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Abstract: Heartbeat monitoring may play an essential role in the early detection of cardiovascular
disease. When using a traditional monitoring system, an abnormal heartbeat may not appear during a
recording in a healthcare facility due to the limited time. Thus, continuous and long-term monitoring
is needed. Moreover, the conventional equipment may not be portable and cannot be used at
arbitrary times and locations. A wearable sensor device such as Polar H10 offers the same capability
as an alternative. It has gold-standard heartbeat recording and communication ability but still lacks
analytical processing of the recorded data. An automatic heartbeat classification system can play as
an analyzer and is still an open problem in the development stage. This paper proposes a heartbeat
classifier based on RR interval data for real-time and continuous heartbeat monitoring using the
Polar H10 wearable device. Several machine learning and deep learning methods were used to train
the classifier. In the training process, we also compare intra-patient and inter-patient paradigms
on the original and oversampling datasets to achieve higher classification accuracy and the fastest
computation speed. As a result, with a constrain in RR interval data as the feature, the random
forest-based classifier implemented in the system achieved up to 99.67% for accuracy, precision, recall,
and F1-score. We are also conducting experiments involving healthy people to evaluate the classifier
in a real-time monitoring system.

Keywords: heartbeats; machine learning; deep learning; wearable sensor

1. Introduction

A heart disease that leads to life-threatening situations can be prevented by conducting
regular heartbeat condition monitoring [1]. For early detection of heart disease, the com-
mon procedure is to conduct a heartbeat measurement using an electrocardiogram (ECG).
Equipment such as a Holter monitor is utilized to obtain ECG data. Next, the physician
will analyze the recording to seek the pattern regarding abnormality patterns. Conducting
regular checkups can be challenging due to non-technical and technical aspects. An exam-
ple of the non-technical aspect is a pandemic situation that leads to difficulties in making
an appointment with a physician or other things such as busyness. The technical aspect is
related to the technology for conducting a regular checkup. Recording a cardiac activity
using a Holter monitor has a drawback that limits the patient’s activity, especially for
long-term recording. In some cases, it is necessary to conduct a long-term recording of ECG
because the irregular heartbeat may not appear during short examinations in health care
facilities. For this case, flexible ECG equipment is preferred. Moreover, interpreting a long
electrocardiogram recording will burden medical staff. Thus, an automated ECG analysis
is needed.

Currently, flexible ECG equipment is available as a wearable devices such as chest
traps, fitness devices, smartwatches, or armbands. Initially, those devices are intended
for fitness equipment. Nonetheless, a chest strap such as Polar H10 can replace a Holter
monitor to record cardiac activity [2]. This device is better than a Holter monitor for
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measuring the RR interval of a person’s heart rate and RR interval while they are moving,
running, cycling, swimming, and other activity at the gym [3]. A coin battery powers it
for up to 30 h of active usage. While being used on one’s chest, it does not affect one’s
movement. Polar H10 is also equipped with the Bluetooth Low Energy (BLE) to interact
with other equipment [4]. It produces several formats of cardiac parameters such as heart
rate (HR), RR interval (RRi), and electrocardiography (ECG) [5]. Among those parameters,
only the RRi is suitable for real-time and continuous detection of a heartbeat using Polar
H10. Polar H10 sends RRI data every second in a fixed amount, while the value of ECG
data fluctuates. Thus, ECG data cannot be used in real-time prediction because such data
should be recorded in batches before processing.

Previously, we have investigated that HR and RRi data from Polar H10 can be sent
every second through Bluetooth Low Energy [6]. Using RRi produced by Polar H10 as a
feature for heartbeat classification opens opportunities to develop real-time and continuous
heartbeat monitoring. Besides, related studies have proposed heartbeat classifiers by com-
bining several features, namely RRi, wavelet, ECG morphology, and heart rate variability
(HRV) with machine learning algorithms to achieve higher classification accuracy [7]. RRi
data can be extended into HRV features and RRi series such as local RRi and normalized
RRi. HRV can be used as a feature for automated heartbeat classification; however, it will
lead to binary classification, such as normal and abnormal decisions. As shown in [8,9],
they used HRV as a classification feature to distinguish between a normal and an anomaly
event. Using the RRi series as a feature for classification provides more detail to classify
the types of heartbeats instead of normal and abnormal events. Additionally, there are
still limited developments in real-time predicting a heartbeat sequence using commercial
wearable devices.

In this study, we developed a real-time and continuous heartbeat monitoring system
using a commercial wearable device. Polar H10 is employed to produce RR interval
continuously. We chose Polar H10 because it can produce a gold standard cardiac sign [2].
Previous studies that used polar H10 were focused on the heart rate variability (HRV)
measurement [10,11]. HRV can be used as a feature for classification, but it is limited to
the normal and abnormal conditions [8]. Compared to the previous study, we presented a
system using this device to provide a more detailed heartbeat prediction, namely, normal
beat (N), supraventricular ectopic beat (SVEB), ventricular ectopic beat (VEB), fusion beat
(F), and unknown beat (Q), following the described classes by the Association for the
Advancement of Medical Instrumentation® (AAMI). While other studies combine several
features to achieve higher accuracy [7], our study presents all possibilities in training a
classifier to achieve higher accuracy using only the RRi features. Moreover, the classifier
should give a prediction result in less than one second following the received data from
Polar H10 that are sent every second. Furthermore, we train our classifier using machine
learning and deep learning methods on inter-patient and intra-patient schemes of the
MIT-BIH arrhythmia database [12]. The MIT-BIH arrhythmia database is a well-known
database. However, the classes in this database are imbalanced. To overcome this issue, we
applied oversampling methods [13] to achieve higher classifier accuracy. The experiment
shows that it increased the accuracy up to 99.67%. We implemented the classifiers in our
framework to evaluate their performance in providing real-time prediction of a healthy
person every second. As a result, all classifiers can perform in less than one second. We
also demonstrate our study with several participants. The contribution of this study is
the proposal of a continuous heartbeat monitoring system using Polar H10 as a cardiac
sensor and shows all possibilities of creating a heartbeat classifier based on RRi as the
only classification feature. Thus, our study offers advanced experiments on heartbeat
classification compared to other studies.

2. Automated Heartbeats Classification

Heart disease can be recognized according to the heartbeat characteristics on an ECG
recording where the pattern correlates with the heart condition’s state. Usually, medical
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experts will determine the state of a patient’s heart condition by the shape or morphology of
the ECG waves. However, manually determining the pattern is challenging and laborious
for professionals, especially for long ECG recordings. Moreover, the human eye can be
inappropriate for detecting the morphological variation of the ECG waves. Thus, the use of
computational techniques for automatic classification is needed.

The benefit of an automated heartbeat classifier combined with a wearable heart sensor
device enables the real-time detection of abnormalities in our heartbeats. The Association
for the Advancement of Medical Instrumentationr (AAMI) defines heartbeats into five
classes [14]. As shown in Table 1, those beats are categorized as normal (N), supraven-
tricular ectopic beat (SVEB), ventricular ectopic beat (VEB), fusion beat (F), and unknown
beat (Q). Among them, SVEB and VEB are categorized as problems in our heart condition,
where VEB is related to heart failure [15] and SVEB is related to atrial fibrillation [16].

A comprehensive survey on heartbeat classification using machine learning was pre-
sented by Luz [7] while another study using deep learning was presented by Ebrahimi [17].
One of the differences between classification using machine learning and deep learning
methods is the feature that is extracted. Deep learning offers automatic feature extraction,
while machine learning mainly uses the handcrafted feature. The reports of automatic
heartbeat classification are varied. Some use different classes and databases, thus leading to
unfair comparison—unfortunately, only a few follow AAMI recommendation [18]. The Au-
tomated heartbeat classification requires several features to distinguish between normal
and abnormal beats. Those features are extracted from electrocardiography recordings,
such as the RR interval series, the morphology of ECG waves, and wavelets. After that, a
machine learning or deep learning method was used as a classifier.

Table 1. AAMI recommendation of heartbeats.

Normal (N) Supraventricular
Ectopic Beat (SVEB)

Ventricular Ectopic
Beat (VEB) Fusion Beat (F) Unknown Beat (Q)

Normal beat (N) Atrial premature
beat (A)

Premature ventricular
contraction (V)

Fusion of ventricular
and normal beat (F) Paced beat (/)

Left bundle branch
block (L)

Aberrated atrial
premature beat (a)

Ventricular escape beat
(E)

Fusion of paced and
normal beat (f)

Right bundle branch
block (R)

Nodal (junctional)
premature beat (J) Unclassified beat (Q)

Atrial escape beat (e) Supraventricular
premature beat (S)

Nodal junctional
escape beat (j)

Lin [19] explored the combination of a normalized RR interval and morphological
ECG waves as features. They used the linear discriminant to classify normal, supraventric-
ular, and ventricular beats. As a result, normalized RR intervals increase the classifier’s
performance. Tsipouras uses three RRi features (R1, R2, and R3); thus, the rule-based and
deterministic automation is used to classify normal, premature ventricular contraction,
ventricular flutter/fibrillation, and two heart blocks [20]. Lian uses a method to map RR in-
tervals to detect atrial fibrillation [21]. Xiang uses CNN as feature extraction to obtain time
intervals between two RR intervals and morphological features as one-dimensional data,
thus using a multi-layer perceptron (MLP) to classify VEB and SVEB [22]. Sannino uses
RR interval features consisting of previous RR, post RR, local average within 10 s slidings
from the previous window, and average 10 RR interval window within 5 min. They use
ANN as a binary classifier to predict normal and abnormal beats [23]. Ankita uses R-peak
and RR interval as a feature and uses hybrid CNN to classify 16 classes of heartbeat [24].
Jose did an investigation of feature selection for heartbeat classification. He suggests that
using normalized RR intervals could increase the classifier’s performance [25]. Mondejar
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demonstrates using several features such as RR interval, normalized RR interval, high order
statistic, HBF coefficients, and wavelet transform, thus using a support vector machine
(SVM) to classify each feature [26]. Developing automatic heartbeat classification systems
on resource-constrained devices is challenging, e.g., discovering an optimal mixture of
features and classifiers [25].

3. Materials and Methods
3.1. Dataset and Features

This study uses a dataset from the MIT-BIH arrhythmia database [12]. Even though this
dataset is imbalanced (imbalanced data would impact classification accuracy), these data
have already been labeled, annotated, and are publicly available. The dataset consists of 48
recordings of patient’s data. Each datum has a 30-min ECG recording. Among 48 recording
numbers, 102, 104, 107, and 217 are omitted for training data because they consist of paced
rhythm. Furthermore, we extract features for classification using this database. In this
study, the feature used for training the classifier is adapted to the sensor output data types:
RR interval and ECG data. RR interval data are measured from the distance of the two
R peak in each ECG wave (PQRS). This variable can reflect the physical condition [11].
Detecting the R wave in the ECG recording is needed to calculate the RR interval. In this
case, we used Pan-Tompkins Algorithm [27] to calculate the distance from one R wave
to the next detected R wave. After the RR interval’s value is known, we calculate the RR
interval series as one feature within 42 windows of RR interval data. There are several types
of RR interval series, as shown in Table 2. We extract the RR interval series as a feature from
the training and testing data. The RR interval series has the following characteristics: RR0,
RR-1, RR+1, RR0/avgRR, RR-1/avgRR, RR-1/RR0, RR-1/RR0, RR+1/avgRR, RR+1/RR0.
An average RR interval in the period window is required to calculate a normalized RR
interval. Usually, the average RR interval is calculated in a patient-wise way. Patient-wise
means calculating the average RR of all recorded data. In a real-time scenario, especially
in stream processing, the calculation of entire recorded data is impossible because data
keep growing. Thus it is suggested to compute previously known data. In this study,
feature extraction uses 42 previous RR intervals to minimize computational time and to
speed up the classification process. For this reason, for feature extraction for training the
classifier from the MIT-BIH arrhythmia database, the average RR interval is calculated
from 42 windows of the previous RR interval. The RR interval can be computed into nine
features; thus, it does not need feature selection due to its low complexity.

Table 2. RR interval feature series.

Features Series Descriptions

RR0 Current RRi value

RR-1 Previous RRi value

RR+1 Next RRi value

RR0/avgRR Current RRi/average of RRi within 42 s

tRR0 (CurrentRR-averageRR)/stddevRR

RR-1/avgRR Previous RRi/average of RRi

RR-1/RR0 Previous RRi/ current RRi within 42 s

RR+1/avgRR Next RRi, average of RRi within 42 s

RR+1/RR0 Next RRi, current RRi

3.2. Oversampling

As shown in Table 3, the original data of the MIT-BIH arrhythmia database are dom-
inated by the N class, while the number of class Q instances is only 15. The imbalanced
dataset will affect the performance of a classifier. Thus, we applied oversampling methods



Sensors 2022, 22, 5080 5 of 15

such as Random Oversampling (ROS), the Synthetic Minority Oversampling Technique
(SMOTE), and Adaptive Synthetic Sampling (ADASYN). A Python library was used to
balance the dataset using RandomOverSampler, SMOTE, and ADASYN [13]. Random
Oversampling works by duplicating the minority class until sample data become equal
to those of the majority class. SMOTE and ADASYN work by generating new values by
using the rule given by Equation (1), where xnew is a newly generated value between k
nearest-neighbors of xi and xzi. In contrast, λ is a random number between zero and one.
ADASYN generates data proportionally regarding the number of the majority class in xi
period. Figure 1 shows a visual representation of the first two features of nine RR interval
features on a different class. There are five colors representing each class. In the first plot,
a yellow dot represents the minority class. In the next plot, yellow dots are multiplied using
the oversampling method. We can see the behavior of oversampling method to balance the
dataset. The balanced dataset is shown in Table 3. Using the oversampling method, the the
number of data on the minority classes are nearly equal to those of the majority class. The
number of data which belongs to the majority class is 90,125. Using random oversampling
and SMOTE, the numbers of data in all classes are equaled, while using ADASYN, several
minority classes exceeded the amount of N classes.

xnew = xi + λ × (xzi − xi) (1)

Figure 1. Plotting data of RR interval feature.

Table 3. Distribution of heartbeats class in MIT-BIH data.

Original ROS SMOTE ADASYN

number of N 90,125 90,125 90,125 90,125

number of S 2781 90,125 90,125 90,332

number of V 7009 90,125 90,125 89,215

number of F 803 90,125 90,125 90,293

number of Q 15 90,125 90,125 90,120

3.3. Train the Classifiers

We train the classifier using inter-patient and intra-patient paradigms with the MIT-
BIH arrhythmia dataset to create the best classifier based on those features. The inter-patient
paradigm means that the training and testing data come from different patient recordings.
Later, it is called protocol splitting because many previous studies used this method to
split the training and testing data [28]. At the same time, in the intra-patient paradigm,
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the data for training and testing may come from the same patient recording, which later is
called random splitting. The protocol splitting will make the classifier work harder because
the model will classify new data [7]. The splitting data based on inter-patient data are
defined as follows, training dataset using record number: 101, 106, 108, 109, 112, 114, 115,
116, 118, 119, 122, 124, 201, 203, 205, 207, 208, 209, 215, 220, 223, 230 and testing dataset
using record number: 100, 103, 105, 111, 113, 117, 121, 123, 200, 202, 210,212, 213, 214, 219,
221, 222, 228, 231, 232, 233, 234. While in intra-patient, the scheme of splitting data is
undertaken randomly, selecting 70% from available data as training data and the remaining
as testing data.

Several machine learning and deep learning methods are used to classify five classes
of heartbeats for classification methods. We use Scikit learn library in Python to train the
model using Decision Tree (DT), Gradient Boosting (GB), k-Nearest Neighbors (KNN),
Multi-layer Perceptron (MLP), Random Forest (RF), and Support Vector Machine (SVM).
The training parameter are shown in Table 4.

Table 4. Model parameters.

Model Parameter

DT default

GB estimator = 100, learning rate = 0.1,
max. depth = 3, random state = 0.

kNN k = 3.

MLP
network solver = adam, alpha=1e-5, hidden
layer = 128, input layer = 9 output layer = 5,

max iteration = 600, random state = 42.
RF tree = 30, random state = 42.

SVM kernel = RBF, gamma = 0.8, C = 1.

For deep learning, we use tensor flow to train the model using sequential with artificial
neural networks (ANN) [29]. A summary of the model is shown in Table 5. There are seven
layers with nine nodes at the input layer, five nodes at the output layer, and five hidden layers.
The activation function is relu and softmax, kernel regularizer (l2) is 0.0001, the optimizer is
adam, and the loss function is sparse categorical cross-entropy. Four evaluation metrics such as
accuracy, precision, recall, and F1-score is used to evaluate the classifiers.

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1-score =
2 × Precision × Recall

Precision + Recall
=

2 × TP
2 × TP + FP + FN

(5)
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Table 5. Deep learning model summary.

Layer (Type) Output Shape Param

dense (Dense) 314,857, 9 80

dense_1 (Dense) 314,857, 64 576

dense_2 (Dense) 314,857, 128 8320

dense_3 (Dense) 314,857, 512 66,048

dense_4 (Dense) 314,857, 128 65,664

dense_5 (Dense) 314,857, 64 8256

dense_6 (Dense) 314857, 5 325

Evaluation is performed by validating the model with data testing. The accuracy is a
metric to measure the correctness of the predicted class with the true class in the dataset.
The precision parameter defines a correct prediction class divided by all numbers resulting
from prediction or known as the positive predicted value. At the same time, recall is used
to measure the actual value of the predicted class that is identified correctly or known as
sensitivity. The F1-score measures the balance between precision and recall, especially in
the imbalance dataset. For the first model, we use several machine learning techniques to
train a classifier by splitting the data using a protocol from [28] and a random split as an
intra-patient paradigm. For the intra-patient training and testing data, we split randomly
from the whole recording by 70% for training and 30% for testing. As shown in Table 6, we
have three kinds of data splitting mechanisms. The first one is protocol split, the second is
random split, and the third is random split of over-sampled data. Thus, we are conducting
the training for those splitting for each classification method. We performed training five
times to validate the result for random splitting.

Table 6. Splitting the data.

Protocol Split Random Split Oversampling

Train Test Train Test Train Test

number of N 45,866 44,259 63,150 26,975 63,050 27,075

number of S 944 1837 1973 808 63,225 26900

number of V 3788 3221 4845 2164 63042 27,083

number of F 415 388 536 267 63,076 27049

number of Q 8 7 9 6 63,044 27,081

Total 51,021 49,712 70,513 30,220 315,437 135,188

4. Results

We conducted three schemes for training the classifier based on the dataset splitting
scheme. The first scheme uses the inter-patient splitting, and the second scheme uses the
intra-patient with a random split on the original dataset. The third scheme is intra-patient
with a random split on the over-sampled dataset. The result of the first training is shown in
Table 7. The highest accuracy was achieved by an SVM-based classifier with 92.57% and
90.23%, 92.57%, 90.81% for precision, recall, and F1-score, consecutively. While Neural
Network-based classifier achieved the accuracy of 92.50% and 91.36%, 92.50%, 91.46%
for precision, recall, and F1-score, consecutively. As a supplement for those results, we
present the confusion matrix at Tables 8 and 9, where the horizontal value is the result of
prediction by the classifier and the vertical is an actual label. As we can see in the confusion
matrix, the result is not so good, several values are predicted in the wrong class, and both
the classifiers cannot predict the Q class (the Q class is predicted as the N class). This
result is caused by many overlapping data features with other classes, as we can see in
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Figure 2 with original data, i.e., minority class (with the yellow dot appears inside another
class). As stated by [28] the way of data splitting will burden the classifier, especially with
imbalanced data.

Figure 2. Decision boundary using logistic regression.

Table 7. Result of machine learning using protocol split.

Method Accuracy (%) Precision (%) Recall (%) F1-Score (%)

DT 89.15 88.30 89.15 88.64

GB 89.08 89.10 89.08 88.44

KNN 90.76 88.42 90.76 89.42

NN 92.50 91.36 92.50 91.46

RF 91.81 89.24 91.81 90.29

SVM 92.57 90.23 92.57 90.81

ANN 91.44 88.59 91.04 89.72

Table 8. Confusion matrix SVM.

Classifier

R
ef

er
en

ce

n s v f q

N 43,588 49 622 0 0
S 1159 79 599 0 0
V 808 64 2349 0 0
F 385 0 3 0 0
Q 6 1 0 0 0

Table 9. Confusion matrix NN.

Classifier

R
ef

er
en

ce

n s v f q

N 43,170 199 872 18 0
S 789 279 768 1 0
V 619 55 2535 12 0
F 382 0 5 1 0
Q 6 0 1 0 0

The second training was conducted using a random dataset split with 70% for training
and 30% for testing. The training and testing were performed in five times repetition.
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The ANN-based classifier achieved the highest accuracy with 96.25% and 96.07%, 96.35%,
96.09% for precision, recall, and F1-score. As shown in Table 10, Random Forest-based
classifier yields 96.22% accuracy with 95.94%, 96.21%, 95.89% for precision, recall, and F1-
score, respectively. Based on the confusion matrix shown in Tables 11 and 12.

There is still a miss-match by the classifier to predict actual label. Overall the result
of the accuracy of each classifier is better than the protocol split. The minority class (Q)
by the classifiers based on inter-patient and intra-patient are classified as a normal class,
and several works reported skipping the minority class and focusing on classifying the N,
S, and V class [7].

The third training was conducted by an intra-patient scheme using over-sampled data
by Random Oversampling, SMOTE, and ADASYN. The number of data for training is
315,437 and 135,188 for testing data. In this configuration, the amount of data for each class
is nearly equal. As a result, the maximum accuracy achieved is 99.67% by the Random
Forest-based classifier. The precision, recall, and F1-score are 99.67%, 99.67%, and 99.67%.
The second highest accuracy is the Decision Tree classifier with 99.31%, 99.32%, 99.31%,
99.31% for accuracy, precision, recall, and F1-score, respectively. Table 13 shows the result
of all classifiers using a third training scheme. Based on the oversampling method, Random
oversampling is dominant compared to other oversampling methods in terms of classifier
accuracy. The way the ROS works by duplicating the minority class may lead to this
dominance. However, the classifier trained using SMOTE also gives good results that
achieves 98.15% accuracy by the random forest classifier. As shown in confusion matrix
Tables 14–16, the overlap causing miss-prediction by the classifier is fewer compared
to the confusion matrix based on training classifiers using scheme one and two. These
classifiers can recognize the F and Q classes, while the classifier based on training one and
two schemes failed to predict the F and Q classes.

Table 10. Result of machine learning using random split dataset.

Method Accuracy (%) Precision (%) Recall (%) F1-Score (%)

DT 94.08 94.12 94.08 94.10

GB 95.57 95.29 95.57 95.21

KNN 95.08 94.50 95.08 94.53

NN 95.82 95.53 95.82 95.46

RF 96.22 95.94 96.21 95.89

SVM 95.05 93.97 95.05 94.35

ANN 96.35 96.07 96.35 96.09

Table 11. Confusion matrix RF.

Classifier

R
ef

er
en

ce

n s v f q

N 26,734 20 206 15 0
S 129 594 85 0 0
V 420 43 1698 3 0
F 211 0 6 50 0
Q 6 0 0 0 0



Sensors 2022, 22, 5080 10 of 15

Table 12. Confusion matrix ANN.

Classifier

R
ef

er
en

ce

n s v f q

N 26,776.2 28 214.6 15.2 0
S 112.8 632.6 88.6 0 0
V 392.6 44.6 1663 10.8 0
F 178 0 9.4 46.6 0
Q 5.75 0.75 0.5 0 0

Table 13. Result of training using over-sampled dataset.

Accuracy (%) Precision (%) Recall (%) F1-Score (%)

R S A R S A R S A R S A

DT 99.31 96.50 96.08 99.32 96.49 96.07 99.31 96.50 96.08 99.31 96.49 96.06

GB 89.57 86.73 78.26 89.62 86.70 77.94 89.57 86.73 78.26 89.55 86.67 78.01

KNN 98.93 97.55 97.49 98.99 97.71 97.56 98.97 97.68 97.49 98.96 97.64 97.44

NN 89.88 90.06 84.48 90.17 90.19 84.54 89.88 90.06 84.48 89.81 89.96 84.23

RF 99.67 98.15 98.08 99.67 98.15 98.09 99.67 98.15 98.08 99.67 98.14 98.07

SVM 87.87 87.43 79.83 87.93 87.46 79.59 87.87 87.43 79.83 87.78 87.32 79.39

ANN 97.51 96.20 95.85 97.54 96.22 95.81 97.51 96.20 95.85 97.49 96.18 95.83

Table 14. Confusion matrix RF-ROS.

Classifier

R
ef

er
en

ce

n s v f q

N 26,626 32 370 44 2
S 0 26,900 0 0 0
V 0 0 27,083 0 0
F 0 0 0 27,049 0
Q 0 0 0 0 27,081

Table 15. Confusion matrix DT-ROS.

Classifier

R
ef

er
en

ce

n s v f q

N 26,148 141 576 205 5
S 0 26,900 0 0 0
V 0 0 27,083 0 0
F 0 0 0 27,049 0
Q 0 0 0 0 27,081

Table 16. Confusion matrix ANN-ROS.

Classifier

R
ef

er
en

ce

n s v f q

N 24,773.4 255.8 943.4 1073.6 27.8
S 84.2 26,670.75 146.5 2.4 0
V 334.4 123.8 26,277.75 310.4 0.4
F 50 0 13.6 26,992 0
Q 0 0 0 0 27,082
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Table 17 shows the comparison of our classifier with previously proposed classifiers.
The trained classifier in this study has competitive performance among previously reported
classifiers. Moreover, our classifier only uses a simple feature from the RR interval series.
Some classifiers can achieve higher accuracy compared to those previously reported.

Table 17. Works comparison following AAMI recommendation.

Classifier Feature No. of Features Data Scheme Class Accuracy (%)

Ensemble SVM
[26]

RR interval, HOS,
wavelet, time

domain,
morphology

45 Inter-patient 5 94.5

Random Forest
[25]

RR interval, HBF,
time domain,
morphology

6 Inter-patient 5 96.14

Naïve bayes [30] HOS 4 Inter-patient 5 94

SVM [31] RR-Interval, DCT
Random projection 33 Inter-patient 5 93.1

Ensemble of BDT
[32]

RR-interval, DCT
random projection 33 Inter-patient 5 96.15

Ensemble SVM
[33]

RR-Interval,
Random projection 101 Inter-patient 5 93.8

Deep neural
network [34]

RR interval,
Wavelet, HOS,
morphologcy

45 Inter-patient 4 89.25

This work (SVM) RR interval 9 Inter-patient 5 92.57

This work (NN) RR interval 9 Inter-patient 5 92.50

This work (RF) RR interval 9 Intra-patient 5 96.22

This work (ANN) RR interval 9 Intra-patient 5 96.35

This work (RF) RR interval 9 Intra-patient(O) 5 99.67

This work (DT) RR interval 9 Intra-patient(O) 5 99.31

5. Real-Case Experiment

In this section, we provide an experiment using our classifier and our developed system to
continue the monitoring of heartbeat in real-case scenarios. This experiment was conducted by
involving a healthy person to measure the capabilities of a classifier to predict data continuously
and as a preliminary experiment to validate our developed system. We choose the classifier with
accuracy above 96% for each method among all the classifiers. The experiment runs for 20 min
for each classifier. As shown in Figure 3, our experiment uses Polar H10 as a sensor, middleware,
classifier, and visualizer. The middleware, classifier, and visualizer are run on a personal
computer. The application works as follows: (1) The middleware initiate communication
through BLE with Polar H10. In this study, we use BLEAK as the BLE framework. Our previous
study concluded that Polar H10 and middleware could maintain good communication by
receiving signal strength (RSSI) above −80 dBm until 50 m at no obstacle environment and 16 m
at obstacle environment [4]. (2) After communication has been made, middleware requests
heart rate measurement. (3) Polar H10 will send data by broadcast, consisting of RR interval and
heart rate. (4) The middleware will listen until it receives 42 RR interval data. The classification
process will start if 42 RR interval data are collected. (5) The classification process is started
with feature extraction to form nine kinds of RR interval series. (6) The classifier predicts RR
interval series to determine the class. (7) The prediction result is visualized in the command
line interface (CLI), as an example can be seen in Figure 4. Figure 4 consists of information
regarding the time of recording, extracted feature, heart rate, prediction result, and computation
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time after the run-time of the application reached 20 min, then middleware closing connection
with Polar H10.

Figure 3. Class diagram of real-time monitoring system.

Figure 4. An output of real-time prediction of heartbeat.

The performance of the classifier is presented in Table 18. Classifiers based on Random
Forest have the longest average processing time with 0.108851 s. The classifier with the
fastest processing time is the Decision Tree with 0.00035943 s. During 20 min, the number
of beats varies, and most of the prediction results are normal beats. The average inference
time of the classifiers is less than 1 s, and they can give prediction results within one second.
Thus, the classifier is suitable for the continuous and real-time prediction of a heartbeat.
We also provide information regarding RSSI during the experiment. As shown in Table 18,
the average RSSI is above −80 dBm, which indicates that the transmission data between
sensor and middleware are in good condition while the participant moves around the
middleware.
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Table 18. Experiment result on healthy person within 20 min.

Average
Processing

Time
(Second)

Found Beat Number
Beats

Average
RSSI

(dBm)
N S V F Q

RF 0.108739 1172 0 0 0 0 1172 −49.15

ANN 0.043825 1172 0 0 0 0 1172 −62.80

ANN-ROS 0.043033 1177 0 0 0 0 1177 −69.98

DT-ROS 0.000359437 1169 0 0 0 0 1169 −67.23

RF-SMOT 0.108851 1177 0 0 0 0 1177 −64.63

KNN-ROS 0.001943876 1171 0 0 0 0 1177 −52.47

RF-ROS 0.10563 1176 0 0 0 0 1176 −45.032

We also conducted an experiment involving six healthy people to evaluate our de-
veloped system; four participants are male, and two are female. Their ages also varied.
We used a random forest classifier trained with random oversampling in this experiment.
The experiment runs for 30 min for each participant. We also measured the received signal
strength indicator (RSSI) for the quality of received data from Polar H10. As we can see in
Table 19, the number of beats in 30 min from each participant is varied. All of the received
beats are predicted as normal. According to the RSSI, we can conclude the transmission
data are in a good state, which is above −80 dBm. The value of RSSI also indicates the
distance between the participant with the middleware device. The more excellent value of
RSSI means the participant is closed to middleware.

Table 19. Result the of experiment on six healthy people within 30 min.

Participant Age Gender
Found Beat

Average
RSSI

(dBm)
N S V F Q

1 33 M 1764 0 0 0 0 −63.7

2 34 M 1773 0 0 0 0 −59.1

3 36 M 1753 0 0 0 0 −59.3

4 35 M 1773 0 0 0 0 −46.9

5 28 F 1752 0 0 0 0 −72.8

6 33 F 1772 0 0 0 0 −60.5

6. Conclusions

This study presents a heartbeat classifier based on RR interval as a real-time and con-
tinuous heartbeat monitoring feature. Several machine learning algorithms were explored
to classify the well-known MIT-BIH arrhythmia database. The imbalance classes problem
of the dataset is addressed by implementing oversampling methods. As a result, a random
forest-based classifier on the over-sampled data performed best by 99.67% for accuracy, preci-
sion, recall, and F1-score. Furthermore, we evaluate the classifier on our framework. The first
evaluation continuously predicts the heartbeat of a healthy person to measure prediction
time in a real-time scenario. As a result, all the classifiers can predict the data in under 1 s.
Thus, it can be concluded that the classifiers are suitable to predict Polar H10 data output
in a continuous and real-time manner. In the second evaluation, we increase the number of
participants to four males and two females. Their age is varied and in the healthy condition.
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The result is our system predicts their heartbeat as normal, and transmission data between
Polar H10 and middleware is in a good state, indicated by RSSI above −80 dBm.

In the future, we would like to extend the implementation for real experimental studies
in corporation with a medical professional to identify the type of heart disease and other
real-case scenarios where users perform more vigorous activities, such as sports.
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