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Abstract: In this paper, for an infection age model with two routes, virus-to-cell and cell-to-cell,
and with two compartments, we show that the basic reproduction ratio R0 gives the threshold of the
stability. If R0 > 1, the interior equilibrium is unique and globally stable, and if R0 ≤ 1, the disease
free equilibrium is globally stable. Some stability results are obtained in previous research, but, for
example, a complete proof of the global stability of the disease equilibrium was not shown. We give
the proof for all the cases, and show that we can use a type reproduction number for this model.
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1. Introduction

Until recent years, models for in-host infection had been considered with only one compartment.
On the other hand, Qesmi et al. [1, 2] proposed models for hepatitis B and C infections. Their models
have two components of infection, for example, liver cells and blood. The model in [1] is an ordi-
nary differential equation model, and that in [2] is an age-structured model. They used models which
incorporate the effect of absorption of pathogens into uninfected cells, and showed that a backward
bifurcation can occur under some conditions. In Kajiwara et al. [3], the global stability of the interior
equilibrium for the same ordinary differential model in [1] is shown using a Lyapunov function under
some condition on parameters.

Recently, a cell-to-cell infection route for within-host infection is also paid much attention to. For
example, Hübner et al. [4] suggest that HIV infection is enhanced by cell-cell adhesions. For mod-
els with two routes of infection, virus-to-cell and cell-to-cell infections, the stability analysis is done
(Pourbashash et al. [5] for an ordinary differential equation model, Lai et al. [6] for a model with time
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delay). Wang et al. [7] considered an age-structured model with two routes of infection, and con-
structed a Lyapunov functional for their model. Wu et al. [8] proposed a model that considers two
infection routes and two virus strains. They transformed the system into integro-differential equations,
and proved some local stability and persistence results.

Models that consider both a cell-to-cell infection route and two compartments were investigated by,
for example, Cheng et al. [9] and Wu and Zhao [10]. Cheng et al. [9] extended the model of [7] to
a 2-compartment model as in Qesmi et al. [1, 2]. They formulated the model as an abstract Cauchy
problem, and analyzed the model. They defined a quantity R0, which is similar to the basic reproduction
number but is not equal to it. They showed that if the quantity R0 is greater than 1, there exists an
interior equilibrium, and showed that a uniform persistence result holds if R0 > 1. They showed the
global stability results only for some restricted cases. They treated the case where the infection route
is unique for each compartment, and also treated the case where there exist two infection routes under
some restriction on parameters by using the asymptotic stability theory. Cheng et al. [9] did not use a
Lyapunov functional, and did not present a general result on the global stability for their model. Wu
et al. [10] proposed models with two compartments, two infection routes, two virus strains and an
age-structure. They showed some stability results, and proved a persistence result in the case R0 > 1.
However they suggested the stability of the infection steady state by numerical simulations, and its
mathematical proof was not given there.

In this paper, we formulate the model proposed in Cheng et al. [9] as an integral equation model.
We show that the quantity Rm in Cheng et al. [9] is the type reproduction number (Roberts and Heester-
beek [11]) for the class of pathogens, and Rm determines the exact order relation between the basic
reproduction number and 1. We prove qualitative properties, for example, asymptotic smoothness, and
show a persistence result which is necessary to the definition and calculation of Lyapunov functionals.
We follow the method in Smith and Thieme [12]. Moreover, we construct Lyapunov functionals for the
cases R0 > 1 and R0 ≤ 1. We then show that the unique interior equilibrium is globally asymptotically
stable (GAS) if R0 > 1, and the disease free equilibrium (DFE) is globally asymptotically stable if
R0 ≤ 1, using an argument over the alpha-limit sets of total solutions in the compact attractor.

2. Foundation

In this section, we present fundamental results of the model, the basic reproductive number and the
type reproduction number, and compactness arguments.

2.1. The model

We assume that the number of compartments is two, and assign numbers 1 and 2 to each compart-
ment. We denote by T j the amount of the uninfected cells in the jth compartment and denote by i j(t, a)
the infection age density of the infected cells in the jth compartment. We denote by V the amount of
the pathogens. Since blood circulates quickly, we assume that V is common for each compartment.
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We consider the following age-structured model with two compartments presented in Cheng et
al. [9]:

dT1

dt
= f1(T1(t)) − β11T1(t)V(t) − β12T1(t)

∫ ∞

0
p1(a)i1(t, a) da,

∂i1(t, a)
∂t

+
∂i1(t, a)
∂a

= − (δ1(a) + m1)i1(t, a),

dT2

dt
= f2(T2(t)) − β21T2(t)V(t) − β22T2(t)

∫ ∞

0
p2(a)i2(t, a) da,

∂i2(t, a)
∂t

+
∂i2(t, a)
∂a

= − (δ2(a) + m2)i2(t, a),

dV
dt

=

∫ ∞

0
q1(a)i1(t, a) da +

∫ ∞

0
q2(a)i2(t, a) da − cV,

i1(t, 0) =β11T1(t)V(t) + β12T1(t)
∫ ∞

0
p1(a)i1(t, a) da,

i2(t, 0) =β21T2(t)V(t) + β22T2(t)
∫ ∞

0
p2(a)i2(t, a) da,

T1(0) =T10 > 0, i1(0, a) = i10(a) ∈ L1([0,∞),R+),
T2(0) =T20 > 0, i2(0, a) = i20(a) ∈ L1([0,∞),R+),
V(0) =V0 ∈ R+ = { x ∈ R | x ≥ 0 }.

(2.1)

The constants β jk, m j and c are positive for each j = 1, 2 and k = 1, 2. For the growth function f j(x)
of uninfected cells, we assume that f j(x) is a differentiable function with the properties

f j(0) > 0, f ′j (x) < 0, f j(T j) = 0

for each j, where T j is a positive constant. We moreover assume that there exist constants A j and B j

such that
f j(s) 5 A j − B js (s = 0). (2.2)

We note that the form f j(x) = h j−d jx is often used. The functions p j(a)’s are the viral production rates
of an infected cell with infection age a in the jth compartment, and q j(a)’s are the viral release rates of
an infected cell with age a in the jth compartment. We assume that the non-negative functions p j(a),
q j(a) and δ j(a) are Lipschitz continuous, and that p j(a) and q j(a) are essentially bounded on (0,∞). For
the definition of the Lyapunov functionals, we moreover assume that the functions ap j : a 7→ ap j(a)
and aq j : a 7→ aq j(a) satisfy

ap j, aq j ∈ L1([0,∞)). (2.3)

Define σ j(a) by
σ j(a) = e−

∫ a
0 (δ j(b)+m j) db.

Since δ j(a) is continuous, σ j(a) is differentiable. For j = 1, 2, put

J j[i j] =

∫ ∞

0
p j(a)i j(a) da,
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where i j(·) ∈ L1([0,∞)) and put

J j(t) = J j[i j(t, a)] =

∫ ∞

0
p j(a)i j(t, a) da,

where i j(t, a) is an element of a solution of (2.1). The functions J j(t) represents the forces of infection
at each component. It is possible to integrate i j(t, a) along their characteristic curves:

i j(t, a) =

σ j(a)(β j1T j(t − a)V(t − a) + β j2T j(t − a)J j(t − a)) t ≥ a,
σ j(a)
σ j(a−t) i j0(a − t) t < a, ( j = 1, 2).

(2.4)

We note that the value of i j(t, a) can be recovered from T j, V , J j and the initial value i j0(·). We define
a set X̃ by

X̃ = R × L1([0,∞),R) × R × L1([0,∞),R) × R,

with the ordinary product topology.

We take u = (T10, i10(·),T20, i20(·),V0) ∈ X̃, and use u as the initial condition. We translate the
original differential equation model (2.1) into an integral equation model. First it holds

dT j

dt
= f j(T j) − β j1T j(t)V(t) − β j2T j(t)J j(t), ( j = 1, 2),

J j(t) =

∫ ∞

0
p j(a)i j(t, a) da

=

∫ t

0
p j(a)σ j(a)(β j1T j(t − a)V(t − a) + β j2T j(t − a)J j(t − a)) da

+

∫ ∞

t
p j(a)

σ j(a)
σ j(a − t)

i j0(a − t) da, ( j = 1, 2),

dV
dt

=

∫ ∞

0
q1(a)i1(t, a) da +

∫ ∞

0
q2(a)i2(t, a) da − cV(t)

=

∫ t

0
q1(a)(σ1(a)(β11T1(t − a)V(t − a) + β12T1(t − a)J1(t − a))) da

+

∫ t

0
q2(a)(σ2(a)(β21T2(t − a)V(t − a) + β22T2(t − a)J2(t − a))) da

+

∫ ∞

t
q1(a)

σ1(a)
σ1(a − t)

i10(a − t) da +

∫ ∞

t
q2(a)

σ2(a)
σ2(a − t)

i20(a − t) da

− cV(t).

(2.5)
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Using the method of variation of the constant, we get the following integral equation model:

T j(t) =T j0 +

∫ t

0

(
f j(T j(s)) − β j1T j(s)V(s) − β j2T j(s)J j(s)

)
ds, ( j = 1, 2),

J j(t) =

∫ t

0
p j(a)σ j(a)(β j1T j(t − a)V(t − a) + β j2T j(t − a)J j(t − a)) da

+

∫ ∞

t
p j(a)

σ j(a)
σ j(a − t)

i j0(a − t) da, ( j = 1, 2),

V(t) =e−ctV0 + e−ct
∫ t

0
ecs

(∫ s

0
q1(a)(σ1(a)(β11T1(s − a)V(s − a) + β12T1(s − a)J1(s − a))) da

+

∫ s

0
q2(a)(σ2(a)(β21T2(s − a)V(s − a) + β22T2(s − a)J2(s − a))) da

+

∫ ∞

s
q1(a)

σ1(a)
σ1(a − s)

i10(a − s) da +

∫ ∞

s
q2(a)

σ2(a)
σ2(a − s)

i20(a − s) da
)

ds.

(2.6)

Theorem 2.1. A local solution of (2.6) exists uniquely.

Proof. The proof is similar to that of Proposition 1 in [13]. We use the Banach fixed point theorem in
the space

Hτ ={(T1,T2, J1, J2,V) ∈ C[0, τ]5;
|T1 − T10| 5 M, |T2 − T20| 5 M, |J1 − J10| 5 M, |T2 − T20| 5 M, |V − V0| 5 M}

where M and τ are positive numbers, τ being chosen sufficiently small later. We can define the integral
operator from H to itself by (2.6), if we take τ small enough. Moreover the operator defines the
contractive map for small enough τ. Thus we can use the Banach fixed point theorem to complete the
proof.

Let u = (T10, i10(·),T20, i20(·),V0) ∈ X̃. We denote by (0, τ(u)) the maximum existence interval of
the solution u of (2.6) such that u(0) = u0.

The following theorem is proved in Cheng, Dong and Takeuchi [9] (Lemma 1). We note that the
equations for i j and V are common.

Theorem 2.2. Let u0 = (T10, i10(·),T20, i20(·),V0) and assume T j0 > 0, i j0(·) ∈ L1([0,∞),R+)) and
V0 ≥ 0. Then for 0 < t < τ(u), the all components of solution u with u(0) = u0 take nonnegative values.

We give a complete metric on (0,∞) which gives the usual topology on it as in [13] and put

X = (0,∞) × L1([0,∞),R+) × (0,∞) × L1([0,∞),R+) × R+

with the product topology.
By a standard method using differential inequalities, we can show that each solution is bounded as

long as it exists.

Lemma 2.3. The positive orbit of each bounded subset of X is bounded.
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Proof. This lemma is shown by using differential inequalities as in [13]. We consider

W j(t) = T j(t) +

∫ ∞

0
i j(t, a) da

for i = 1, 2. Then, by (2.4), we have

W j(t) = T j(t)+
∫ t

0
β j1T j(t − a)V(t − a)σ j(a) da +

∫ t

0
β j2T (t − a)J j(t − a)σ j(a) da

+

∫ ∞

0

σ j(b + t)
σ j(b)

i j 0(b) db.

From this, we can obtain

dW j

dt
= f j(T j(t)) −

∫ ∞

0
(δ j(a) + m j)i j(t, a) da 5 f j(T j(t)) − m j

∫ ∞

0
i j(t, a) da.

Thus, using (2.2), we can show that W j is bounded, and hence T j and i j are also bounded.
By the equation for V in (2.1) and by the fact that i j is bounded in L1, it is easy to show that V is

bounded, because qi’s are assumed to be essentially bounded.

By Lemma 2.3, each solution to (2.1) is bounded as long as it exists. Then it holds τ(u) = ∞ for
each u ∈ X. As in Kajiwara et al. [13], we can define a semiflow on the phase space X corresponding
to the solutions of the equation.

Definition 2.4. We define a semiflow {S t}t≥0 on X satisfying S t(u) = u(t) for each u ∈ X, where u(t) is
the solution of (2.1) with u(0) = u.

As in [13], {S t}t≥0 is a continuous semiflow on the phase space X.

2.2. Equilibria and reproduction numbers

Following Cheng et al. [9], put

M j =

∫ ∞

0
p j(a)σ j(a) da, N j =

∫ ∞

0
q j(a)σ j(a) da, ( j = 1, 2),

and put

R1 =R11 + R12, where R11 =
β11N1

c
T 1, R12 = β12M1T 1,

R2 =R21 + R22, where R21 =
β21N2

c
T 2, R22 = β22M2T 2,

Rm =
R11

1 − R12
+
R21

1 − R22
for R12 < 1,R22 < 1.

We consider them using the notion of type reproduction numbers. We assume the population is
divided into n host-types, and firstly focus on one of the host-types. The infection spreads from one
infected individual of the first host-type around other host-types, and finally produces infected indi-
viduals of the first host-type. The average number of the secondary infected individual of the first
host-type is called the type reproduction number [11, 14].
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To consider the next generation matrix and the type reproduction number, we call the class of
pathogens, the class of infected cells in compartment 1 and the class of infected cells in compartment
2, 0th-class, first-class and second-class respectively. We denote by tpq (p, q = 0, 1, 2) the average
number of pathogens or infected cells directly created in the pth class from qth class at DFE. Put

K =


t00 t01 t02

t10 t11 t12

t20 t21 t22

 .
Then K is the next generation matrix (NGM), and the spectral radius of K is the basic reproductive
number R0 of the model.

Lemma 2.5. For the elements of K, we have

t00 = 0, t12 = 0, t21 = 0, t10t01 = R11, t20t02 = R21, t11 = R12, t22 = R22.

Proof. It is trivial that t00 = 0, t12 = 0 and t21 = 0.
The quantity t10t01 is the average number of pathogens newly created in compartment 1 from a

pathogen at DFE. At time t, the population size of pathogens which exist at t = 0 is written as V(t) =

V0e−ct. We denote the number of pathogens by Ṽ(t) which are newly created in compartment 1 until
time t. Since Ṽ(0) = 0, it holds

Ṽ(∞) =

∫ ∞

0

dṼ
dt

dt = β11

∫ ∞

0

∫ t

0
q1(a)σ1(a)T 1V(t − a) da dt

=β11T 1

∫ ∞

0
q1(a)σ1(a) da ·

∫ ∞

0
V(t) dt =

β11N1T 1

c
V0 = R11V0,

then t01t10 = R11. Similarly, t02t20 = R21.
We consider t11 and t22. We denote by i j(t, 0) the age density at a = 0 of infected cells created

directly from an infected cell in compartment j. By the boundary condition, it holds

i j(t, 0) = β j2T j

∫ ∞

0
p j(a)i j(t, a)da.

Then

i j(t, 0) =β j2T j

∫ t

0
p j(a)i j(t, a) da + β j2T j

∫ ∞

t
p j(a)i j(t, a) da

=

∫ t

0
β j2T j p j(a)σ j(a)i j(t − a, 0) da +

∫ ∞

t
β j2T j p j(a)

σ j(a)
σ j(a − t)

i j0(a − t, 0) da.
(2.7)

Put

ψ(t) = i j(t, 0), K(a) = β j2T j p j(a)σ j(a), g(t) =

∫ ∞

t
β j2T j p j(a)

σ j(a)
σ j(a − t)

i j0(a − t, 0) da,

then (2.7) is written as

ψ(t) =

∫ t

0
K(a)ψ(t − a) da + g(t). (2.8)
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This is a renewal equation with respect to ψ(t), and the basic reproductive number R1
0 of (2.8) is calcu-

lated as
R1

0 =

∫ ∞

0
K(a) da.

Since t11 is equal to R1
0,

t11 = β12T 1M1 = R12.

Similarly, t22 = R22.

The quantity Rm is a type reproduction number defined in [11].

Lemma 2.6. We assume that R12 < 1 and R22 < 1. Then the type reproduction number TV of the class
of pathogens is well defined, and is equal to Rm.

Proof. We assume that R12 < 1 and R22 < 1. Then the average number of pathogens which are newly
infected from V class at DFE is as follows:

t10

∞∑
p=0

tp
11t01 + t20

∞∑
p=0

tp
22t02 =t10t01

∞∑
p=0

R
p
22 + t20t02

∞∑
p=0

R
p
33

=
R11

1 − R12
+
R21

1 − R22
.

Then it holds TV = Rm.

We note that the characteristic equation of K is as follows:

Λ3 − (R12 + R22)Λ2 − (R21 + R11 − R12R22)Λ + R12R21 + R22R11 = 0. (2.9)

The quantity R0 is the largest real solution of (2.9). Since the equation is cubic, it is not easy to calculate
R0. But, it is possible to describe the following threshold condition R0 > 1 (Cheng et al. [9]).

Lemma 2.7. R0 > 1 is equivalent to the following:

R1 > 1 or R2 > 1 or (R1 ≤ 1,R2 ≤ 1, and Rm > 1)

Proof. Suppose R0 > 1. First, assume R1 ≤ 1, R2 ≤ 1. Since R12 < 1, R22 < 1, Rm = TV . By [11],
Rm > 1.

Conversely, assume R j > 1. Let K j be the NGM of the j-compartment model. K j is nonnegative
and K j ≤ K. Then the Perron-Frobenius eigenvalue of K is equal or greater than that of K j, then
R0 > 1. If R1 ≤ 1, R2 ≤ 1, Rm > 1, by [11] R0 > 1.

The following proposition is proved in Theorem 6 of [9].

Proposition 2.8. (Cheng et al. [9]) If R0 > 1, then an interior equilibrium exists.

We note that if T ∗j > 0 ( j = 1, 2) are specified for the interior equilibrium, then V∗ and i∗j are
uniquely determined as:

V∗ =
1
c

( f1(T ∗1)N1 + f2(T ∗2)N2), i∗j(a) = f j(T ∗j )σ j(a).

Lemma 2.9. If R0 ≤ 1, interior equilibria do not exist.

Proof. By Theorem 4.4 in Section 4.2, if R0 ≤ 1, then DFE is GAS and interior equilibria do not
exist.
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2.3. Arguments for compactness

Theorem 2.10. The semiflow { S t }t≥0 on X is point dissipative.

Proof. It is shown using differential inequalities as in [13].

Proposition 2.11. The semiflow { S t }t≥0 on X is asymptotically smooth.

Proof. It is proved by the method in Demasse et al. [15] and Kajiwara et al. [16]. Let B be a forward in-
variant bounded subset of X. Take an infinite sequence {up}p=1,2,... = ((T1)p), (i1)p, (T2)p, (i2)p,Vp)p=1,2,...

in B and an infinite sequence { tp }p=1,2,... in R+ with tp → ∞. For t ≥ 0, we put up(t) = S (t)up. We
show that {up(tp)} contains a convergent sequence. Since the bounded subset B is positively invariant,
we can assume that subsequences { (Ti)p(tp) }p=1,2,..., {V p(tp) }p=1,2,... (i = 0, 1) of R are convergent. For
t ≥ −tp we define

(Ti)p(t) = (Ti)p(t + tp), Vp(t) = Vp(t + tp).

We extend (Ti)p(t) and Vp(t) (i = 0, 1) for t ≤ −tp continuously such that their maximums do not exceed
those in t ≥ −tp, their Lipschitz norms are not greater than 1 and their values are zero for sufficiently
small t. Since B is forward invariant, they are uniformly bounded. Moreover their Lipschitz norms
are also uniformly bounded because they are elements of the solution of (2.6). Using Ascolli-Arzella
Theorem for R, we can take a subsequence which is convergent locally uniformly from {(T j)p}p=1,2,...

and {V p}p=1,2.... Using the Cantor diagonal process, they contain subsequences of the same indices
which converge uniformly on each compact interval, Using the Volterra expression (2.4) for i j(t, a) ( j =

1, 2), and by the standard arguments, we can show that {(i j)p(tp, a)}p=1,2,... has convergent subsequence
with respect to L1 topology for j = 1, 2. The semiflow {S t}t≥0 is asymptotically compact on each
forward invariant bounded subset, then {S t}t≥0 is asymptotically smooth.

Lemma 2.12. The semiflow { S t }t≥0 has a compact attractorA for bounded subsets in X.

Proof. The semiflow {S t}t≥0 is asymptotically smooth and each positive orbit of a bounded subset is
bounded under {S t}t≥0. Then by Theorem 2.33 in [12], {S t}t≥0 has a compact attractor in X.

The following proposition is used to show that if a compact attractor contains only one point, it
attracts all points and is locally stable. The proof is contained in [13].

Proposition 2.13. (Simplified version of Lemma 23.7 in Sell and You [17]) Let X be a compact metric
space and { S t }t≥0 be a continuous semiflow on X. Assume that a compact attractor of { S t }t≥0 consists
of one equilibrium x∗. Then the equilibrium x∗ is locally stable and is globally asymptotically stable.
If there exists a persistence attractor for { S t}t≥0, the unique equilibrium in the persistence attractor is
globally asymptotically stable by a similar argument.

3. Persistence

In this section, we always assume that R0 > 1, and present results of the semiflow { S t }t≥0.
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3.1. Persistence function

The persistence result of the semiflow {S t}1≥t is necessary for the definition of the Lyapunov func-
tional that will be defined in Section 4.1. We use the method of Smith et al. [12] for persistence.

Define a persistence function ρ for u = (T1, i1(·),T2, i2(·),V) ∈ X by

ρ(u) = J1[i1] + J2[i2] + V.

Since { u ∈ X | ρ(x) = 0 } is not forward invariant in general, put X0 by

X0 = { u ∈ X | ρ(S t(u)) = 0, for each t ≥ 0 }.

Theorem 3.1. The disease free equilibrium (DFE) is globally asymptotically stable in X0, and the
attractor of the semiflow { S t }t≥0 restricted to X0 consists of DFE.

Proof. For u ∈ X0, put S t(u) = (T1(t), i1(t, ·),T2(t), i2(t, ·),V(t)). The equation of T j is

dT j

dt
= f j(T j),

then T j(t)→ T j. On the other hand, since V(t) = 0 and J j(t) = J j[i j(t, ·)] = 0 for each t ≥ 0 in (2.4), it
holds ∫ ∞

0
i j(t, a) da =

∫ ∞

t

σ j(a)
σ j(a − t)

i j0(a − t) da,≤ e−m jt
∫ ∞

0
i j0(a) da ≤ e−m jt‖i j0‖1.

Then i j(t, ·) tends to 0 in L1 topology.

Lemma 3.2. We assume ρ(u) > 0. Then V(t) > 0 for some t > 0.

Proof. We note that T j(t) > 0 for each t ∈ R. We assume ρ(u) > 0. If V > 0, V(t) > 0 for each t > 0,
and there is nothing to prove. We assume J j[i j] = J j(0) > 0. Then J j(t) > 0 for some neighborhood of
0. Then by the V(t) equation of (2.6), V(t) > 0 for some t > 0.

3.2. Uniform weak ρ-persistence

We show that DFE is uniformly weakly ρ-repelling by contradiction.

Lemma 3.3. If we take sufficiently small ε > 0, then for a solution u(t) with initial value
(T 0

1 , i
0
1,T

0
2 , i

0
2,V

0) such that

T 1 − ε < T 0
1 < T 1 + ε, T 2 − ε < T 0

2 < T 2 + ε, 0 < V0 < ε,

there exists t1 > 0 such that u(t1) = (T1(t1), i1(t1, ·),T2(t1), i2(t1, ·),V(t1)) does not satisfy at least one
inequality of

T 1 − ε < T1(t1) < T 1 + ε, T 2 − ε < T2(t1) < T 2 + ε, 0 < V(t1) < ε. (3.1)
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Proof. We assume that (3.1) holds for all t ≥ 0. Then it holds

J j(t) =

∫ ∞

0
p j(a)i j(t, a) da ≥

∫ t

0
p j(a)i j(t, a) da =

∫ t

0
p j(a)i j(t − a, 0)σ j(a) da

=

∫ t

0
β j1 p j(a)T j(t − a)V(t − a)σ j(a) da +

∫ t

0
β j2 p j(a)σ j(a)T j(t − a)J j(t − a) da

≥

∫ t

0
β j1(T j − ε)p j(a)σ j(a)V(t − a) da +

∫ t

0
β j2(T j − ε)p j(a)σ j(a)J j(t − a) da. (3.2)

On the other hand, it holds

dV
dt
≥

∫ t

0
β11q1(a)σ1(a)T1(t − a)V(t − a) da +

∫ t

0
β12q1(a)σ1(a)T1(t − a)J1(t − a) da

+

∫ t

0
β21q2(a)σ2(a)T2(t − a)V(t − a) da +

∫ t

0
β22q2(a)σ2(a)T2(t − a)J2(t − a) da − cV(t)

≥

∫ t

0
β11q1(a)σ1(a)(T 1 − ε)V(t − a) da +

∫ t

0
β12q1(a)σ1(a)(T 1 − ε)J1(t − a) da

+

∫ t

0
β21q2(a)σ2(a)(T 2 − ε)V(t − a) da +

∫ t

0
β22q2(a)σ2(a)(T 2 − ε)J2(t − a) da − cV(t). (3.3)

Note that J j(t) and V(t) are bounded continuous functions. We assume λ > 0. Let Ĵ j(λ), V̂(λ), M j(λ)
and Ni(λ) denote the Laplace transformations of J j(t), V(t), p j(a)σ j(a) and q j(a)σ j(a). We note that
the limits limλ→+0 M j(λ) and limλ→+0 N j(λ). Let M j and N j denote these positive values.

We take Laplace transformations of both sides of (3.2).
For j = 1, 2, we have

Ĵ j(λ) ≥ β j1M j(λ)(T j − ε)V̂(λ) + β j2M j(λ)(T j − ε)Ĵ j(λ). (3.4)

First consider the case of R12 > 1 or R22 > 1. If R12 = β12M1T 1 > 1, for sufficiently small ε > 0 it
holds

β12M1(T 1 − ε) > 1. (3.5)

By (3.4), we have
Ĵ1(λ) ≥ β12M1(λ)(T 1 − ε)Ĵ1(λ).

If the initial value of V(t) is positive, V(t) > 0 for each t > 0. Then for some t > 0, J1(t) > 0, then Ĵ1(λ)
is also positive for λ > 0. Then it holds

1 ≥ β12M1(λ)(T 1 − ε). (3.6)

Then (3.6) contradicts to (3.5). For the case of R22 > 1, a contradiction holds using a similar argument.
We consider the case R12 ≤ 1 and R22 ≤ 1, and R1 > 1 or R2 > 1. We assume that R12 ≤ 1 and

R1 > 1. The assumption contains the case R12 = 1. If ε > 0, then 1 > β12M1(T 1 − ε). If we take
sufficiently small λ > 0, it holds

1 − β12M1(λ)(T 1 − ε) > 0.
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By (3.4), we have
Ĵ1(λ){1 − β12M1(λ)(T 1 − ε)} ≥ β11M1(λ)(T 1 − ε)V̂(λ),

and hence we obtain

Ĵ1(λ) ≥
β11M1(λ)(T 1 − ε)

1 − β12M1(λ)(T 1 − ε)
V̂(λ). (3.7)

We use the following equation obtained by the Laplace transformation of both sides of (3.3):

λV̂(λ) − V(0) ≥β11N1(λ)(T 1 − ε)V̂(λ) + β12N1(λ)(T 1 − ε)Ĵ1(λ)

+ β21N2(λ)(T 2 − ε)V̂(λ) + β22N2(λ)(T 2 − ε)Ĵ2(λ) − cV̂(λ).
(3.8)

Thus if we drop the last two nonnegative terms, by (3.7), we have

λV̂(λ) − V(0) ≥ β11N1(λ)(T 1 − ε)V̂(λ) +
β11M1(λ)β12N1(λ)(T 1 − ε)2

1 − β12M1(λ)(T 1 − ε)
V̂(λ) − cV̂(λ).

Then it holds λ − β11N1(λ)(T 1 − ε) −
β11M1(λ)β12N1(λ)(T 1 − ε)2

1 − β12M1(λ)(T 1 − ε)
+ c

 V̂(λ) ≥ V(0). (3.9)

Here the coefficient of ˆV(λ) is

λ − β11N1(λ)(T 1 − ε) − λβ12M1(λ)(T 1 − ε))} + c − cβ12M1(λ)(T 1 − ε)

1 − β12M1(λ)(T 1 − ε)
.

Since R1 = R11 + R12 > 1, by taking sufficiently small ε > 0, λ > 0, we can take the left hand side
of (3.9) to be negative. Since the right hand side is positive, a contradiction holds. The case R2 > 1 is
similar.

Last consider the case of R12 < 1, R22 < 1, R1 ≤ 1 and R2 ≤ 1. We note that Rm > 1, since R0 > 1
is assumed. By taking sufficiently small ε > 0, it holds

β12M1(T 1 − ε) < 1, β22M2(T 2 − ε) < 1.

By taking sufficiently small λ > 0, it holds

β12M1(λ)(T 1 − ε) < 1, β22M2(λ)(T 2 − ε) < 1. (3.10)

For sufficiently small ε > 0, λ > 0, by (3.4), it holds

Ĵ1(λ) ≥
β11M1(λ)(T 1 − ε)

1 − β12M1(λ)(T 1 − ε)
V̂(λ), Ĵ2(λ) ≥

β21M2(λ)(T 2 − ε)

1 − β22M2(λ)(T 2 − ε)
V̂(λ).
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Substituting these to (3.8),

λV̂(λ) − V(0) ≥
β11N1(λ)(T 1 − ε) +

β12N1(λ)(T 1 − ε)β11M1(λ)(T 1 − ε))

1 − β12M1(λ)(T 1 − ε)

+β21N2(λ)(T 2 − ε) +
β22N2(λ)(T 2 − ε)β21M2(λ)(T 2 − ε)

1 − β22M2(λ)(T 2 − ε)
− c

 V̂(λ)

=c
 β11N1(λ)(T 1 − ε)

c(1 − β12M1(λ)(T 1 − ε))
+

β21N2(λ)(T 2 − ε)

c(1 − β22M2(λ)(T 2 − ε))
− 1

 V̂(λ).

Then it holdsλ − c
 β11N1(λ)(T 1 − ε)

c(1 − β12M1(λ)(T 1 − ε))
+

β21N2(λ)(T 2 − ε)

c(1 − β22M2(λ)(T 2 − ε))
− 1

 V̂(λ) ≥ V(0).

Since Rm > 1, the coefficient of V̂(λ) tends to −c(Rm − 1) < 0 as ε → +0 and λ → +0. Hence the
coefficient is negative for sufficiently small λ > 0 and ε > 0. A contradiction occurs because V̂(λ) > 0
and V(0) ≥ 0.

Lemma 3.4. If R0 > 1, the equilibrium DFE is uniformly weakly ρ-repelling in X.

Proof. Let u ∈ X satisfy ρ(u) > 0. It means that pathogens or forces of infection are present. Since
V(t2) > 0 for some t2 > 0 by Proposition 3.2, the solution u(t) with u(0) = u, if it enters a neighborhood
of the DFE, escapes from the neighborhood by Lemma 3.3, provided that the neighborhood is taken
sufficiently small. Then the conclusion holds.

Lemma 3.5. If R0 > 1, the equilibrium DFE is isolated in X.

Proof. By Proposition 3.1, DFE is globally asymptotically stable in X0, that is DFE has an isolated
neighborhood in X0. Moreover, DFE is uniformly weakly ρ-repelling in X by Lemma 3.4. Then DFE
is shown to be isolated in X using Lemma 8.18. of Smith and Thieme [12].

Lemma 3.6. There exists no cycle in X0 connecting the sets of attractor.

Proof. It is shown from the fact that DFE is globally asymptotically stable in X0.

Proposition 3.7. The semiflow { S t }t≥0 on X is uniformly weakly ρ-persistent.

Proof. It follows from Theorem 8.17 in Smith and Thieme [12].

3.3. Uniform ρ-persistence

It is necessary to exclude total solutions u(t) which is ρ(u(t0)) > 0, ρ(u(t1)) = 0 and ρ(u(t2)) > 0
for some t0 < t1 < t2 to get uniformly ρ-persistence from uniformly weakly ρ-persistence by using the
method of Section 5 in Smith and Thieme [12].
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Let u(t) = (T1(t), i1(t, a),T2(t), i2(t, a),V(t)) a total solution. Then the following equations are satis-
fied:

V(t) = e−ctV(0)

+ e−ct
∫ t

0
ecs

(∫ ∞

0
q1(a)σ1(a)(β11T1(s − a)V(s − a) + β12T1(s − a)J1(s − a)) da

+

∫ ∞

0
q2(a)σ2(a)(β21T2(s − a)V(s − a) + β22T2(s − a)J2(s − a)) da

)
ds, (3.11)

J j(t) =

∫ ∞

0
p j(a)σ j(a)(β j1T j(t − a)V(t − a) + β j2T j(t − a)J j(t − a)) da. ( j = 1, 2) (3.12)

Lemma 3.8. Let u(t) be a total solution. Then if V(t1) > 0, then it holds V(t) > 0 for t > t1.

Proof. By (3.11), if V(t1) > 0 then V(t) > 0 for t > t1.

Lemma 3.9. There exists no total solution such that ρ(u(r)) > 0, ρ(u(t0)) = 0, ρ(u(s)) > 0 (r < t0 < s).

Proof. Without loss of generality, we can set t0 = 0. We assume the existence of such a total solution
u(t). Since ρ(u(0)) = 0 implies V(0) = 0, V(t) = 0 for t ≤ 0 by Lemma 3.8. We will show that J j(t) = 0
for t < 0 ( j = 1, 2). We note that q1(a) is continuous, and that q1(a0) > 0 for some a0 > 0. Suppose
J1(t1) > 0 for some t1 < 0, then the integrand q1(a)σ1(a)β11T1(s − a)J1(s − a) is positive at s = a0 + t1.
Then it holds

e−ct
∫ t

0
ecs

(∫ ∞

0
q1(a)(σ1(a)β11T1(s − a)J1(s − a) da

)
ds > 0.

Since the other integrands are nonnegative, V(t1) > 0. Thus V(t) > 0 for t > t1. By Lemma 3.8, it
contradicts to V(t) = 0 for t ≤ 0. Then for t < 0, J j(t) = 0 ( j = 1, 2). By shifting time, we consider
the total solution as the solution with initial value at t = t2 < 0. Since initial value of V(t) and J j(t) are
zero, T j(t) and V(t) = 0, J j(t) = 0 is a solution. By the uniqueness of the integral equation, V(t) = 0,
J j(t) = 0 for t ≥ t2. Then there exists no total solution such that ρ(u(r)) > 0, ρ(u(0)) = 0, ρ(u(s)) > 0.

From the proof above, we also obtain the following.

Corollary 3.10. Let u(t) be a total solution. Then V(t) element of u(t) is always positive or always 0.
If V(t) = 0 identically, J j(t) is also identically 0.

Lemma 3.11. The semiflow { S (t) }t≥0 on X is uniform ρ-persistence.

Proof. We verify that two conditions (H0), (H1) in Chapter 5 of Smith and Thieme [12] are satisfied.
(H0) follows from the existence of compact attractor in Section 2. The condition (H1) follows from
Lemma 3.9. Then semiflow { S (t) }t≥0 is uniform ρ-persistence by Theorem 5.2 in [12].

Proposition 3.12. (Theorem 5.7 in Smith and Thieme [12]) If the semiflow {S t} is uniformly ρ-
persistent, a compact attractor A is decomposed as A = A0 ∪ A1 ∪ C with invariant sets A0, A1

and C. A0 andA1 are compact, and they satisfy (a), (b) and (c) in [12].

The setA1 is called the persistence attractor. We note that the persistence attractorA1 is a union of
total trajectories.
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Lemma 3.13. The V-element and T j-elements ( j = 1, 2) ofA1 have positive minimum values.

Proof. Since persistence attractor is a compact set, V-element and T j-elements have minimum values.
Since T j can not be 0, the minimum value is positive. We assume that the minimum value of V is
zero, and denote by u such element in the phase space. Let u(t) be a total solution with u(0) = u. By
Corollary 3.10, it holds ρ(u(t)) = 0 for each t ∈ R, then u ∈ X0. It contradicts to u ∈ A1.

We denote by T̃ j and Ṽ the minimum values of T j, V inA1 respectively.

Lemma 3.14. Let (T ∗1 , i
∗
i (·),T ∗2 , i

∗
2(·),V∗) be an interior equilibrium. We assume that a total solution

u(t) is contained in the persistence attractor A1. Then there exist M and M′ such that 0 < M ≤

i j(t, a)/i∗j(a) ≤ M′ for t ∈ R, a ∈ R+.

Proof. Let u(t) ∈ A1, and i j(t, a) be an element of u(t). Then it holds

i j(t, a)
i∗j(a)

=
i j(t − a, 0)

i∗j(0)
=
β j1V(t − a)T j(t − a) + β j2T j(t − a)J j(t − a)

β j1V∗T ∗j + β j2T ∗j + J j[i j]

≥
β j1V(t − a)T j(t − a)

β j1V∗T ∗j + β j2T ∗j + J j[i j]
≥

β j1ṼT̃ j

β j1V∗T ∗j + β j2T ∗j + J j[i j]
,

where Ṽ and T̃ j are minimum values. We note that

J j[i j] =

∫ ∞

0
p(a)i∗j(a) da

is also a positive value. Then we can take such M. The existence of M′ follows from that u(t) is
contained in the compact setA1.

Remark 3.1. It is not necessary to assume that i j(t, a) is differentiable with respect to t for the use of
Lemma 9.18 in Smith and Thieme [12],

4. Global stability

4.1. Lyapunov functional for the case R0 > 1

For R0 > 1, we construct a Lyapunov functional, which is defined in A1, for the system (2.1). By
Proposition 2.8, there exists an interior equilibrium. In Section 4.1, we fix one interior equilibrium
u∗ = x(T ∗1 , i

∗
1(·),T ∗2 , i

∗
2(·),V∗). By the V-equation, it holds∫ ∞

0
q1(a)i∗1(a) da +

∫ ∞

0
q2(a)i∗2(a) da − cV∗ = 0.

Then if we define c1, c2 by

c1 =

∫ ∞
0

q1(a)i∗1(a) da

V∗
, c2 =

∫ ∞
0

q2(a)i∗2(a) da

V∗
,

then it holds c1V∗ + c2V∗ = cV∗, c = c1 + c2, c1 > 0, c2 > 0. Moreover it holds∫ ∞

0
q1(a)i∗1(a) da − c1V∗ = 0,

∫ ∞

0
q2(a)i∗2(a) da − c2V∗ = 0. (4.1)
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As in Kajiwara et al. [3], we rewrite the equation of V as

dV
dt

=

(∫ ∞

0
q1(a)i1(t, a) da − c1V

)
+

(∫ ∞

0
q2(a)i2(t, a) da − c2V

)
.

Put, for j = 1 or 2,

A j =

∫ ∞

0

β j1T ∗j q j(b)σ j(b)

c j
db, B j =

∫ ∞

0
β j2T ∗j p j(b)σ j(b) db.

By the boundary condition of (2.1), it holds

i∗j(0) = β j1T ∗j V
∗ + β j2T ∗j

∫ ∞

0
p j(a)i∗j(a) da. (4.2)

By substituting

i∗j(a) = i∗j(0)σ j(a), V∗ = (1/c j)
∫ ∞

0
q j(a)i∗j(a) da (4.3)

obtained from (4.1), we get A j + B j = 1. Put

ψ
j
1(a) =

∫ ∞

a

β j1T ∗j q j(b)

c j
σ j(b)σ j(a)−1 db, ψ

j
2(a) =

∫ ∞

a
β j2T ∗j p j(b)σ j(b)σ j(a)−1 db.

We note that ψ j
1(a) and ψ j

2(a) are integrable on (0,∞) by the assumption (2.3). It holds ψ j
1(0) = A j,

ψ
j
2(0) = B j. Define functionals W j

1, W j
2,1, and W j

2,2 on the persistence attractorA1 by

W j
1(T j) =T j − T ∗j − T ∗j log

T j

T ∗j
,

W j
2,1(i j(·)) =

∫ ∞

0
ψ

j
1(a)

i j(a) − i∗j(a) − i∗j(a) log
i j(a)
i∗j(a)

 da, (4.4)

W j
2,2(i j(·)) =

∫ ∞

0
ψ

j
2(a)

i j(a) − i∗j(a) − i∗j(a) log
i j(a)
i∗j(a)

 da. (4.5)

By Proposition 3.14, the right hand sides of (4.4) and (4.5) are well defined. Then

W j
2,1(i j(·)) =

∫ ∞

0
ψ

j
1(a)σ j(a)

i j(a) − i∗j(a) − i∗j(a) log
i j(a)
i∗j(a)

σ j(a)−1da,

W j
2,2(i j(·)) =

∫ ∞

0
ψ

j
2(a)σ j(a)

i j(a) − i∗j(a) − i∗j(a) log
i j(a)
i∗j(a)

σ j(a)−1da,

and

ψ
j
1(a)σ j(a) =

∫ ∞

a

β j1T ∗j q j(b)

c j
σ j(b) db, ψ

j
2(a)σ j(a) =

∫ ∞

a
β j2T ∗j p j(b)σ j(b) db.

Then it holds

d
da

(ψ j
1(a)σ j(a)) = −

β j1T ∗j q j(a)

c j
σ j(a),

d
da

(ψ j
2(a)σ j(a)) = −β j2T ∗j p j(a)σ j(a).
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On the other hand, if u(t) is a total solution and i j(t, a) is an element of u(t),i j(t, a) − i∗j(a) − i∗j(a) log
i j(t, a)
i∗j(a)

σ j(a)−1 = i j(t − a, 0) − i∗j(0) − i∗j(0) log
i j(t − a, 0)

i∗j(0)

is a function of t − a.
We define a functional W(u) for u = (T1, i1(·),T2, i2(·),V) ∈ A1 as follows:

W(u) = V − V∗ − V∗ log
V
V∗

+

2∑
j=1

c j

β j1T ∗j

(
W j

1(T j) + W j
2,1(i j(·)) + W j

2,2(i j(·))
)
. (4.6)

We calculate the derivative of W(u) along solutions inA1:

dW(u(t))
dt

(4.7)

=

2∑
j=1


(
1 −

V∗

V

) (∫ ∞

0
q j(a)i j(t, a) da − c jV

)
+

c j

β j1T ∗j

dW j
1(T j(t))
dt

+
dW j

2,1(i j(t, ·))

dt
+

dW j
2,2(i j(t, ·))

dt




=

2∑
j=1

c j

β j1T ∗j

dW j
1(T j(t))
dt

+
dW j

2,1(i j(t, ·))

dt
+

dW j
2,2(i j(t, ·))

dt
+
β j1T ∗j

c j

(
1 −

V∗

V

) (∫ ∞

0
q j(a)i j(t, a) da − c jV

) .
(4.8)

We calculated each term in (4.8). By (2.1), we have

dW j
1(T j(t))
dt

=
1
T j

(T j − T ∗j )( f j(T j) − f j(T ∗j )) − i j(t, 0) + i∗j(0) − β j1

V∗(T ∗j )
2

T j

+ β j1VT ∗j −
β j2(T ∗j )

2

T j

∫ ∞

0
p j(a)i∗j(a) da + β j2T ∗j

∫ ∞

0
p j(a)i j(t, a) da,

dW j
2,1(i j(t, ·))

dt
=A j

i j(t, 0) − i∗j(0) − i∗j(0) log
i j(t, 0)
i∗j(0)


−

∫ ∞

0

β j1T ∗j q j(a)

c j

i j(t, a) − i∗j(a) − i∗j(a) log
i j(t, a)
i∗j(a)

 da.

Here we use Lemma 9.18 in Smith and Thieme [12]. We can use this Lemma in this case, because the
solution u(t) is contained in the persistence attractor. In fact, i j(t, ·) lies in a bounded set in L1([0,∞)),
and we assume that q j is essentially bounded. Thus the sufficient condition for Fubini’s theorem in the
proof of Lemma 9.18 holds. Similarly it holds that

dW j
2,2(i j(t, ·))

dt
=B j

i j(t, 0) − i∗j(0) − i∗j(0) log
i j(t, 0)
i∗j(0)


−

∫ ∞

0
β j2T ∗j p j(a)

i j(t, a) − i∗j(a) − i∗j(a) log
i j(t, a)
i∗j(a)

 da,
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β j1T ∗j
c j

(
1 −

V∗

V

) (∫ ∞

0
q j(a)i j(t, a) da − c jV

)
=
β j1T ∗j

c j

∫ ∞

0
q j(a)i j(t, a) da − β j1T ∗j V + β j1T ∗j V

∗ −
β j1T ∗j V

∗

c jV

∫ ∞

0
q j(a)i j(t, a) da.

If we add these, i j(t, 0)-terms and i∗j(0)-terms vanish by A j + B j = 1.
We gather terms containing β j1. Noting that in (4.2), i∗j(0) contains both β j1 and β j2, we have by

(4.3) ∫ ∞

0

β j1T ∗j q j(a)i∗j(a)

c j

−T ∗j
T j
− log

i j(t, 0)
i∗j(0)

+ 1 + log
i j(t, a)
i∗j(a)

+ 1 −
V∗i j(t, a)

Vi∗j(a)

 da. (4.9)

On the other hand, which are obtained by (4.3):

V∗ =

∫ ∞

0

q j(a)i∗j(a)

c j
da,∫ ∞

0

β j1T ∗j q j(a)i∗j(a)

c j
da =

∫ ∞

0

β j1T ∗j q j(a)σ j(a)

c j
da · i∗j(0) = A ji∗j(0).

Using these, it holds∫ ∞

0

β j1T ∗j q j(a)i∗j(a)

c j

 T jVi∗j(0)

T ∗j V∗i j(t, 0)
− 1

 da =
i∗j(0)

i j(t, 0)
· β j1T jV

∫ ∞

0

q j(a)i∗j(a)

c j
da ·

1
V∗
− A ji∗j(0)

=
i∗j(0)

i j(t, 0)
· β j1T jV − A ji∗j(0),

(4.10)

which will be used later.
Next we gather terms containing β j2:∫ ∞

0
β j2T ∗j p j(a)i∗j(a)

−T ∗j
T j
− log

i j(t, 0)
i∗j(0)

+ 1 + log
i j(t, a)
i∗j(a)

 da. (4.11)

We prepare∫ ∞

0
β j2T ∗j p j(a)i∗j(a)

T ji∗j(0)i j(t, a)

T ∗j i
∗
j(a)i j(t, 0)

− 1
 da =

i∗j(0)

i j(t, 0)
· β j2T j

∫ ∞

0
p j(a)i j(t, a) dt − B ji∗j(0). (4.12)

Adding (4.10) and (4.12), we have∫ ∞

0

β j1T ∗j q j(a)i∗j(a)

c

 T jVi∗j(0)

T ∗j V∗i j(t, 0)
− 1

 da +

∫ ∞

0
β j2T ∗j p j(a)i∗j(a)

T ji∗j(0)i j(t, a)

T ∗j i
∗
j(a)i j(t, 0)

− 1
 da

=
i∗j(0)

i j(t, 0)
· β j1T jV − A ji∗j(0) +

i∗j(0)

i j(t, 0)
· β j2T j

∫ ∞

0
p j(a)i j(t, a) dt − B ji∗j(0)

=
i∗j(0)

i j(t, 0)

(
β j1T jV + β j2T j

∫ ∞

0
p j(a)i j(t, a) da

)
− (A j + B j)i∗j(0) = 0.

(4.13)
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Then, by subtracting (4.13) from the sum, we have

dW j
1(u(t))
dt

+
dW j

2,1(u(t))

dt
+

dW j
2,2(u(t))

dt
+
β j1T ∗j

c j

(
1 −

V∗

V

) (∫ ∞

0
q j(a)i j(t, a) da − c jV

)
=

1
T j

(T j − T ∗j )( f j(T j) − f j(T ∗j ))

+

∫ ∞

0

β j1T ∗j q j(a)i∗j(a)

c j

3 − T ∗j
T j
−

V∗i j(t, a)
Vi∗j(a)

−
T jVi∗j(0)

T ∗j V∗i j(t, 0)
+ log

i j(t, a)i∗j(0)

i∗j(a)i j(t, 0)

 da

+

∫ ∞

0
β j2T ∗j p j(a)i∗j(a)

2 − T ∗j
T j
−

T ji∗j(0)i j(t, a)

T ∗j i
∗
j(a)i j(t, 0)

+ log
i∗j(0)i j(t, a)

i∗j(a)i j0, t)

 da.

Using these, it holds

dW(u(t))
dt

=

2∑
j=1

 c j

β j1T ∗j

{
1
T j

(T j − T ∗j )( f j(T j) − f j(T ∗j ))

+

∫ ∞

0

β j1T ∗j q j(a)i∗j(a)

c j

3 − T ∗j
T j
−

V∗i j(t, a)
Vi∗j(a)

−
T jVi∗j(0)

T ∗j V∗i j(t, 0)
+ log

i j(t, a)i∗j(0)

i∗j(a)i j(t, 0)

 da

+

∫ ∞

0
β j2T ∗1 p j(a)i∗j(a)

2 − T ∗j
T j
−

T ji∗j(0)i j(t, a)

T ∗j i
∗
j(a)i j(t, 0)

+ log
i∗j(0)i j(t, a)

i∗j(a)i j(t, 0)

 da


 .

(4.14)

Then the following theorem holds.

Theorem 4.1. Let u(t) be a total solution in the persistence attractor A1. Then the time derivative of
W(u(t)) is nonpositive. Moreover the maximum invariant subset of the set { u ∈ A1 | Ẇ(u) = 0 } is the
singleton set containing the interior equilibrium u∗.

Proof. By the property of f j,
1
T j

(T j − T ∗j )( f j(T j) − f j(T ∗j )) ≤ 0

and the left hand side is 0 if and only if T j = T ∗j . It follows

3 −
T ∗j
T j
−

V∗i j(t, a)
Vi∗j(a)

−
T jVi∗j(0)

T ∗j V∗i j(t, 0)
+ log

i j(t, a)i∗j(0)

i∗j(a)i j(t, 0)
≤ 0,

2 −
T ∗j
T j
−

T ji∗j(0)i j(t, a)

T ∗j i
∗
j(a)i j(t, 0)

+ log
i∗j(0)i j(t, a)

i∗j(a)i j(t, 0)
≤ 0,

and the left hand sides are zero if and only if each term with minus sign equals 1 by [18].
We denote by µ j the measure given by q j(a) da on [0,∞). Let u ∈ X be contained in the maximum

invariant subset M of the set { u ∈ A1 | Ẇ(u) = 0 }. Then Ẇ(u(t)) = 0 for each t ∈ R, where u(t) =

(T1(t), i1(t, a),T2(t), i2(t, a),V(t)) is the total solution such that u(0) = u. Then, using the measure µ j,
we have

3 −
T ∗j
T j
−

V∗i j(t, a)
Vi∗j(a)

−
T jVi∗j(0)

T ∗j V∗i j(t, 0)
+ log

i j(t, a)i∗j(0)

i∗j(a)i j(t, 0)
= 0, a.a. a ∈ [0,∞).
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Then, by T j = T ∗j , it holds
V
V∗

=
i j(t, a)
i∗j(a)

=
i j(t, 0)
i∗j(0)

, a.a. a ∈ [0,∞).

Then for each t ∈ R
i j(t, a) =

V
V∗

i∗j(a), a.a. a ∈ [0,∞). (4.15)

Substitute (4.15) to the equation of V ,

dV
dt

=
1

V∗

(∫ ∞

0
i∗1(a)q1(a) da +

∫ ∞

0
i∗2(a)q2(a) da − cV∗

)
V = 0.

Then
J j(t) =

∫ ∞

0
p j(a)i∗j(a) da,

is a constant, and we put J∗j = J j(t). By the boundary condition,

i j(t, 0) = β j1T j(t)V(t) + β j2T j(t)J j(t) = β j1T ∗j V
∗ + β j2T ∗j J∗j ,

and hence i j(t, 0) does not depend on t. Then, by the equation that determines the equilibrium i∗j(0),
we have i j(t − a, 0) = i j(t, 0) = i∗j(0). Then i j(t, a) = i j(t − a, 0)σ j(a) = i∗j(0)σ j(a) = i∗j(a). It follows
M = { u∗ }.

4.2. Lyapunov functional for the case R0 ≤ 1

Since R0 ≤ 1, R12 < 1 and R22 < 1. Then Rm is well defined, and by [11], it holds that Rm ≤ 1.

Lemma 4.2. We can take c1 > 0, c2 > 0, c1 + c2 = c with

β11T 1N1

c1
+ β12T 1M1 ≤ 1,

β21T 1N2

c2
+ β22T 2N2 ≤ 1.

Proof. Since Rm ≤ 1, it holds

(β11T 1N1)/c

1 − β12T 1M1

+
(β21T 2N2)/c

1 − β22T 2M2

≤ 1,

or
β11T 1N1

1 − β12T 1M1

+
β21T 2N2

1 − β22T 2M2

≤ c.

Then it is possible to find c1 and c2 with c1 > 0, c2 > 0, c1 + c2 = c, and

β11T 1N1

1 − β12T 1M1

≤ c1,
β21T 2N2

1 − β22T 2M2

≤ c2.

That is
β11T 1N1

c1
+ β12T 1M1 ≤ 1,

β21T 1N2

c2
+ β22T 2M2 ≤ 1.
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We take and fix c1, c2 as in Lemma 4.2. For j = 1, and 2, put

ψ
j
1(a) =

∫ ∞

a

β j1T jq j(b)
c j

σ j(b)σ j(a)−1 db, ψ
j
2(a) =

∫ ∞

a
β j2T j p j(b)σ j(b)σ j(a)−1 db

ψ
j
(a) =ψ

j
1(a) + ψ

j
2(a).

Define a functional W(u) on the compact attractorA by

W(u) = V +

2∑
j=1

c j

β j1T j

T j − T j + T j log
T j

T j

+

∫ ∞

0
ψ

j
(b)i j(b) db

 .
Theorem 4.3. We assume R0 ≤ 1. Let u(t) be a total solution contained in the compact attractor A.
Then the derivative of W(u(t)) is less or equal to 0. Moreover, the maximum invariant subset contained
in the set { u ∈ A | Ẇ(u) = 0 } is the singleton set {DFE } that contains only the disease free equilibrium.

Proof. It holds

dW(u(t))
dt

=
dV
dt

+

2∑
j=1

c j

β j1T j


1 − T j

T j

 dT j

dt
+

d
dt

∫ ∞

0
ψ

j
(b)i j(t, b) db


=

2∑
j=1

∫ ∞

0
q j(a)i j(t, a) da − c jV +

2∑
j=1

c j

β j1T j


1 − T j

T j

 dT j

dt
+

d
dt

∫ ∞

0
ψ

j
(b)i j(t, b) db


=

2∑
j=1

c j

β j1T j


1 − T j

T j

 dT j

dt
+

d
dt

∫ ∞

0
ψ

j
(b)i j(t, b) db +

β j1T j

c j

(∫ ∞

0
q j(a)i j(t, a) da − c jV

) .
We calculate each term in the summation. Then it holds1 − T j

T j

 dT j

dt

=

1 − T j

T j

 ( f j(T j) − f j(T j) − β j1T jV − β j2T j

∫ ∞

0
p j(a)i j(t, a) da

)
=

1
T j

(T j − T j)( f j(T j) − f j(T j)) − β j1T jV − β j2T j

∫ ∞

0
p j(a)i j(t, a) da

+ β j1T jV + β j2T j

∫ ∞

0
p j(a)i j(t, a) da

=
1
T j

(T j − T j)( f j(T j) − f j(T j)) − i j(t, 0) + β j1T jV + β j2T j

∫ ∞

0
p j(a)i j(t, a) da

Mathematical Biosciences and Engineering Volume 19, Issue 11, 11047–11070.



11068

Since i j(t, a)σ j(a)−1 is a function of t − a, using Lemma 9.18 in Smith and Thieme [12], we have

d
dt

∫ ∞

0
ψ

j
(a)i j(t, a) da =

d
dt

∫ ∞

0
ψ

j
(a)σ j(a)i j(t, a)σ j(a)−1 da

=ψ
j
(0)i j(t, 0) +

∫ ∞

0

d
da

{
ψ

j
(a)σ j(a)

}
i j(t, a)σ j(a)−1 da

=ψ
j
(0)i j(t, 0) −

∫ ∞

0

β j1T j

c j
q j(a) + β j2T j p j(a)

σ j(a)i j(t, a)σ j(a)−1 da

=ψ
j
(0)i j(t, 0) −

∫ ∞

0

β j1T j

c j
q j(a) + β j2T j p j(a)

 i j(t, a) da.

The calculation for the term related with V is as follows:

β j1T j

c j

(∫ ∞

0
q j(a)i j(t, a) da − c jV

)
=
β j1T j

c j

∫ ∞

0
q j(a)i j(t, a) da − β j1T jV.

Then it holds

dW(u(t))
dt

=

2∑
j=1

c j

β j1T j

{
1
T j

(T j − T j)( f j(T j) − f j(T j)) + (ψ
j
(0) − 1)i j(t, 0)

}
.

By Lemma 4.2, for j = 1, 2, it holds

ψ
j
(0) =

β j1T jN j

c j
+ β j2T jM j ≤ 1,

and hence

dW(u(t))
dt

=

2∑
j=1

c j

β j1T j

 1
T j

(T j − T j)( f j(T j) − f j(T j)) +

β j1T jN j

c j
+ β j2T jM j − 1

 i j(t, 0)

 ≤ 0.

Then it holds
dW(u(t))

dt
≤ 0.

Let u ∈ X be in the maximum invariant subsetM of { u ∈ A | Ẇ(u) = 0 }. Then for each t ∈ R, u(t) ∈ M,
where u(t) = (T1(t), i1(t, ·),T2(t), i2(t, ·),V(t)) is the total solution inA such that u(0) = u. Then T j(t) =

T j. By the equation of T j, it holds f j(T j)−β j1T jV(t)−β j2T jJ(t) = 0, and therefore β j1V(t)+β j2J j(t) = 0.
Then V(t) = 0 and J j(t) = 0 for t ∈ R. By the boundary condition, i j(t, a) = i j(t − a, 0)σ j(a) = 0 for
t ∈ R and a ∈ [0,∞). Then the maximum invariant subset of the set { u ∈ X | Ẇ(u) = 0 } is the singleton
set {DFE}.
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4.3. Conclusions

Theorem 4.4. If R0 > 1, the unique interior equilibrium exists and is globally asymptotically stable in
X\X0. The disease free equilibrium is globally asymptotically stable in X0. If R0 ≤ 1, the disease free
equilibrium is globally asymptotically stable in X.

Proof. We assume R0 > 1. By Proposition 3.1, DFE is globally asymptotically stable in X0. On the
other hand, the alpha-limit set of each total solution in the persistence attractorA1 consists of an inte-
rior equilibrium u∗ used in Section 4.1 by Theorem 4.1, because A1 is compact. Then the persistence
attractor A1 is the singleton set consists of the interior equilibrium u∗. Then by Proposition 2.13, the
interior equilibrium u∗ is globally asymptotically stable in X\X0, and then the interior equilibrium is
unique.

We assume R0 ≤ 1. Then the alpha-limit set of each total solution of the compact attractorA is the
singleton set which consists of the DFE by Theorem 4.3. Then also by Proposition 2.13, the DFE is
globally asymptotically stable in X.

Acknowledgments

This work was supported by JSPS KAKENHI Grant Number JP17K05365.

Conflict of interest

The authors declare there is no conflict of interest.

References

1. R. Qesmi, J. Wu, J. Wu, J. M. Feffernan, Influence of backward bifurcation in a model of hepatitis
B and C viruses, Math. Biosci., 224 (2010), 118–125. https://doi.org/10.1016/j.mbs.2010.01.002

2. R. Qesmi, S. Elsaadan, J. M. Heffernan, J. Wu, A hepatitis B and C virus model with age
since infection that exhibits backward bifurcation, SIAM J. Appl. Math., 71 (2011), 1509–1530.
https://doi.org/10.1137/10079690X

3. T. Kajiwara, T. Sasaki, Y. Takeuchi, Construction of Lyapunov functions of the models for infec-
tious diseases in vivo: from simple models to complex models, Math. Biosci. Eng., 12 (2015),
117–133. https://doi.org/10.3934/mbe.2015.12.117
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