamini et al. [27], but more precise because ‖τ(s)‖G and
‖τ ′(s)‖G′ in their work are replaced with ‖τ(s)‖in

G and ‖τ ′(s)‖in
G′ , respectively. Since ‖τ(s)‖in

G = |τ(s)|G+∑
v∈τ(s) |PG(v)| ≤ |τ(s)|G +∑v∈τ(s) (|P|G(v)+ |SG(v)|) = ‖τ(s)‖G, we can replace (3.7) with

O
(∑

s∈S(v)

(‖τ(s)‖G + |τ(s)| log |τ(s)|)
)

. (3.8)

The time complexity for updating the values of dsx and σsx for all pairs (s, x) ∈ S(v)×T(s) in Lines 9–11
is given by

O
(∑

s∈S(v)

(‖T(s)‖G′ + |T(s)| log |T(s)|)
)

. (3.9)

This result is based on the work of RR [33]. Their assumption on how to implement the priority queue is
different from ours, but it is easy to see that the same conclusion is reached. Since ‖T(s)‖G′ ≤ ‖T(s)‖G ≤
‖τ(s)‖G and |T(s)| ≤ |τ(s)| follow from the fact that E ′ ⊂ E and T(s) ⊆ τ(s), we can replace (3.9)
with (3.8).

Summarizing the observations above, we can conclude that the computational complexity of
Algorithm 1 is given by (3.6). �

Some remarks should be made concerning Proposition 3.3. The first one is about the worst-case
complexity. Substituting ‖S(v)‖in

G = |V | + |E|, |S(v)| = |V |, ‖τ(s)‖G = |V | + |E|, |τ(s)| = |V |,
‖τ ′(s)‖in

G′ = |V | + |E| and |τ ′(s)| = |V | into (3.6), we have O(|V ||E| + |V |2 log |V |). Hence, the worst-
case complexity of Algorithm 1 is equal to that of Brandes algorithm. However, the execution time of
the proposed algorithm is expected to be much shorter than the worst case because S(·) and T(·) contain
a very small number of vertices in general.

The second one is about the time complexity in the case where G is unweighted, that is, all edges
of G have weight 1. In this case, we may be able to further reduce the execution time of the proposed
algorithm by using another heap to implement the priority queues in Algorithms 4 and 5. In fact, if a
relaxed heap [43] or a radix heap [44] is used for example, enqueueing of a new item and updating the
priority of an existing item can be done in constant amortized time. However, the time complexity does
not change because these heaps take O(log p) time to dequeue the item with the highest priority costs,
where p is the number of items in the heap [33].

The third one is about redundant operations. For each s ∈ S(v), Algorithm 1 visits all vertices in
τ(s) in Line 7 and those in τ ′(s) in Line 14 to update their BC scores. These steps may contain a lot
of redundant operations. This can happen when �s•(x) = �′s•(x) > 0 holds for many x ∈ τ(s) ∪ τ ′(s)
because many pairs of updates of the BC score Bx in Lines 7 and 14 cancel out each other. To see this,
let us consider the digraph shown in Fig. 1 and suppose that the directed edge (u, v) is deleted. The
set of all edges directed from left to right shows the SSSPs from s in G, and the set of those edges
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12 Y. SATOTANI ET AL.

Fig. 1. An example of a digraph which causes many redundant operations in Algorithm 1.

except (u, v) shows the SSSPs from s in G′. It is easily seen from the figure that the set of affected
targets of s is T(s) = {v, w, z}. Also, it is seen from the figure that �s•(v) = ∑

t∈{w,z} σst(v)/σst = 2,
�s•(u) = ∑

t∈{v,w,z} σst(u)/σst = 1/2 + 1/2 + 1/2 = 3/2, �s•(y) = ∑
t∈{v,w,z} σst(y)/σst = 1/2 +

1/2 + 1/2 = 3/2, �s•(x) = ∑
t∈{v,w,z} σst(x)/σst = 3 and �′s•(v) =

∑
t∈{w,z} σ

′
st(v)/σ

′
st = 2 = �s•(v),

�′s•(u) =∑t∈{v,w,z} σ
′
st(u)/σ ′st = 0, �′s•(y) =

∑
t∈{v,w,z} σ

′
st(y)/σ

′
st = 3 and �′s•(x) =

∑
t∈{v,w,z} σ

′
st(x)/σ

′
st =

3 = �s•(x). Furthermore, for any vertex a ∈ V \ {s, u, v, w, x, y, z}

�s•(a) =
∑

t∈T(s)\{a}
δst(a) =

∑
t∈{v,w,z}

σst(a)

σst
=

∑
t∈{v,w,z}

σsx(a)σxt

σsxσxt
= 3

σsx(a)

σsx
> 0,

�′s•(a) =
∑

t∈T(s)\{a}
δ′st(a) =

∑
t∈{v,w,z}

σ ′st(a)

σ ′st

=
∑

t∈{v,w,z}

σsx(a)σ ′xt

σsxσ ′xt

= 3
σsx(a)

σsx
= �s•(a).

Algorithm 1 thus visits all vertices in τ(s) = V \{s} (τ ′(s) = V \{s, u}, resp.) and updates their BC scores
in Line 7 (Line 14, resp.) when vertex s is considered as a source. However, for any vertex in V \ {s, u, y},
these two updates are unnecessary because they cancel out with each other.

4. Extension of the proposed algorithm

In this section, we show that the algorithm proposed in the previous section is easily extended so that it
can be applied to not strongly connected digraphs and undirected graphs.

4.1 Extension to not strongly connected digraphs

We first consider an extension of the proposed algorithm to not strongly connected digraphs. The definition
of the BC of vertex x shown in (2.1) is directly applied to not strongly connected digraphs by assuming
that σst(x)/σst = 0 when there is no directed path from s to t, or by using the convention that zero divided
by zero is zero [6, 45]. The algorithm proposed in the previous section is also directly applied to not
strongly connected digraphs by setting the value of dxy to a sufficiently large number H for all pairs of
vertices x and y such that σxy = 0 or there is no directed path from x to y. In what follows, we shall show
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AN ALGORITHM FOR UPDATING BC 13

that Algorithms 2–5 work correctly when H = |V | ·max(x,y)∈E{w(x,y)} for example. It is clear that in this
case H is greater than dxy for any pair of x and y such that σxy �= 0.

We first show that the output S(t) of Algorithm 2 does not contain x if σxt = 0, and that the output
T(s) of Algorithm 3 does not contain y if σsy = 0. We consider only the former statement because the
latter one can be analysed in the same way. If σxt = 0 then there exist two possible cases: (i) σvt = 0
and (ii) σvt �= 0 and σxu = 0. In the first case, the condition dut = w(u,v) + dvt in Line 2 is not satisfied
independent of the value of dut because w(u,v)+dvt = w(u,v)+H > H ≥ dut . Note that the equal sign in the
last inequality is necessary because dut = H when σut = 0. In the second case, it is clear from Lines 3–15
that only those vertices having a directed path to t can enter S(t). Therefore, in both cases, vertex x such
that σxt = 0 is never contained in S(t). We next show that Algorithm 4 does not update By if σsy = 0. It
is clear from Lines 12–21 that By is updated only when the condition dsx = dsy + w(y,x) in Line 12 holds.
However, this is impossible because dsy+w(y,x) = H +w(y,x) > H ≥ dsx. We then show that Algorithm 5
does not update dsx and σsx if σsx = 0. Note that if σsx = 0 then x is not contained in T(s). It is clear from
Lines 2–4 and Lines 13–15 that, in order for dsx and σsx to be updated, x must be a member of T(s) or
must be enqueued to the priority queue Q. In addition, it is clear from Lines 7–11 and Lines 16–22 that
only vertices in T(s) are enqueued to Q. Therefore, dsx and σsx are not updated if σsx = 0. We finally show
that Algorithm 5 updates dsx and σsx to H and 0, respectively, for any x ∈ T(s) such that the number of the
shortest paths from s to x decreases to zero due to deletion of the edge (u, v). It is clear from Lines 2–4
that dsx and σsx are set to H and 0, respectively. Since PG′(x) \ T(s) = ∅ (otherwise there is at least one
directed path from s to x in G′ which is a contradiction), x is not enqueued to Q in Line 9. In addition, it
is easily seen from Lines 8–10 and Lines 16–22 that only those vertices having a directed path from s in
G′ are enqueued to Q. Therefore, dsx and σsx are not updated after Line 4.

4.2 Extension to undirected graphs

We next consider an extension of the proposed algorithm to undirected graphs. An undirected graph GU

is defined as an ordered pair (V , EU) where V and EU are the sets of vertices and edges, respectively.
Each member of EU is an unordered pair {x, y} of vertices x and y, which represents the undirected edge
connecting x and y. GU is said to be simple if it has neither self-loops nor multiple edges. GU is said to
be weighted if each edge {x, y} ∈ EU has a weight (or length) denoted by w{x,y}, which is assumed to be
positive in this article. GU is said to be connected if, for any pair of two vertices x and y, there is a path
connecting x and y.

Let GU = (V , EU) be a simple weighted undirected graph, and suppose that an edge {u, v} ∈ EU is
deleted from GU. Since GU can be viewed as a digraph G = (V , E) by replacing each undirected edge
{x, y} ∈ EU with two directed edges (x, y) and (y, x), and setting the weights of these edges as w(x,y) =
w(y,x) = w{x,y}, the definition of the BC for digraphs is directly applied to GU using this correspondence.
Also, it is easy to see that we can update the BC scores of all vertices in GU by running Algorithm 1
on the corresponding digraph G twice, one for deletion of the edge (u, v) and the other for deletion of
the edge (v, u). However, as shown later, we can obtain the same result by running a slightly modified
version of Algorithm 1 only once.

In what follows, we first give some results of our analysis on the amount of change in the BC scores
of each vertex in GU upon deletion of the edge {u, v}, and then present the modified algorithm. Let
G = (V , E) be the digraph obtained from GU = (V , EU) in the way stated above. Let G′ = (V , E ′) be the
digraph obtained from G by deleting the edge (u, v) ∈ E. We use the prime symbol (′) to denote quantities
in G′ like B′x and d ′st . The set of affected targets of a source s ∈ V and the one of affected sources of a
target t ∈ V due to deletion of the edge (u, v) from G are denoted by Tu→v(s) and Su→v(t), respectively.
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14 Y. SATOTANI ET AL.

Let G′′ = (V , E ′′) be the digraph obtained from G by deleting the two edges (u, v) and (v, u), or from G′

by deleting the edge (v, u). We use the double prime symbol (′′) to denote quantities in G′′ like B′′x and
d ′′st . The set of affected targets of a source s ∈ V and the one of affected sources of a target t ∈ V due to
deletion of the two edges (u, v) and (v, u) from G are denoted by Tu↔v(s) and Su↔v(t), respectively.

The next lemma gives relationships among the four sets Tu↔v(s), Su↔v(t), Tu→v(s) and Su→v(t).

Lemma 4.1 For each s ∈ V , Tu↔v(s) is given by

Tu↔v(s) = Tu→v(s) ∪ Su→v(s). (4.1)

Also, for each t ∈ V , Su↔v(t) are given by

Su↔v(t) = Su→v(t) ∪ Tu→v(t). (4.2)

Proof. We consider only (4.1) because (4.2) can be proved in the same way. It is clear that t ∈ Tu↔v(s)
if and only if the set of all the shortest paths Gst = (Vst , Est) contains at least one of the two edges (u, v)
and (v, u), which implies that

Tu↔v(s) = {t ∈ V | dst = dsu + w(u,v) + dvt or dst = dsv + w(v,u) + dut}.

The first condition dst = dsu + w(u,v) + dvt means that t is a member of Tu→v(s). The second condition
dst = dsv+w(v,u)+dut is equivalent to dts = dtu+w(u,v)+dvs due to symmetry of G, and the latter equation
means that t is a member of Su→v(s). Therefore Tu↔v(s) is given by (4.1). �

From Lemma 4.1, we obtain the following results which play important roles in the algorithm we
propose later.

Proposition 4.1 If G′′st �= Gst , then s belongs to one of the two disjoint sets Su→v(v) and Tu→v(u).

Proof. Suppose that G′′st �= Gst . Then, we see from Lemma 4.1 that s ∈ Su→v(t)∪ Tu→v(t). If s ∈ Su→v(t),
G′st �= Gst and thus s ∈ Su→v(v) follows from Proposition 3.1. Similarly, if s ∈ Tu→v(t), G′ts �= Gts and
thus s ∈ Tu→v(u) follows from Proposition 3.1. Therefore, s ∈ Su→v(v)∪Tu→v(u). Hence, we only have to
show that Su→v(v) and Tu→v(u) are disjoint. We prove this by contradiction. Let us assume that there exists
an x such that x ∈ Su→v(v)∩ Tu→v(u). Then dxv = dxu +w(u,v) and dux = w(u,v) + dvx hold simultaneously.
From these two equations and symmetry of G, we have dxu + w(u,v) = dxu − w(u,v), which implies that
w(u,v) = 0. This is a contradiction. �

Proposition 4.2 For each x ∈ V , the difference between B′′x and Bx is expressed in terms of B′x and Bx as
follows:

B′′x − Bx = 2(B′x − Bx). (4.3)

Proof. It follows from Proposition 4.1 that the difference between B′′x and Bx is expressed as follows:

B′′x − Bx
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AN ALGORITHM FOR UPDATING BC 15

=
∑

s∈(Su→v(v)∪Tu→v(u))\{x}

⎛
⎝ ∑

t∈Tu↔v(s)\{x}
(δ′′st(x)− δst(x))

⎞
⎠

=
∑

s∈Su→v(v)\{x}

⎛
⎝ ∑

t∈Tu→v(s)\{x}
(δ′′st(x)− δst(x))

⎞
⎠+ ∑

s∈Tu→v(u)\{x}

⎛
⎝ ∑

t∈Su→v(s)\{x}
(δ′′st(x)− δst(x))

⎞
⎠.

Note that s ∈ Tu→v(u) \ {x} and t ∈ Su→v(s) \ {x} if and only if t ∈ Su→v(v) \ {x} and s ∈ Tu→v(t) \ {x}.
Using this fact and the symmetry of G and G′′, the above equation can be rewritten as

B′′x − Bx

= 2
∑

s∈Su→v(v)\{x}

⎛
⎝ ∑

t∈Tu→v(s)\{x}
(δ′′st(x)− δst(x))

⎞
⎠

= 2
∑

s∈Su→v(v)\{x}

⎛
⎝ ∑

t∈Tu→v(s)\{x}
(δ′′st(x)− δ′st(x)+ δ′st − δst(x))

⎞
⎠

= 2
∑

s∈Su→v(v)\{x}

⎛
⎝ ∑

t∈Tu→v(s)\{x}
(δ′′st(x)− δ′st(x))

⎞
⎠+ 2

∑
s∈Su→v(v)\{x}

⎛
⎝ ∑

t∈Tu→v(s)\{x}
(δ′st(x)− δst(x))

⎞
⎠.

We now prove that G′′st = G′st for all pairs of s and t such that s ∈ Su→v(v) \ {x} and t ∈ Tu→v(s) \ {x}. If
this is true, the first term of the above equation is zero and thus

B′′x − Bx = 2
∑

s∈Su→v(v)\{x}

⎛
⎝ ∑

t∈Tu→v(s)\{x}
(δ′st(x)− δst(x))

⎞
⎠ = 2(B′x − Bx)

holds. The proof is done by contradiction. Namely, we assume that G′′st �= G′st for some s ∈ Su→v(v) \ {x}
and t ∈ Tu→v(s) \ {x}, and then draw a contradiction. Since G′′ is obtained from G′ by deleting the edge
(v, u), the condition G′′st �= G′st implies that d ′su = d ′sv+w(v,u). Also, the condition s ∈ Su→v(v)\{x} implies
that dsv = dsu + w(u,v). In addition, since Gsu does not contain the edge (u, v), we have Gsu = G′su and
thus dsu = d ′su. Furthermore, since Gsv contains the edge (u, v), we have G′sv �= Gsv and thus d ′sv ≥ dsv.
Using these relationships, we have dsv = dsu + w(u,v) = d ′su + w(u,v) = d ′sv + 2w(u,v) ≤ d ′sv. From the last
inequality, we have w(u,v) ≤ 0 which is a contradiction. �

Proposition 4.2 says that if we slightly modify Algorithm 1 then we can update the BC scores by
running it only once. The modifications needed are as follows. First, we need to replace �s•(x) with
2�s•(x) in the process of updating the BC scores in Lines 7 and 14. This is clear from Proposition 4.2.
Second, after the process of updating the length dsx and number σsx of all the shortest paths from s to x in
Line 10, we need to copy dsx and σsx to dxs and σxs, respectively, because the set of the shortest paths from
x to s, which is affected by deletion of the edge (v, u), is not considered. By applying these modifications
to Algorithm 1, we obtain an algorithm for updating the BC scores of all vertices in GU on deletion of an
undirected edge {u, v}, which is shown in Algorithm 6.
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Algorithm 6 Update BC scores upon deletion of an edge in an undirected graph

Input: GU = (V , EU), w{x,y} for all {x, y} ∈ EU, dxy and σxy for all x, y ∈ V , Bx for all x ∈ V , {u, v} ∈ EU

Output: dxy and σxy for all x, y ∈ V , Bx for all x ∈ V
1. Convert GU into a digraph G = (V , E) by replacing each edge {x, y} ∈ EU with two directed edges

(x, y) and (y, x) and setting w(x,y) = w(y,x) = w{x,y}
2. if duv = w(u,v) then
3. find S(v) using Algorithm 2 with t = v
4. for s ∈ S(v) do
5. find T(s) using Algorithm 3
6. end for
7. for s ∈ S(v) do
8. set Bx ← Bx − 2�s•(x) for all x ∈ V \ {s} using Algorithm 4 with M = −2
9. end for

10. for s ∈ S(v) do
11. update dsx and σsx for all x ∈ T(s) using Algorithm 5
12. set dxs ← dsx and σxs ← σsx for all x ∈ T(s)
13. end for
14. set G← (V , E \ {(u, v)})
15. for s ∈ S(v) do
16. set Bx ← Bx + 2�s•(x) for all x ∈ V \ {s} using Algorithm 4 with M = 2
17. end for
18. end if
19. return dxy and σxy for all x, y ∈ V and Bx for all x ∈ V

5. Experiments

In this section, we examine the efficiency of the proposed algorithm through experiments using synthetic
and real networks. The proposed algorithm was written in C language1, compiled with gcc 9.3.0 with
-Ofast flag and with igraph 0.9.6, and ran in a single thread. The priority queue was implemented with
a radix heap. All experiments were performed on a computer with an Intel® Core™ i7-10700 and 16GB
RAM running Ubuntu 20.04.3 LTS.

5.1 Performance evaluation on synthetic networks

The authors first applied the proposed and Brandes algorithms to unweighted/weighted undirected graphs
based on random regular graphs (RRGs) and those based on the Barabási–Albert (BA) model [46]. Since
RRGs and graphs generated by the BA model are unweighted, they were converted to weighted graphs
by assigning an integer weight randomly selected from 1 to 5 with equal probability to every edge. The
number of vertices, denoted by n, was set to ten different values 100, 200, . . . , 1000, and the average
degree, denoted by k, was set to two different values 4 and 8. For each value of the pair (n, k), 50 different
graphs were generated. For each of the 50 graphs, an edge to be deleted was randomly selected 100

1 The source codes are publicly available at https://github.com/y-satotani/dynamic-betweenness.
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Fig. 2. Comparison of mean execution time on synthetic undirected graphs.

times. For each of the 100 selections of an edge, the two algorithms were run and the execution time was
measured.

Figure 2 shows the relationship between the number of vertices and the mean execution time of the two
algorithms on the four types of undirected graphs: (i) unweighted ones based on RRGs with k = 4 (upper
left), (ii) weighted ones based on RRGs with k = 4 (lower left), (iii) unweighted ones based on the BA
model with k = 4 (upper right), and (iv) weighted ones based on the BA model with k = 4 (lower right).
We see from the figure that the proposed algorithm always outperforms the Brandes algorithm. Also,
using the log–log regression analysis, we see that the mean execution time of the proposed algorithm
is proportional to (i) n1.28, (ii) n1.31, (iii) n1.30 and (iv) n1.36 while the one of the Brandes algorithm is
proportional to (i) n1.92, (ii) n2.06, (iii) n1.92 and (iv) n2.06. These observations suggest that the main idea
behind the proposed algorithm, which is to update dependencies δs•(x) only when it is necessary, is
effective in practice.

Table 1 shows the mean and maximum execution time of the proposed and Brandes algorithms on
synthetic unweighted graphs with n ∈ {500, 1000}. It is seen from the table that the proposed algorithm
is about 3.8–6.8 times faster than the Brandes algorithm on average. However, the maximum execution
time of the proposed algorithm is longer than that of the Brandes algorithm in some cases. One possible
reason for this is that the proposed algorithm needs to allocate and free memory many times when many
vertices are affected by the edge deletion. Table 2 shows the mean and maximum execution times of
the two algorithms on synthetic weighted graphs with n ∈ {500, 1000}. It is seen from the table that the
proposed algorithm is about 21.3–68.9 times faster than the Brandes algorithm on average. In addition,
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Table 1 Execution time (in milliseconds) on synthetic unweighted graphs

Model n k Proposed Brandes

Mean Maximum Mean Maximum

RRG 500 4 2.593 4.300 9.730 11.120
RRG 500 8 2.300 4.381 13.807 15.687
RRG 1000 4 7.433 11.141 40.531 44.396
RRG 1000 8 7.925 12.015 53.938 58.554
BA 500 4 2.625 15.992 10.070 11.464
BA 500 8 3.399 13.938 13.492 14.888
BA 1000 4 7.738 61.783 42.183 45.260
BA 1000 8 10.679 60.935 56.996 71.297

Table 2 Execution time (in milliseconds) on synthetic weighted graphs

Model n k Proposed Brandes

Mean Maximum Mean Maximum

RRG 500 4 1.274 6.014 32.492 37.904
RRG 500 8 0.948 5.674 41.992 59.189
RRG 1000 4 3.629 15.197 142.977 164.676
RRG 1000 8 2.719 14.771 187.212 197.707
BA 500 4 1.452 12.939 30.916 33.208
BA 500 8 1.216 13.537 41.307 44.678
BA 1000 4 4.195 78.782 134.309 145.359
BA 1000 8 3.822 68.322 180.481 190.646

unlike the case of unweighted graphs, the maximum execution time of the proposed algorithm is shorter
than that of the Brandes algorithm in all cases.

5.2 Performance evaluation on real networks

The authors next applied the proposed and Brandes algorithms to various real networks taken from
Stanford large network dataset collection [47]. This collection has more than 50 large networks such
as social networks, web graphs, road networks, Internet, citation networks, collaboration networks and
communication networks. Among them, five collaboration networks [48] (beginning with ‘ca’ in Table 3),
six networks collected by the GEMSEC project [49] (beginning with ‘gemsec’), 10 networks collected
by the MUSAE project [50] (beginning with ‘musae’), two trust networks on Bitcoin platform [51, 52]
(beginning with ‘soc-sign-bitcoin’) and two networks related to Wikipedia [53–55] (beginning with
‘wiki’) were selected. The two trust networks on the Bitcoin platform are directed and weighted, but
their weights were ignored in this experiment because some of the weights are negative. Namely, these
two were regarded as directed and unweighted networks in this experiment. The two networks related
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Table 3 Mean execution time on real networks (in seconds)

Original network Vertices Edges Proposed Brandes

ca-AstroPh 18772 198110 1.340 31.790
ca-CondMat 23133 93497 0.991 29.860
ca-GrQc 5242 14496 0.035 0.858
ca-HepPh 12008 118521 0.405 9.620
ca-HepTh 9877 25998 0.166 4.261
gemsec-facebook-athletes 13866 86858 0.698 18.839
gemsec-facebook-company 14113 52310 0.499 15.643
gemsec-facebook-government 7057 89455 0.328 6.312
gemsec-facebook-politician 5908 41729 0.086 3.127
gemsec-facebook-public-figure 11565 67114 0.602 12.275
gemsec-facebook-tvshow 3892 17262 0.041 1.045
musae-facebook 22470 171002 1.697 52.239
musae-twitch-DE 9498 153138 1.122 12.979
musae-twitch-ENGB 7126 35324 0.364 4.086
musae-twitch-ES 4648 59382 0.318 2.651
musae-twitch-FR 6549 112666 0.765 6.398
musae-twitch-PTBR 1912 31299 0.073 0.439
musae-twitch-RU 4385 37304 0.318 1.845
musae-wikipedia-chameleon 2277 31421 0.015 0.488
musae-wikipedia-crocodile 11631 170918 3.821 16.016
musae-wikipedia-squirrel 5201 198493 0.392 5.040
soc-sign-bitcoinalpha 3783 24186 0.084 0.685
soc-sign-bitcoinotc 5881 35592 0.162 1.621
wiki-RfA 11381 189003 0.316 5.193
wiki-Vote 7115 103689 0.060 1.331

to Wikipedia are directed and unweighted. All other networks are undirected and unweighted. For each
of the graphs and digraphs obtained from the selected networks, an edge to be deleted was randomly
selected 100 times. For each of the 100 selections of an edge, the proposed and Brandes algorithms were
run and the execution time was measured.

Table 3 shows the mean execution time of the two algorithms. It is seen from the table that the
proposed algorithm is about 4.2–36.5 times faster than the Brandes algorithm on average. Therefore, we
can conclude that the proposed algorithm is practically useful for updating BC scores when an edge is
deleted from a large network.

6. Conclusions

In this article, we proposed an algorithm for updating the BC scores of all vertices in a graph when
an edge is deleted. The proposed algorithm is based on the results of the theoretical analysis presented
in this article, the algorithm of Bergamini et al. for updating the BC scores, and the RR algorithm for
updating SSSPs. To the best of the authors’ knowledge, this is the first algorithm that makes use of the
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RR algorithm for this purpose. We showed through experiments using RRGs and graphs based on the
BA model with two values of the average degree that the proposed algorithm and the Brandes algorithm
have mean execution times proportional to about n1.3 and n2.0, respectively. We also showed through
experiments using datasets of various real networks that the proposed algorithm runs much faster than
the Brandes algorithm. These results indicate that the number of affected sources and targets is very small
on average in a variety of graphs. Therefore, the proposed algorithm combined with, for example, the
algorithm of Bergamini et al. is useful for updating the BC scores of large dynamic graphs.

Although the proposed algorithm shows very good performance on large graphs, it may contain many
redundant operations as explained in Section 3.3. Hence reducing the number of redundant operations in
the algorithm is a future challenge. Another challenge is to extend the algorithm so that it can cope with
the simultaneous deletion of multiple edges.
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