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1 Introduction

Information that describes human activities and the natural environment together

with their position in space is called spatial information, and information that is pro-

cessed so that it can be used for statistical analysis is called spatial data. In recent years,

spatial data can be easily collected by position information terminals such as GIS (Global

Information System) and GPS (Global Positioning System), and is widely used in various

fields. Spatial events such as “disease mortality observed in each region” and “measure-

ments of toxic substances in each observatory” may occur centrally in a specific area. At

this time, it is called “a cluster exists”.

Detection of spatial clusters is very important for understanding the current environ-

mental conditions and future impacts. To date, as methods for evaluating the presence or

absence of a cluster, for evaluating from the perspective of spatial autocorrelation (Moran

1948; Cliff and Ord 1973; Anselin 1995), and methods for testing the presence or absence

of a cluster and identifying its position (Kulldorff 1997; Tango and Takahashi 2005; Ish-

ioka et al. 2019) have been proposed. These methods have been widely used in the field

of epidemiology and so on. In particular, the spatial scan statistic (Kulldorff 1997) has

been widely used to detect clusters of infectious diseases such as childhood pneumonia

(Andrade et al. 2004), tuberculosis (Oeltmann et al. 2008; Kammerer et al. 2013), and

influenza (Manabe et al. 2016). Furthermore, Cordes and Castro (2020) detected clusters

of coronavirus disease 2019 (COVID-19) in New York City.

However, the Kulldorff’s method can detect only circular clusters, and it is difficult

to detect clusters with arbitrary shapes. Additionally, the spatial scan statistic based

on the idea of maximizing the likelihood has the problem of including low-risk regions

in clusters. As a result, large clusters with unrealistic shapes may be detected. For this

problem, Tango (2008) proposed the spatial scan statistic with restricted likelihood ratio

to detect clusters including only the regions with high-risk. As methods based on this

statistic, the restricted circular scan method (Tango 2008) and the restricted flexible scan

method (Tango and Takahashi 2012) were proposed. On the other hand, even with these

methods, when targeting large-scale spatial data with a number of regions ranging from

thousands to tens of thousands, the amount of calculation becomes enormous and it is

difficult to detect clusters with arbitrary shapes.

In general, clusters are often detected for the cumulative number of observations made

in a specific period within the study area. It is also important to simultaneously detect

the location and duration of clusters for the number of observations that span multiple
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periods, such as the daily number of people infected with infectious disease. Such a cluster

that has information on the place and period of occurrence is called a space-time cluster.

Kulldorff et al. (1998) proposed a method for detecting space-time clusters on the basis

of the spatial scan statistic. This method can be performed with the SaTScanTM software

(the latest version is 10.0.2; Kulldorff, 2022). Recent studies using Kulldorff’s method

include the detection of space-time clusters for COVID-19 infections (Hohl et al. 2020;

Kim and Castro 2020; Martines et al. 2021).

Detection of space-time clusters has made it possible to detect when and where clus-

ters have occured. However, Kulldorff’s method can only detect a cluster comprising the

same regional group that spans multiple periods. Accordingly, this method cannot cap-

ture changes in a cluster’s shape over time (Patil and Taillie 2004). Furthermore, when

considering changes in the shape of a cluster, an analysis using existing methods becomes

difficult because of an increase in the calculation amount.

This paper is roughly composed of two parts. In the first half of this paper, we propose

a new method that can detect high-risk clusters. The proposed method uses the criteria

defined by Tango in the spatial scan statistic with restricted likelihood ratio to extract

the upper hierarchy of the spatial hierarchical structure obtained by echelon analysis,

and scans the extracted data to detect high-risk spatial clusters. We also examine the

possibility of application to large-scale spatial data through simulation.

In the second half, as an application of the proposed method to spatiotemporal data,

we detect space-time clusters using data of infected people with COVID-19 collected daily

by each prefecture in Japan. In addition, we consider the factors that caused the detected

clusters and the changes in their shapes.
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2 The spatial scan statistic

The spatial scan statistic is a likelihood ratio test statistic for evaluating the presence

or absence of clusters in a study area. Let us assume that a study area G is divided into

m regions. It is also assumed that the random variables, Oi, which represent the observed

number in region i, follow the Poisson distribution independently of one another. At this

time, if there is no cluster in the study area, the random variable Oi with the observed

value oi can be stated as follows:

Oi ∼Poisson(ξi), i = 1, 2, . . . ,m

where ξi is the expected number of cases region i. In addition, a subset of regions adjacent

to each other in G is called a window and represented by Z, and the complement of Z

is replesented by Zc. Let Z be the universal set of Z, then, the presence or absence of a

cluster can then be given as the following hypothesis testing:

H0 : pZ = pZc = p, ∀Z ∈ Z

H1 : pZ > pZc , ∃Z ∈ Z

where, pZ and pZc are the probability of event occurrence in Z and in Zc, respectively.

However, performing the test for each Z gives rise to the problem of conducting multiple

testing.

Let oi and wi be the number of cases in region i and the number of populations,

respectively. The number of cases in Z and Zc can be expressed as o(Z) =
∑

i∈Z oi and

o(Zc) =
∑

i ̸∈Z oi. Similarly, the number of populations in Z and Zc can be expressed

as w(Z) =
∑

i∈Z wi and w(Zc) =
∑

i ̸∈Z wi. Here, o(G) = o(Z) + o(Zc) =
∑m

i=1 oi and

w(G) = w(Z) + w(Zc) =
∑m

i=1 wi. At this time, using the Poisson distribution with

mean ξi = wip, the likelihood ratio (LR) under null and alternative hypothesis is given

as follows:

LR(Z, pZ, pZc , p) =
the likelihood underH1

the likelihood underH0

=
exp(−

∑
i∈Z wipZ)

∏
i∈Z(wipZ)

oi∏
i∈Z oi!

× exp(−
∑

i ̸∈Z wipZc)
∏

i ̸∈Z(wipZc )oi∏
i ̸∈Z oi!

exp(−
∑m

i=1 wip)
∏m

i=1(wip)oi∏m
i=1 oi!

=
exp(−

∑
i∈Z wipZ −

∑
i ̸∈Z wipZc)× p

o(Z)
Z × p

o(Zc)
Zc

exp(−
∑m

i=1 wip)× po(G)
. (2.1)
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For this LR(Z, pZ, pZc , p), by substituting the makimum likelihood estimators p̂Z =
o(Z)
w(Z)

, p̂Zc = o(Zc)
w(Zc)

, p̂ = o(G)
w(G)

, we obtain the following maximum likelihood function:

LR(Z) =

(
o(Z)
w(Z)

)o(Z) (
o(Zc)
w(Zc)

)o(Zc)

(
o(G)
w(G)

)o(G)
I

(
o(Z)

w(Z)
>

o(Zc)

w(Zc)

)
, (2.2)

where, since we assume H1 : pZ > pZc , it is I
(

o(Z)
w(Z)

> o(Zc)
w(Zc)

)
. Furthermore, LR(Z) can

be converted as follows:

LR(Z) =

(
o(Z)
w(Z)

)o(Z) (
o(Zc)
w(Zc)

)o(Zc)

(
o(G)
w(G)

)o(Z) (
o(G)
w(G)

)o(Zc)
I

(
o(Z)

w(Z)
>

o(Zc)

w(Zc)

)
. (2.3)

Let ξ(Z) and ξ(Zc) be the expected number of cases inside and outside Z, respectively.

Using ξi = wi · o(G)
w(G)

, these are given by following equations:

ξ(Z) =
∑
i∈Z

wi ·
o(G)

w(G)
= w(Z) · o(G)

w(G)
,

ξ(Zc) =
∑
i ̸∈Z

wi ·
o(G)

w(G)
= w(Zc) · o(G)

w(G)
.

Substituting ξ(Z) and ξ(Zc), LR(Z) can be represented by the following equation:

LR(Z) =

(
o(Z)
w(Z)

)o(Z) (
o(Zc)
w(Zc)

)o(Zc)

(
ξ(Z)
w(Z)

)o(Z) (
ξ(Zc)
w(Zc)

)o(Zc)
I

(
o(Z)

ξ(Z)
>

o(Zc)

ξ(Zc)

)

=

(
o(Z)

ξ(Z)

)o(Z) (
o(Zc)

ξ(Zc)

)o(Zc)

I

(
o(Z)

ξ(Z)
>

o(G)− o(Z)

o(G)− ξ(Z)

)
(∵ ξ(G) = o(G))

=

(
o(Z)

ξ(Z)

)o(Z) (
o(Zc)

ξ(Zc)

)o(Zc)

I (o(Z) > ξ(Z)) . (2.4)

Therefore, the spatial scan statistic is given by the following equation:

λK(Z) =


(
o(Z)

ξ(Z)

)o(Z) (
o(Zc)

ξ(Zc)

)o(Zc)

, (o(Z) > ξ(Z))

1. (otherwise)

(2.5)
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Window Z that maximizes λK(Z) is defined as the most likely cluster (MLC). Typically,

log λK(Z) is used to simplify the calculation. The significance of the MLC is evaluated

using the Monte Carlo method.
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3 The method for detecting spatial clusters

3.1 The circular scan method

In detecting spatial clusters, how to find the window Z that maximizes the statistic

λK(Z) is important. In general, the number of combinations of regions included in Z

is enormous, and it is not realistic to find all of them. Therefore, it is necessary to

find Z efficiently. As the method for scanning Z, Kulldorff (1997) proposed the circular

scan method. In this method, as shown in Fig. 3.1, expand the circle centered on the

representative point of region i until it reaches the maximum spatial window size (MSWS)

set in advance. The MSWS is a parameter related to the size of the cluster determined

by the analyst and expressed as K. As the MSWS, the maximum number of regions or

populations in the cluster are used. In this chapter, the MSWS is the maximum number

of regions included in a cluster. At this time, the regions included inside the expanding

circle are sequentially taken into Z. That is, the circular scan method obtains a window

Zik containing region i itself and consisting of k regions in order from i. Therefore, the

universal set of Zik is given by the following equation:

Z1 = {Zik | 1 ≤ i ≤ m, 1 ≤ k ≤ K}, (3.1)

here, when there are multiple regions with the same distance from the region i, if the

number of regions in Zik does not exceed K, they are simultaneously included in Zik. The

circular scan method has high detection accuracy when the true cluster is circular-shaped.

On the other hand, it is not suitable for detecting non-circular clusters such as linear and

ring-shaped.

3.2 The flexible scan method

For the proplem of the circular scan method, which makes it difficult to detect non-

circular clusters, Tango and Takahashi (2005) proposed the flexible scan method to detect

Figure 3.1: Scanning process of the circular scan method
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clusters with arbitrary shapes. In this method, first, we consider a set ZiK consisting of

K regions in order from i, centering on i. At this time, if there are uik subsets in ZiK

consisting of k regions adjacent to each other including i, and let Zik(u) be the u-th

window, then the universal set of Zik(u) is given by the following equation:

Z2 = {Zik(u) | 1 ≤ i ≤ m, 1 ≤ k ≤ K, 1 ≤ u ≤ uik}. (3.2)

A feature of this method is that it uses not only the coordinates of the representative

points but also the adjacent information between regions, which is not used in the circular

scan method. Therefore, it can scan all windows including i itself within a certain range

and detect clusters with shapes that are difficult to detect by the circular scan method.

However, the problem with this method is that the number of windows obtained by scan-

ning is very large, and the analysis time tends to be long. For this reason, in the software

FleXScan v3.1.2 (Takahashi et al. 2010) that implements the flexible scan method, it is

recommended to set the value of the MSWS with K ≤ 20. Hence, it is not suitable for

large-scale spatial data with a large number of regions.
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4 The spatial scan statistic with restricted
likelihood ratio

When detecting clusters using data such as disease mortality and crime occurrence,

it is desirable that the region i included in the window Z is a region with a high risk

of satisfying oi > ξi. However, since Eq. (2.5) is calculated based on Z, which is a set

of regions i, unrealistic results sometimes occur, such as detecting Z including region i

where oi < ξi. For such a problem, Tango (2008) proposed the spatial scan statistic with

a restricted likelihood ratio given by

λT (Z) =


(
o(Z)

ξ(Z)

)o(Z) (
o(Zc)

ξ(Zc)

)o(Zc)

, (o(Z) > ξ(Z), pi < α, ∀i ∈ Z)

1, (otherwise)

(4.1)

where pi is the one-tailed p value of the test for null hypothesis given by the mid−p value

pi = Pr{Oi ≥ oi + 1 | Oi ∼ Pois(ξi)}+
1

2
Pr{Oi = oi | Oi ∼ Pois(ξi)} (4.2)

and α is the prespecified significance level for the individual region. For the significance

level is 0.05, Tango (2008) defined the setting of α as follows:

1. α = 0.10− 0.20 to detect small clusters with a sharp increase in risk;

2. α = 0.20 − 0.30 to detect small to mid-sized clusters with a moderate increase in

risk;

3. α = 0.30− 0.40 to detect larger clusters with a slight increase in risk.

As a guide, Tango (2008) recommended α = 0.20. Tango’s statistic considers each region’s

risk rate, thereby enabling including only the regions that satisfy oi > ξi into the MLC.

We show a simple example of the difference in analysis results between Kulldorff’s

statistic and Tango’s statistic. We assumed that the study area G shown in Fig. 4.1 has

o(G) = 980 and ξ(G) = 980, respectively. Furthermore, consider the regions a, b, and c

in G, and assume that they have the values shown in Table 4.1. Here, from the value of

θ = o/ξ, a and b are high-risk regions (θa = 1.91, θb = 1.49), and c is a low-risk region

(θc = 0.95). In addition, it is assumed that a and b are not directly adjacent to each

other, and these three regions are connected by c (see Fig. 4.1). At this time, consider

detecting a cluster from the four subsets {a}, {b}, {c} and {a, b, c}. For the set of regions
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ca b

G

Figure 4.1: The study area G and the location of regions a, b and c

Z = {a, b, c} and its outside, o and ξ are calculated by the following equations:

o(Z) = 153 + 208 + 57 = 418,

ξ(Z) = 80 + 140 + 60 = 280,

o(Zc) = o(G)− o(Z) = 980− 418 = 562,

ξ(Zc) = ξ(G)− ξ(Z) = 980− 280 = 700.

Therefore, log λK(Z) = 44.09, and {a, b, c} has the largest statistic among them. However,

since {a, b, c} includes c, it is not suitable when considering a cluster consisting only of

high-risk regions. On the other hand, when Tango’s statistic is applied with α = 0.20,

c is not included in the cluster because pc < α. Hence, {a}, which has the next largest

statistic, becomes a cluster.

Tango’s statistic can be applied to existing methods based on Kulldorff’s statistic. As

a method applied to the existing method, the restricted circular scan method (Tango 2008)

and the restricted flexible scan method (Tango and Takahashi 2012) have been proposed.

These methods can be performed with the FleXScan software (the latest version is 3.1.2;

Takahashi et al. 2013) and the rflexscan package (Otani and Takahashi 2019), which is

the package of statistical analysis software R.

– 9 –



Table 4.1: Values of regions a, b and c

region o ξ θ = o/ξ log λK pi

a 153 80 1.91 29.25 2.10× 10−13

b 208 140 1.49 17.18 4.02× 10−8

c 57 60 0.95 0.081 0.64
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5 The new method based on the echelon
scan method

5.1 The echelon scan method

The echelon scan method (Ishioka et al. 2007; Ishioka et al. 2019) searches for a

cluster using the hierarchical structure of the spatial data obtained by conducting echelon

analysis (Myers et al. 1997; Kurihara 2004; Kurihara et al. 2020). Echelon analysis is a

method for systematically and objectively visualizing the topological structure of spatial

data by dividing the spatial position based on the height on the surface for the univariate

value of each region. Figure 5.1 shows the flow of echelon analysis; the structure of the

spatial data obtained by echelon analysis is represented by a graph called the echelon

dendrogram.

As an example, suppose the 5 × 5 grid data shown in Fig. 5.2. Figure 5.2a shows

the attribute value of each region (the attribute value of the region in the first row and

column A is 2), and Fig. 5.2b shows the loation ID for each region. We defined the spatial

adjacency of each region as four neighborhoods (up, down, left and right). Table 5.1 shows

the neighboring information defined for each region. The echelon dendrogram shown in

Fig. 5.3 is created for this grid data. The vertical axis of the dendrogram represents the

attribute value of the data, and the symbols in the dendrogram denote the position of

each region on the dendrogram. At this time, the echelon dendrogram in Fig. 5.3 consists

of seven parts called echelons. When each echelon is expressed as En(h)(h = 1, 2, . . . , 7),

each region belongs to one of the echelons. For example, En(1) = {15, 14, 9}. En(h),

which does not have an echelon higher than itself, is called a peak. Therefore, in Fig. 5.3,

En(1), En(2), En(3) and En(4) are peaks.

10 0 9

5
8 7

1
64 2 3

Spatial data
Echelon dendrogram

Figure 5.1: Flow in the echelon dendrogram created using echelon analysis
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A

B

C

D

E

1 2 3 4 5

2 8 24 5 3

1 10 14 22 15

4 21 19 23 25

16 20 12 11 17

13 6 9 7 18

(a) Attribute value of each region

A

B

C

D

E

1 2 3 4 5

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

(b) Location ID for each region

Figure 5.2: 5× 5 grid data

Table 5.1: Neighboring information of each region

Location Neighbors Location Neighbors

1 2, 6 14 9, 13, 15, 19

2 1, 3, 7 15 10, 14, 20

3 2, 4, 8 16 11, 17, 21

4 3, 5, 9 17 12, 16, 18, 22

5 4, 10 18 13, 17, 19, 23

6 1, 7, 11 19 14, 18, 20, 24

7 2, 6, 8, 12 20 15, 19, 25

8 3, 7, 9, 13 21 16, 22

9 4, 8, 10, 14 22 17, 21, 23

10 5, 9, 15 23 18, 22, 24

11 6, 12, 16 24 19, 23, 25

12 7, 11, 13, 17 25 20, 24

13 8, 12, 14, 18
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Figure 5.3: Echelon dendrogram for the grid data

The echelon scan method scans from the region included in the peak. Specifically,

first, the region with ID = 15 having the maximum attribute value in En(1) is scanned as

Z = {15}. Next, the region with ID = 14 belonging to the same echelon is taken into Z,

and Z = {15, 14}. Similarly, the region with ID = 9 is taken into Z, and Z = {15, 14, 9}.
After that, the region with ID = 13 belonging to En(5) under En(1) is scanned and taken

into Z. On the other hand, En(3) = {12, 17} exists above En(5). In this case, the regions

in En(3) is also taken into Z. That is, Z = {15, 14, 9, 13, 12, 17}. The regions are scanned
in this way, and the scan is performed from all peaks until the number of regions in Z

reaches K. The general algorithm of the echelon scan method is shown in Algorithm 1.

Algorithm 1 gives the window Z, which is a candidate for MLC, and its log λK(Z) as the

output value (O) as the result of performing the echelon scan method for the input value

(I) shown in Table 5.2. Here, LLR(Z) and HV (Z) used in Algorithm 1 mean the value

of log λK(Z) and the value of variable used as the MSWS.

When the echelon dendrogram has D peaks, let Zk(d) be the window including of k

regions obtained by scanning from the d-th peak. The universal set of Zk(d) is given by

follow equation:

Z3 = {Zk(d) | 1 ≤ k ≤ K, 1 ≤ d ≤ D}. (5.1)

The echelon scan method expresses data in a hierarchical structure and preferentially

scans from the region that constitutes peaks of it. Therefore, the echelon scan method
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Table 5.2: Input and output values of Algorithm 1

I/O Name Elements　
I NP Number of peaks

I NE Number of echelons　
I NR(i) Number of regions included in the i-th echelon

I CH(EN(i)) All regions included in the upper echelons of the i-th echelon

I ZE(i, j) The j-th region from the top of the i-th echelon

I MAXHV Value of the MSWS

O MAXZ Window Z for the candidate of MLC

O MAXLLR log λK(Z) for the candidate of MLC

Algorithm 1: Algorithm of the echelon scan method

Ensure: Find window Z and maximum LLR

MAXZ ⇐ ϕ

MAXLLR ⇐ −∞
i ⇐ 1

while i ≤ NE do

j ⇐ 1

if i ≤ NP then

Z ⇐ ZE(i, j)

end if

if i > NP then

Z ⇐ CH(EN(i)) ∪ ZE(i, j)

end if

while j ≤ NR(i) and HV (Z) ≤ MAXHV do

if LLR(Z) > MAXLLR then

MAXZ ⇐ Z

MAXLLR ⇐ LLR(Z)

end if

j ⇐ j + 1

if ZE(i, j) ̸= ϕ then

Z ⇐ Z ∪ ZE(i, j)

end if

end while

i ⇐ i+ 1

end while
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can reduce the calculation cost as compared with the circular scan method and the flexible

scan method (Ishioka and Kurihara 2012; Ishioka et al., 2019).

5.2 The adjusted echelon scan method

The echelon scan method also scans the regions included in lower echelons of the

echelon dendrogram. However, lower echelons include regions where oi < ξi, and regions

that should actually be detected as a cluster are generally included in upper echelons.

Therefore, we propose the adjusted echelon scan method (AESM) as an improvement

technique of Echelon scan method for detecting high-risk clusters. In the AESM, the

upper hierarchies of the spatial data are extracted using pi and Tango’s α, and the echelon

scan method is applied to the extracted data. Specifically, the steps below are followed

in this process.

Step 1. Extract the data of region i that satisfies pi < α from the analysis data.

Step 2. Apply echelon analysis to the extracted data to create an echelon dendrogram.

Step 3. The region included in the upper echelon of the dendrogram is taken into Z in

order, and Z, which maximizes log λK(Z), is the MLC.

As an example, we compare clusters detected by the echelon scan method and the

AESM using data from sudden infant death syndrome (SIDS) observed between 1974 and

1984 in 100 counties in North Carolina, United States (Cressie and Chan 1989). Let wi

and oi be the number of infants born and the number of deaths due to SIDS within the

period in region i (i = 1, 2, ..., 100) , respectively. At this time, the expected number ξi

of observations is calculated by the following equation:

ξi = wi

∑100
r=1 or∑100
r=1 wr

. i = 1, 2, . . . , 100 (5.2)

Furthermore, as an index indicating risk of region i, θi was calculated by the following

equation:

θi =
oi
ξi
. i = 1, 2, . . . , 100 (5.3)

Figure 5.4 shows the choropleth map created based on θi. The color of the choropleth

map in the figure shows the value of θi. In addition, the ID of each region is shown on

the map. From the choropleth map, it can be seen that high-risk regions are distributed

in the south and northeast.

Figure 5.5 shows the result of applying the echelon scan method with the MSWS as

K = 50, which corresponds to half of the total number of regions. The window Z that
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Figure 5.6: Extracted data in the AESM with α = 0.20

maximizes log λK(Z) was obtained when scanning up to the part surrounded by the dotted

line on the echelon dendrogram. As a result, this Z was MLC. MLC was formed from as

many as 41 regions, including 4 low-risk regions (ID = 7, 37, 76, 77) with θi < 1.

Next, cluster detection is performed using the AESM. We show the result when α =

0.20 recommended by Tango (2008) was set. The map showing the regions that satisfy

pi < α from the data is shown in Fig. 5.6. Furthermore, Fig. 5.7 is the echelon dendrogram

created based on the extracted regions. As is clear from Fig. 5.7, the echelon dendrogram

of AESM is created only from high-risk regions. MLC and Secondary cluster obtained by

scanning this dendrogram are shown by the dotted line on the dendrogram in Fig. 5.7.

Here, secondary cluster is a window in which the value of log λK(Z) is the second highest

after MLC under the condition that the regions do not overlap with MLC. Unlike the

echelon scan method, the AESM detected small clusters.

Figure 5.8 and Fig. 5.9 show the maps that visualize the clusters detected by the

echelon scan method and the AESM, respectively. In addition, the number of regions in

each cluster, θ(Z) = o(Z)/ξ(Z), which is the value of risk, and the values of log λK(Z) are

shown in Table 5.3. From Fig. 5.8, MLC of the echelon scan method has a complicated

shape, and includes the low-risk regions that do not fit the feeling. Furthermore, from

Table 5.3, the value of log λK(Z) is as high as 43.29, but θ(Z) is as low as 1.28.

The echelon scan method uses a hierarchical structure of data, which makes it possible

to find window Z with high likelihood by scanning. However, when the lower echelons

are scanned, a small number of low-risk regions may concatenate regions included in the

upper echelons, and as a result, a cluster having a distorted shape shown in Fig. 5.8 may

be detected. On the other hand, the location of the clusters detected by the AESM shown
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Figure 5.8: Cluster detected by the echelon scan method
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Figure 5.9: Clusters detected by the AESM

Table 5.3: Results of application to SIDS data

Methods Cluster type Number of regions θ(Z) log λK(Z)

Echelon scan MLC 41 1.28 43.29

AESM MLC 5 1.91 25.38

Secondary cluster 4 2.02 14.34

in Fig. 5.9 is consistent with the set of high-risk regions in the choropleth map in Fig. 5.4.

Table 5.3 also shows that the AESM detected high-risk clusters compared to the echelon

scan method. From this, the AESM can accurately detect clusters consisting only of

high-risk regions that are closer to the actual feeling.

5.3 Calculation cost of the AESM

Methods for detecting clusters based on Tango’s statistic, such as the restricted flexible

scan method, solve the problem of detecting non-local clusters by incorporating only

the regions satisfying pi < α into Z. However, for large-scale spatial data consisting

of thousands to tens of thousands of regions, even the restricted flexible scan method

becomes impractical in terms of calculation cost. Therefore, in cluster detection for large-

scale spatial data, it is important to detect non-local clusters having arbitrary shapes and

to reduce the amount of calculation.

One of the advantages of the AESM is the reduction of computational cost by sim-

plifying the echelon dendrogram. Comparing the echelon scan method dendrogram in
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Fig. 5.5 with the AESM dendrogram in Fig. 5.7, it can be seen that the AESM has a

simpler structure.

Here, we actually compare the calculation costs of the four methods of the echelon

scan method, the restricted circular scan method, the restricted flexible scan method

and the AESM. For the data used for verification, L × L grid data (L = 10, 40, 70, 100)

was created, and one true cluster R, which is circular-shaped, was set for each of the

data. Let s be the number of regions included in R, and the verification was performed

in the five cases of s = 10, 20, 30, 40, 50. The analysis was performed 100 times each

using the four methods, and the average analysis time (seconds) ± standard deviation

is shown in Table 5.4. We used R fot the analysis. The echelon scan method used the

echelon package (Ishioka 2020), the restricted circular scan method and the restricted

flexible scan method used the rflexscan package. We created and used the new function

for applying the AESM. The specifications of the PC that we used are Windows 10 Intel

(R), Core (TM) i7, CPU 3.40GHz, RAM 16GB. The system.time function, which is R

function, was used to measure the analysis time. The results in Table 5.4 are purely

measurements of the time required for a single scan and are not Monte Carlo tested.

From Table 5.4, the analysis time of each method tends to increase as the analysis

target area increases. In particular, when s ≥ 30, the restricted flexible scan method has

an extremely long analysis time compared to other methods under the same conditions.

On the other hand, with the AESM, analysis can be performed in about 3 seconds even

when L = 100 and s = 50, which can reduce the analysis time to about 1/10 compared

to other methods. Since Monte Carlo simulation is required to test the significance of

clusters, the time required for a single scan should be as short as possible. From the

above, we consider that the AESM is more effective for detection of high-risk clusters for

large-scale spatial data than the existing method.

– 20 –



Table 5.4: Comparison of analysis time. “—” indicates that the analysis time of each
analysis exceeds 1000 seconds.

L
10 40 70 100

Echelon scan

10 0.012± 0.0076 0.40± 0.078 5.05± 1.98 32.67± 12.25

20 0.011± 0.0090 0.41± 0.092 5.78± 2.47 28.31± 14.12

s 30 0.011± 0.0082 0.41± 0.086 6.16± 1.81 29.55± 19.50

40 0.010± 0.0082 0.44± 0.090 4.96± 1.73 39.98± 24.10

50 0.011± 0.0080 0.51± 0.092 4.99± 2.14 57.43± 19.60

Restricted circular scan

10 0.0018± 0.0052 0.52± 0.045 5.65± 0.13 30.67± 0.64

20 0.0023± 0.0053 0.49± 0.028 5.81± 0.65 29.22± 0.82

s 30 0.0028± 0.0067 0.48± 0.017 5.71± 0.14 29.58± 1.05

40 0.0022± 0.0056 0.48± 0.010 5.85± 0.28 29.40± 0.98

50 0.0041± 0.0074 0.48± 0.016 6.11± 0.32 29.77± 0.86

Restricted flexible scan

10 0.0023± 0.0058 0.51± 0.035 5.63± 0.13 31.71± 3.29

20 0.12± 0.011 1.21± 0.78 7.75± 5.17 30.97± 7.62

s 30 14.47± 0.055 513.95± 848.19 — —

40 — — — —

50 — — — —

AESM

10 0.025± 0.0082 0.37± 0.018 1.27± 0.041 2.96± 0.061

20 0.027± 0.0081 0.37± 0.019 1.25± 0.038 3.01± 0.072

s 30 0.026± 0.0081 0.37± 0.028 1.25± 0.051 2.99± 0.075

40 0.029± 0.0072 0.36± 0.027 1.25± 0.047 3.01± 0.079

50 0.029± 0.0073 0.35± 0.024 1.25± 0.042 3.03± 0.083
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6 Simulation for comparison of detection
accuracy

6.1 Data generation

We perfom simulations using two types of area data in order to compare the cluster

detection accuracy of the existing method and the AESM. As the first area data, the 10

× 10 grid data shown in Fig. 6.1 is used. The numbers in the figure are the location IDs

of each region. In recent years, a lot of mesh data, which collected for each region divided

into grids on the map, has been released. Furthermore, as a feature of the grid data, the

shape of each region is the same and the number of adjacent regions is almost constant.

Therefore, it is possible to fairly compare the detection accuracy for each method.

Next, Table 5.4 shows that the AESM is an effective method from the viewpoint of

analysis time for large-scale spatial data as compared with other methods. In addition,

previous studies have not shown detection accuracy in large-scale spatial data. Therefore,

we compare the existing method and the AESM using the data by county in the United

States in Fig. 6.2.

In this paper, we generate the observation data for simulation according to Tango

(2008). We assume that one true cluster R with s regions exists in the study area G with

m regions. The hypothesis test for the risk θi of the region i can be stated as follows:

H0 : θi = 1, ∀i ∈ G

H1 : θi > 1, ∀i ∈ R

where θi is given by the following equation:

θi =
oi
ξi
, i = 1, 2, . . . ,m (6.1)

and ξi is calculated by the following equation:

ξi = wi

∑m
r=1 or∑m
r=1 wr

. i = 1, 2, . . . ,m (6.2)

Under the alternative hypothesis, we generate a random sample (o1, o2, . . . , om) of size o

from the multinomial distribution with parameters (q1, q2, . . . , qm) where

qi =
πiwi∑m
r=1 πrwr

, i = 1, 2, . . . ,m (6.3)
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Figure 6.1: 10× 10 grid data

Figure 6.2: The county data in the United States

– 23 –



where

πi =

{
θi,

∀i ∈ R
1. otherwise.

Under these conditions, we generate N simulation data sets and compare the detection

accuracy of each method.

6.2 Evaluation index

We use Sensitivity and PPV (Positive Prediction Value) proposed by Huang et al.

(2007) as evaluation indexes for the detection accuracy of each method. Each index is

defined by the following equation:

Sensitivity =
Length(ZMLC ∩R)

s
, (6.4)

PPV =
Length(ZMLC ∩R)

Length(ZMLC)
, (6.5)

where ZMLC is a window that becomes MLC, and Length(·) means the number of regions.

Both indexes take a value from 0 to 1, and the closer the value is to 1, the true cluster R

can be detected more accurately. In this paper, in order to visually express these indexes,

we propose a new scatter plot shown in Fig. 6.3. In Fig. 6.3, Sensitivity is taken on the

horizontal axis and PPV is taken on the vertical axis, and the points where (x, y) =

(Sensitivity,PPV) are plotted. Depending on the result of the simulation, points may be

plotted at the same coordinates. Therefore, the number of data contained in each point

is expressed by the size and color shading of each point. If many points are plotted on or

near the intersection of the straight lines of Sensitivity = 1 and PPV = 1, it shows that

the detection accuracy is high. In addition, let Sj and Pj be the values of Sensitivity and

PPV in the j-th simulation data set, respectively, and we define index of cluster detection

accuracy (ICDA) given by the following equation:

ICDA =
1

N

N∑
j=1

2× Sj × Pj

Sj + Pj

(6.6)

6.3 Analysis of grid data

6.3.1 Circular-shaped cluster

Based on Tango and Takahashi (2012), for 10× 10 grid data, we assume the circular-

shaped true cluster R1 (number of cluster regions s = 20) shown in Fig. 6.4a, and compare
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detection accuracy of the echelon scan method, the restricted circular scan method, the

restricted flexible scan method and the AESM. Under conditions of E[θi∈R1 ] = 1.7 and

E[θi/∈R1 ] = 1.0, N = 1000 sets of simulation data were generated according to the pro-

cedure described in Sect. 6.1. We set to o(G) = 2708 based on the mortality rate of

common diseases such as cancer. Figure 6.5 and Table 6.1 show the analysis results when

the MSWS of each method is half of the total number of regions m/2 = 50, and α = 0.20.

Figure 6.5 shows that the distribution of points varies in each method. Since the PPV

tends to be low in the echelon scan method, we consider that many regions other than

R1 were actually taken into MLC. On the other hand, in the restricted circular scan

method, PPV = 1 in many cases, and Sensitivity tends to be low. Therefore, we con-

sider that this method could only partially detect R1. In addition, since there are few

points near (Sensitivity,PPV) = (1, 1), we get the impression that the detection accuracy

is low overall. Next, the restricted flexible scan method and the AESM had the same

detection accuracy. The tendency of these methods to decrease Sensitivity is common

to the restricted circular scan method. However, since many points are distributed near

(Sensitivity,PPV) = (1, 1), we consider that the detection accuracy of two methods is

high overall.

Figure 6.6 shows the ICDA of each method at α = 0.10, 0.20, 0.30 when the value of

E[θi∈R1 ] is changed from 1.1 to 2.0 in 0.1 increments. When α = 0.10, the ICDA of the

echelon scan method is the highest at any risk. However, by setting the value of α high,
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(a) R1 (b) R2

Figure 6.4: Assumed true clusters R1, R2

Table 6.1: Comparison of ICDA of each method (K = m/2, α = 0.20, E[θi∈R] = 1.7)

Methods R1 R2

Echelon scan 0.861 0.853

Restricted circular scan 0.470 0.691

Restricted flexible scan 0.844 0.815

AESM 0.844 0.870
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Figure 6.5: Comparison of the detection accuracy for each risk in each method assuming
R1
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the ICDA of the restricted flexible scan method and the proposed method improved,

and at α = 0.30, the ICDA was equivalent to that of the echelon scan method when

E[θi∈R1 ] ≥ 1.3. On the other hand, the restricted circular scan method has a lower ICDA

than other methods, even though it assumed a circular-shaped cluster.

6.3.2 Linear-shaped cluster

In the analysis of actual data, clusters may occur along roads, railroad tracks or

coastlines. In such a case, a long linear-shaped cluster is formed in one direction. However,

it may be difficult to detect by the restricted circular scan method or the restricted

flexible scan method due to the nature of scan method. Therefore, we assume the linear

true cluster R2 shown in Fig. 6.4b, and compare the detection accuracy of each method.

Since we consider that the restricted circular scan method and the restricted flexible scan

method can detect the linear-shaped cluster by dividing it into multiple clusters, here,

we compare detection accuracy including significant secondary clusters. The risks in R2,

N and o(G), were set as in the case of the circular-shaped cluster (R1). Figure 6.7 and

Table 6.1 show the analysis results when the MSWS of each method is half of the total

number of regions m/2 = 50, and α = 0.20. As for the detection accuracy of the echelon

scan method, PPV was lower than that of other methods as in the case of assuming R1,

and Sensitivity also tended to be slightly lower. On the other hand, the restricted circular

scan method tends to have many points distributed around Sensitivity = 0.5, we consider

that linear-shaped cluster cannot be sufficiently detected. The restricted flexible scan

method and AESM have similar distributions, however, the result shows that Sensitivity

of AESM is slightly higher.

Figure 6.8 shows the ICDA of each method at α = 0.10, 0.20, 0.30 when the value

of E[θi∈R2 ] is changed from 1.1 to 2.0 in 0.1 increments. The ICDA of the echelon scan

method is not much different from the case of assuming R1. In the restricted circular scan

method, the restricted flexible scan method and the AESM, the ICDA changed depending

on the value of α. In particular, the AESM showed higher ICDA than that of the Echelon

scan method at E[θi∈R2 ] ≥ 1.4 and α = 0.30.

6.4 Analysis of data by county in the United States

6.4.1 Circular-shaped cluster

In this section, we verify the effectiveness of AESM for large-scale spatial data. First,

for the data by county in United States (m = 3085), we assume the circular-shaped cluster

R3 shown in Fig. 6.9a, and compare detection accuracy of the existing method and the

AESM. For the number of regions that consist R3, we set to s = 100 because we can

– 28 –



1.2 1.4 1.6 1.8 2.0

0
.
0

0
.
2

0
.
4

0
.
6

0
.
8

1
.
0

E[θi∈R1
]

I
C
D
A

α = 0.10

1.2 1.4 1.6 1.8 2.0

0
.
0

0
.
2

0
.
4

0
.
6

0
.
8

1
.
0

E[θi∈R1
]

I
C
D
A

α = 0.20

1.2 1.4 1.6 1.8 2.0

0
.
0

0
.
2

0
.
4

0
.
6

0
.
8

1
.
0

E[θi∈R1
]

I
C
D
A

α = 0.30

Figure 6.6: Comparison of ICDA for each risk in each method assuming R1. “⃝” repre-
sents the echelon scan method, “△” represents the restricted circular scan method, “×”
represents the restricted flexible scan method and “□” represents the AESM.
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Figure 6.7: Comparison of the detection accuracy for each risk in each method assuming
R2

– 30 –



1.2 1.4 1.6 1.8 2.0

0
.
0

0
.
2

0
.
4

0
.
6

0
.
8

1
.
0

E[θi∈R2
]

I
C
D
A

α = 0.10

1.2 1.4 1.6 1.8 2.0

0
.
0

0
.
2

0
.
4

0
.
6

0
.
8

1
.
0

E[θi∈R2
]

I
C
D
A

α = 0.20

1.2 1.4 1.6 1.8 2.0

0
.
0

0
.
2

0
.
4

0
.
6

0
.
8

1
.
0

E[θi∈R2
]

I
C
D
A

α = 0.30
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Table 6.2: Comparison of ICDA of each method (K = m/2, α = 0.20, E[θi∈R] = 1.5)

Methods R3 R4

Echelon scan 0.879 0.891

Restricted circular scan 0.235 0.810

AESM 0.880 0.892

calculate Sensitivity intuitively. Since it was difficult to analyze with the restricted flexible

scan method due to the problem of analysis time, here we compare the detection accuracy

of the three types of scanning methods: the echelon scan method, the restricted circular

scan method and the AESM. Under conditions of E[θi∈R3 ] = 1.5 and E[θi/∈R5 ] = 1.0,

N = 1000 sets of simulation data were generated according to the procedure described in

Sect. 6.1. o(G) was set to o(G) = 642427 based on the mortality rate of common diseases

such as cancer, as in Sect. 6.3. Figure 6.10 and Table 6.2 show the analysis results when

the MSWS of each method is half of the total number of regions m/2 = 1542, and

α = 0.20. In the echelon scan method and AESM, Fig. 6.10 shows that both Sensitivity

and PPV are 0.8 or higher for many data, and we consider that detection accuracy of

them is high. In addition, Fig. 6.10 shows that the echelon scan method tends to lower

PPV in some data and the AESM improves it. In contrast, In the restricted circular

scan method, since Sensitivity was extremely low, we consider that it could not detect

sufficiently even setting a circular-shaped cluster.

Figure 6.11 shows the ICDA of each method at α = 0.10, 0.20, 0.30 when the value

of E[θi∈R3 ] is changed from 1.1 to 2.0 in 0.1 increments. The ICDA of the echelon scan

method and the AESM does not show a large difference when E[θi∈R3 ] ≥ 1.4, however,

the ICDA of the echelon scan method drops sharply when E[θi∈R3 ] ≤ 1.3. On the other

hand, because the AESM maintain ICDA ≥ 0.50 even at low risk at α = 0.20, we consider

that AESM has higher detection accuracy than other methods. The restricted circular

scan method raises the ICDA by setting α high, however, Fig. 6.11 shows that it is lower

than other methods.

6.4.2 Linear-shaped cluster

Assuming the linear-shaped true cluster R4 shown in Fig. 6.9b, we compare the de-

tection accuracy of each method. In addition, since R4 is a linear-shaped cluster, we

compare detection accuracy including significant secondary clusters. The settings in the

analysis are the same as in the case of R3. Figure 6.12 and Table 6.2 show the analysis

results when the MSWS of each method is half of the total number of regions m/2 = 1542,

and α = 0.20.
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(a) R3

(b) R4

Figure 6.9: Assumed true clusters R3, R4
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Figure 6.10: Comparison of the detection accuracy for each risk in each method assuming
R3
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Figure 6.12 shows that the restricted circular scan method has high detection accu-

racy. In particular, PPV of it tends to be higher than other methods. However, since

Sensitivity ≤ 0.8 in all data, we consider that the true cluster was not sufficiently detected.

In contrast, since the echelon scan method tends to have high Sensitivity and low PPV,

we consider that many regions where were not included in R4 were detected as clusters.

In many data, both of Sensitivity and PPV of the AESM was 0.8 or higher. Therefore,

we consider that the AESM has higher detection accuracy than other methods.

Figure 6.13 shows the ICDA of each method at α = 0.10, 0.20, 0.30 when the value

of E[θi∈R4 ] is changed from 1.1 to 2.0 in 0.1 increments. From Fig. 6.13, the echelon

scan method and the AESM have no difference in the ICDA when E[θi∈R4 ] ≥ 1.4 for

each α. However, the AESM when E[θi∈R4 ] ≤ 1.3 has higher values than other methods.

Furthermore, the restricted circular scan method also tends to have higher ICDA at low

risk than the echelon scan method.

6.5 Discussion

First, we consider the detection accuracy of the echelon scan method and the AESM.

First, we consider the detection accuracy of the echelon scan method and the AESM. In

the simulation using the grid data performed in Sect. 6.3, the result showed the echelon

scan method has a higher ICDA than the AESM. In particular, the difference is large

when α = 0.10. According to Tango’s guide for α, α = 0.10 detects “small clusters with

a sharp increase in risk”. Therefore, in the simulation conducted this time, we consider

that small clusters were detected compared to the true cluster to be a factor that lowers

the ICDA of the AESM. In all simulation results, the ICDA of the AESM shows the

equivalent value to that of the echelon scan method as α is set higher, and we consider

that the size of the detection clusters depending on α affects the ICDA. In addition, in

the grid data, when E[θi∈R4 ] ≤ 1.2, the risk of regions set as the true cluster R cannot be

said to be high in the first place. As a result, Sensitivity became extremely low because

the AESM detected only a part of regions forming R. From this, we considered that the

difference from the echelon scan method was large in the low-risk true cluster.

On the other hand, according to the data by county in United States, the ICDA

of the echelon scan method decreased sharply at low risk, and the number of regions

included in clusters detected was exceeded 1000 regions. Therefore, we considered that

the denominator of PPV became larger and ICDA became extremely low compared to

the case of grid data. Although the AESM could not detect true clusters sufficiently at

low risk, we consider that the ratio of including unexpected regions is smaller than that of

the echelon scan method. For this reason, we consider that the AESM has high detection

accuracy. From the above, the AESM can detect high-risk clusters because it does not
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Figure 6.13: Comparison of ICDA for each risk in each method assuming R4. “⃝”
represents the echelon scan method, “△” represents the restricted circular scan method
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include low-risk regions compared to the echelon scan method, although the size of the

clusters detected differs depending on α. In particular, we consider that the detection

accuracy could be improved for large-scale spatial data.

Next, we consider that the detection accuracy of the restricted circular scan method,

the restricted flexible scan method and the AESM. In the simulation of the grid data

in Sect. 6.3, ICDA of the restricted flexible scan method and the AESM became higher

values than the restricted circular scan method. However, in the simulation of the data

by United States county in Sect. 6.4, the restricted flexible scan method could not analyze

and obtain results. We consider that this is because the amount of calculation becomes

enormous for large-scale spatial data due to the feature of scanning all windows that can

be constructed within a certain range. Because the AESM has a detection accuracy equal

to or higher than that of the restricted flexible scan method, we consider that it is an

effective method in that it can be applied to large-scale spatial data.

The restricted circular scan method had a lower ICDA than the AESM in all simu-

lations. The reason for this is that in the restricted circular scan method, the order to

be scanned is predetermined by the distance from the region where scanning is started,

and the scanning is stopped when the region i where pi < α appears in the scanning

process. Therefore, we consider that it was difficult to sufficiently detect the true cluster

as compared with other methods. In fact, in the circular clusters compared only by MLC,

the Sensitivity of the restricted circular scan method was extremely low. From the above,

we consider that the AESM is an effective method in that it has higher detection accuracy

than the existing method using Tango’s statistic and can be applied to large-scale spatial

data.

In this paper, we assumed the observation data of death due to general diseases, and

set the observed value o(G) in the study area to perform the simulation. Regarding the

fluctuation of the detection accuracy in this o(G) setting, Tango and Takahashi (2012)

showed that the fluctuation is not large except when assuming a disease that occurs

extremely rarely. Therefore, even if different observation values o(G) are set, we consider

that the fluctuation of the analysis results shown in this paper is small.
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7 Detection of space-time clusters

7.1 The cylindrical scan method

When conducting an analysis of infectious diseases, it is important to know where and

when the cluster occurred. Such a cluster having information on the position and period

of occurrence is called a spatiotemporal cluster. As a method for detecting space-time

clusters, Kulldorff et al. (1998) proposed the cylindrical scan method based on the spatial

scan statistic. We assume that observation data for each time point exists for each region

in the study area consisting of m regions, and let l(i, t) (i = 1, 2, . . . ,m; t = 1, 2, . . . , T )

be the region i at time point t. At this time, if there is no cluster in the study area at

any time, the random variable Oi,t with the observed value oi,t in region i at time point t

can be stated as follows:

Oi,t ∼Poisson(ξi,t), i = 1, 2, . . . ,m; t = 1, 2, . . . , T

where ξi,t is the expected number of cases in region i at time point t.

In such spatiotemporal data, assume a circular window Zik consisting of k regions

centered on l(i, t) on the plane of the study area at time point t. The method of scanning

this window Zik is the same as the circular scan method described in Sect. 3.1. For window

Zik on a plane, we consider a cylindrical window W from time point s1 to time point s2,

where 1 ≤ s1 ≤ s2 ≤ T , and the univarsal set W of W is defined by Eq. (3.1) as follows:

W = Z1 × T , (7.1)

where T is defined as follows:

T = {[s1, s2] | 1 ≤ s1 ≤ s2 ≤ T}. (7.2)

At this time, the maximum value of the width s1 − s2 + 1 of the interval [s1, s2] is called

the maximum temporal window size (MTWS). The window Ŵ that maximizes the spatial

scan statistic shown in Eq. (2.5) is MLC, and the significance of it is evaluated using the

Monte Carlo method.

Figure 7.1 shows an image of the cylindrical scan method. In the cylindrical scan

method, by scanning while changing the radius and height of the window, it is possible

to concurrently detect the location and time interval of the space-time cluster. However,

since this method applies a cylinder with a precise circular surface, only clusters with the
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Figure 7.1: Image of the cylindrical scan method

same regional group are detectable. Accordingly, detection becomes difficult when the

cluster’s shape changes over time (Patil and Taillie 2004). Figure 7.2 shows example of

clusters that are difficult to detect with the cylindrical scan method. In Fig. 7.2, the red

regions show the location of the regions included in the true space-time cluster. In real

data, the true cluster may change over time. For example, when the number of regions

included in a true cluster increases and its scale expands or when it is divided into multiple

clusters and they move. However, the regions with blue dots detected by the cylindrical

scan method does not change over time. Therefore, because it cannot capture changes in

these clusters, the true cluster is partially detected or the regions different from the true

cluster are mistakenly detected.
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Figure 7.2: Example of expanding cluster (upper) and dividing cluster (lower)

7.2 Space-time cluster detection using the AESM

In the case of infectious diseases, the disease may spread to the surrounding the initial

cluster. Therefore, it is important to capture changes in the cluster’s shape over time

to identify the nature of the infection’s spread and the factors involved therein. Echelon

analysis can create a dendrogram using the neighboring information of each value (region),

even in spatiotemporal data. As an example, 5×5 grid data at three different time points

are shown in Fig. 7.3. Here, the attribute value of each region in the grid data is in the

area (the attribute value of the region in row A and the first column at t = 1 is 11).

Figure 7.3d shows the location ID for each region. These data can be considered the

spatial data of 75 regions (25 regions × 3 time points). When each region is denoted by

l(i, t) (i = 1, 2, . . . , 25; t = 1, 2, 3), the simplest example defining neighbors NB(l(i, t)) of

l(i, t) is given by:

NB(l(i, t)) =


{l(k, t) | region i and k are neighbors} ∪ l(i, t+ 1), t = 1

{l(k, t) | region i and k are neighbors} ∪ l(i, t+ 1) ∪ l(i, t− 1), t = 2

{l(k, t) | region i and k are neighbors} ∪ l(i, t− 1), t = 3

(7.3)

where l(k, t) (k = 1, 2, . . . , 25; k ̸= i) is the region adjacent to l(i, t) at time point t. Figure

7.4 shows the echelon dendrogram for the data when the spatial adjacency at the given

time point is defined as four neighborhoods (up, down, left and right). The dendrogram’s
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vertical axis represents the attribute value of the data, and the symbols in the dendrogram

denote the position of each region on the dendrogram (where “C4(3)” refers to the region

in row C and the fourth column at t = 3). It is possible to detect space-time clusters by

scanning based on the structure of this dendrogram. Accordingly, it can capture changes

over time of the cluster, such as expansion, contraction and movement.

Echelon analysis makes it possible to represent the spatiotemporal data as a two-

dimensional echelon dendrogram. However, when data is collected over a long period, the

scale of the data will range from thousands to tens of thousands of values, even if the

number of regions within the scanned space is small. Hence, the number of calculations

required when the echelon scan method is applied becomes vast, dramatically increasing

the analysis time. This paper applied the AESM to the spatiotemporal data to detect

clusters. First, pi,t, which is given to each region at time point t, is defined as follows:

pi,t = Pr{Oi,t ≥ oi,t + 1 | Oi,t ∼ Pois(ξi,t)}+
1

2
Pr{Oi,t = oi,t | Oi,t ∼ Pois(ξi,t)}, (7.4)

Figure 7.5 shows the application of the AESM to spatiotemporal data. By extracting

the regions that satisfy pi,t < α, it is possible to detect clusters comprising only high-

risk regions accurately. Additionally, since the region to be scanned is reduced, the

calculation cost is inhibited, even for large-scale data. The upper left Fig. 7.5 represents

spatiotemporal data, where red-colored regions are high-risk and satisfy pi,t < α and

blue-colored regions do not satisfy pi,t < α. In Step 1, only the red-colored regions are

extracted from the original data. A dendrogram is created from the extracted data by

echelon analysis in Step 2. Finally, in Step 3, the cluster is detected by scanning from the

upper hierarchy of the dendrogram.
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Figure 7.3: Sample of spatiotemporal data.
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Figure 7.5: Flow of space-time cluster detection using the AESM
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8 Real data analysis

8.1 Data on COVID-19-infected people in Japan

Coronavirus disease 2019 (COVID-19) is caused by a novel coronavirus known as

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The virus has spread

worldwide since it was first reported in Wuhan, Hubei Province, China, in December

2019. In Japan, the number of infected people has seen a sustained increase since the

first confirmed case of COVID-19 in January 2020. The country’s infection status is

reported in various media, and information is actively disclosed in each prefecture. As

such, interest in COVID-19 is very high. Studies on COVID-19 have been advanced

globally in various fields. Furthermore, research on space-time cluster detection is being

conducted. However, research on space-time cluster detection has not been conducted

much in Japan. Therefore, we consider that it is epidemiologically and sociologically

important to capture the temporal changes of clusters that occur in Japan.

We obtained the dataset created by ESRI Japan Co., Ltd (2021) based on the status

of test-positive individuals in each prefecture (domestic cases, excluding airport quar-

antine and charter flight cases) announced by the Ministry of Health, Labor, and Wel-

fare. This dataset is available on a dedicated ESRI Japan Co., Ltd. website (https:

//coronavirus-esrijapan-ej.hub.arcgis.com/). We used the number of people newly

infected per day, aggregated for 326 days from March 11, 2020, to January 30, 2021.

However, since these numbers were calculated based on the difference from the cumula-

tive number of infected people reported on a preceding day, the number of newly infected

people may have a negative value if there was a data correction at the time. There were

22 such cases; we replaced these numbers with 0. Figure 8.1 features a graph showing

the number of newly infected people in Japan and the moving average for this number

over the preceding seven days during the study period. As of January 30, 2021, the total

number of infected people was 384,014, and the number of infected people per day had

the highest value, at 7,863 on January 08, 2021.

8.2 Space-time clusters based on population

We applied both the cylindrical scan method and the AESM to the data regarding

COVID-19-infected people in Japan described in Sect. 8.1 to detect space-time clusters

based on population. We collected the data of residents in each prefecture as the popu-

lation data. We first used the SaTScanTM software to apply the cylindrical scan method.
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Figure 8.1: Number of daily COVID-19 cases from March 11, 2020, to January 30, 2021.

The setting of each method is described as follows. In the cylindrical scan method,

we restricted MSWS to include 20% or less of the population. This setting is necessary

because about 10% of the population in Japan is concentrated in Tokyo, so if it were set

to 10% or less, Tokyo might not be detected. The second reason is that the population

of each district is about 10% to 20% of the total population, which made it easy to

interpret the results. In addition, we restricted MTWS for the cylindrical scan method

to 180 days or fewer. In this study, we aimed to capture the shape change of clusters

by detecting long-term clusters with the AESM. Therefore, to allow comparison with the

AESM results, we felt it was necessary to detect long-term clusters with the cylindrical

scan method. This guided our selection of the settings described above.

For the AESM, we restricted MSWS to include 20% or less of the population and set

the criterion α at 0.01. Tango’s index was shown based on a simulation of data consisting

of about 100 regions regarding the setting of α. However, in the case of large-scale data

such as spatiotemporal data, the number of regions included in the detected clusters may

be larger than expected even if α is set at 0.05. This is because, unlike existing methods,

the AESM has no restrictions on the cluster’s shape that can be detected. Therefore, in

analyzing this study, we determined that it was necessary to set the value of α to be more

restrictive than the values of Tango’s index and set α to 0.01.

We used the standardized morbidity ratio (SMR) as the attribute value for each pre-

fecture (i = 1, 2, . . . , 47) at a time t (= 1, 2, . . . , 326) for the echelon analysis. Let oi,t and

ξi,t be the number of cases and the expected number of cases in each prefecture at time
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t, respectively. We calculated SMR using the following formula:

θi,t =
oi,t
ξi,t

. (8.1)

As the simplest expected number of cases, without considering covariates, such as age

and gender, we defined ξi,t as follows:

ξi,t = wi,t ×
∑47

i=1 oi,t∑47
i=1 wi,t

, (8.2)

where wi,t is the population of region i at time t. We used the estimated population

published monthly by each prefecture for the population in the study area. Furthermore,

as the neighboring information for each area, we used the data regarding adjacent pre-

fectures that determines the eligible area for coupons distributed by the regional tourism

support project implemented by the Japanese government. We obtained this data from

the following URL (https://goto.jata-net.or.jp/coupon/area.html). Besides the

geographical adjacencies, this information includes adjacencies between prefectures that

can be traveled by a sea route as a day trip. This data was included because that

Okinawa does not have geographically adjacent prefectures. Figure 8.2 shows the geo-

graphical location of each prefecture in Japan, and Table 8.1 provides the numbers of

the areas adjacent to each prefecture. We considered that θi,t of region i at time t was

affected by θi,t−1 of the previous day, and θi,t+1 of the next day was affected by θi,t; We

considered region i at time t adjacent to the same region on the previous and subse-

quent days as temporal adjacency information. Thus, when each prefecture is denoted

by l(i, t) (i = 1, 2, . . . , 47; t = 1, 2, . . . , 326), the neighboring information, NB(l(i, t)), is

defined as follows:

NB(l(i, t)) =


{l(k, t) | region i and k are neighbor} ∪ l(i, t+ 1), t = 1

{l(k, t) | region i and k are neighbor} ∪ l(i, t+ 1) ∪ l(i, t− 1), 1 < t < 326

{l(k, t) | region i and k are neighbor} ∪ l(i, t− 1), t = 326

(8.3)

where l(k, t) (k = 1, 2, . . . , 47; k ̸= i) is the prefecture adjacent to l(i, t) at time point t.

Table 8.1: Neighboring information of each prefecture

No. Location Neighbors

1 Hokkaido 2

2 Aomori 1, 3, 5

3 Iwate 2, 4, 5

4 Miyagi 3, 5, 6, 7
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(continued)

No. Location Neighbors

5 Akita 2, 3, 4, 6

6 Yamagata 4, 5, 7, 15

7 Fukushima 4, 6, 8, 9, 10, 15

8 Ibaraki 7, 9, 11, 12

9 Tochigi 7, 8, 10, 11

10 Gunma 7, 9, 11, 15, 20

11 Saitama 8, 9, 10, 12, 13, 19, 20

12 Chiba 8, 11, 13, 14

13 Tokyo 11, 12, 14, 19, 22

14 Kanagawa 12, 13, 19, 22

15 Niigata 6, 7, 10, 16, 20

16 Toyama 15, 17, 20, 21

17 Ishikawa 16, 18, 21

18 Fukui 17, 21, 25, 26

19 Yamanashi 11, 13, 14, 20, 22

20 Nagano 10, 11, 15, 16, 19, 21, 22, 23

21 Gifu 16, 17, 18, 20, 23, 24, 25

22 Shizuoka 13, 14, 19, 20, 23

23 Aichi 20, 21, 22, 24

24 Mie 21, 23, 25, 26, 29, 30

25 Shiga 18, 21, 24, 26

26 Kyoto 18, 24, 25, 27, 28, 29

27 Osaka 26, 28, 29, 30

28 Hyogo 26, 27, 31, 33, 36, 37

29 Nara 24, 26, 27, 30

30 Wakayama 24, 27, 29, 36

31 Tottori 28, 32, 33, 34

32 Shimane 31, 34, 35

33 Okayama 28, 31, 34, 37

34 Hiroshima 31, 32, 33, 35, 38

35 Yamaguchi 32, 34, 38, 40, 44

36 Tokushima 28, 30, 37, 38, 39

37 Kagawa 28, 33, 36, 38

38 Ehime 34, 35, 36, 37, 39, 44

39 Kochi 36, 38

40 Fukuoka 35, 41, 42, 43, 44
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(continued)

No. Location Neighbors

41 Saga 40, 42

42 Nagasaki 40, 41, 43

43 Kumamoto 40, 42, 44, 45, 46

44 Oita 35, 38, 40, 43, 45

45 Miyazaki 43, 44, 46

46 Kagoshima 43, 45, 47

47 Okinawa 46

The analytica results using the cylindrical scan method with the above settings are

shown in Table 8.2 and Fig. 8.3a, and the results from the AESM are shown in Table 8.3

and Fig. 8.3b. Figure 8.3 shows the five clusters with the highest log λK(Z) values among

the clusters; these were judged to be significant at p = 0.001, based on the results of

999 Monte Carlo simulations for each method. Each region’s SMR height included in the

clusters was expressed using a color gradient; darker colors indicate higher values. The

seventh column in Tables 8.2 and 8.3 lists the relative risk (RR), which is calculated as

follows:

RR =
o(Z)/ξ(Z)

o(Zc)/ξ(Zc)
. (8.4)

Figure 8.4 visualizes each prefecture; the numbered areas in the figure are the prefectures

that were included as a cluster, even if only for one day, in either method.

When the cylindrical scan method was applied, Tokyo and Kanagawa were detected as

MLC, and Osaka, Hokkaido, Okinawa, and Fukuoka were detected as secondary clusters.

Table 8.2 and Fig. 8.3a show that clusters (excluding Cluster 5) were detected for an

extended period, and the MLC was a cluster that lasted approximately 5 months. In

Table 8.2: Details of the clusters detected using the cylindrical scan method

Location Time frame log λK(Z) o(Z) ξ(Z) RR

MLC
Tokyo

8/4−1/30 27742.61 123208 63641.36 2.38
Kanagawa

Cluster 2 Osaka 7/15−12/19 5296.81 24722 12064.27 2.12

Cluster 3 Hokkaido 10/23−12/10 2748.90 8153 3171.65 2.60

Cluster 4 Okinawa 7/29−11/8 1951.70 3288 873.41 3.79

Cluster 5 Fukuoka 1/18 775.30 1071 238.99 4.49
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Figure 8.2: Geographical location of each prefecture in Japan — Okinawa (No.47), shown
in the upper left of the figure, is actually located in the southwestern part of Japan.
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Table 8.3: Details of the clusters detected using the AESM

Location Time frame log λK(Z) o(Z) ξ(Z) RR

MLC

Tochigi

11/25−1/30 22387.54 100244 50951.99 2.31

Saitama

Chiba

Tokyo

Kanagawa

Yamanashi

Shizuoka

Aichi

Cluster 2

Saitama

6/1−11/23 12257.88 41911 18037.33 2.49

Chiba

Tokyo

Kanagawa

Yamanashi

Gifu

Shizuoka

Aichi

Cluster 3

Kyoto

11/17−12/23 2911.54 15722 8105.49 1.99Osaka

Hyogo

Nara

Cluster 4 Hokkaido 10/30−12/10 2724.22 7819 2986.19 2.65

Cluster 5

Saitama

3/31−5/12 2033.73 4766 1607.84 2.99Chiba

Tokyo

Kanagawa
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No. Loca on No. Loca on

1 Hokkaido 22 Shizuoka

9 Tochigi 23 Aichi

11 Saitama 26 Kyoto

12 Chiba 27 Osaka

13 Tokyo 28 Hyogo

14 Kanagawa 29 Nara

19 Yamanashi 40 Fukuoka

21 Gifu 47 Okinawa

47
1

9

11

12
13
14

1921

2223
26

27

28

29

1

13
14

27

40

1

13
14

27

Figure 8.4: Geographical location of prefectures detected as population-based clusters
— Red-colored prefectures were detected by both the cylindrical scan method and the
AESM. Light blue and green-colored prefectures were detected only by the cylindrical
method and only by the AESM, respectively.
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Cluster 4, which was detected for Okinawa, RR = 3.79 (see Table 8.2), indicating that it

was a high-risk cluster, but, as seen in Fig. 8.3a, there was also a day when θi,t < 1 within

the cluster period.

Next, when considering the results of the AESM, besides Tokyo and Kanagawa, prefec-

tures around Tokyo, such as Chiba and Saitama, were also detected as MLC and Cluster

2. From Fig. 5.7b, the Tokyo vicinity was repeatedly included in the clusters for short

durations, and the expansion and contraction of the clusters could be observed. Fur-

thermore, an additional cluster was detected in the early part of the target period, from

March 31 to May 12, which had not been detected by the cylindrical scan method.

8.3 Space-time clusters based on number of PCR

tests

The spread of infectious diseases such as COVID-19 may be centered within areas

where people are actively moving. Attempts to slow the spread of infection include

conducting sufficient tests on individuals suspected of being infected, such as the close

contacts of those who have already been identified as infected. However, in some circum-

stances, potentially infected individuals could not be sufficiently tested in regions where

the number of observed cases was large compared to the number of tests that could be

performed. Thus, we assumed that these potentially undetected infected people would

impact the development and expansion of the clusters. To detect space-time clusters re-

sulting from such risks, we also conducted an analysis using the number of polymerase

chain reaction (PCR) tests performed per day in each prefecture rather than using the

population in each prefecture. According to the Johns Hopkins Coronavirus Resource

Center, a PCR test is a viral test that aims to identify the presence of a virus’s genetic

material, as well as evidence of an active viral infection, using an oral or nasal swab or a

saliva test. We obtained data on the number of PCR tests performed in each prefecture

from the website noted in Sect. 8.1. The number of PCR tests performed per day was

calculated using the difference between the cumulative number of tests performed up to

the current and the preceding day. However, there were days when some prefectures did

not report the cumulative number of tests. In such cases, the number of tests per day

was set to 0. In this paper, the number of tests per day was calculated by dividing the

increased number if the cumulative number of tests was updated by the required update

period. For example, if a prefecture showed zero new tests for 11 days, and there was

an increase in the cumulative number of tests of 3,564 on day 12, then by calculating

3,564/12 = 297, the number of new tests on each day during this period was set to 297.

This process yielded 281 cases in which the number of newly infected persons per day
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was larger than the number of new tests. Accordingly, we processed these data as missing

values. The AESM can be applied to the data even with the missing values because the

regions with missing values are not used when creating the Echelon dendrogram. The

analysis settings were the same as in Sect. 8.2, and ξi,t was calculated with wi,t as the

number of PCR tests performed in region i at time t.

The results of the AESM are shown in Table 8.4 and Fig. 8.5. The numbered prefec-

tures shown in Fig. 8.6 are the newly detected locations as clusters in this analysis. In

Cluster 2, 17 prefectures were detected as clusters, demonstrating that infections were

widespread during this period. Additionally, Fig. 8.5 shows that Ibaraki was continuously

detected for an extended period in both the MLC and Cluster 2, and its SMR was higher

than that of other prefectures during this period. Clusters 3 and 5 were detected as clus-

ters at the start of the target period, and an expansion centered on Tokyo was observed.

Furthermore, Cluster 3 was detected as a high-risk cluster with RR = 4.34.

Table 8.4: Details of the clusters detected using the
AESM

Location Time frame log λK(Z) o(Z) ξ(Z) RR

MLC

Ibaraki

12/22−1/29 13308.03 83852 47578.69 1.97

Tochigi

Gunma

Saitama

Chiba

Tokyo

Kanagawa

Yamanashi

Shizuoka
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(continued)

Location Time frame log λK(Z) o(Z) ξ(Z) RR

Cluster 2

Ibaraki

11/10−12/21 3581.24 28432 16710.80 1.75

Tochigi

Gunma

Saitama

Chiba

Tokyo

Kanagawa

Yamanashi

Shizuoka

Aichi

Mie

Kyoto

Osaka

Hyogo

Nara

Wakayama

Tokushima

Cluster 3

Saitama

4/15−5/7 2069.27 2970 687.80 4.34Chiba

Tokyo

Kanagawa

Cluster 4
Shizuoka

12/2−12/10 1145.93 1902 498.52 3.83
Aichi

Cluster 5

Ibaraki

3/23−4/11 940.47 2213 746.89 2.97

Tochigi

Saitama

Chiba

Tokyo

Kanagawa

Shizuoka

8.4 Discussion

We began by considering the results of detecting space-time clusters based on popula-

tion. Human movement is one of factors that impact the spread of COVID-19 infections.
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8
10

24

3036

No. Loca�on No. Loca�on

8 Ibaraki 30 Wakayama

10 Gunma 36 Tokushima

24 Mie

Figure 8.6: Geographical location of prefectures detected by the AESM as clusters based
on the number of PCR tests — Orange-colored prefectures were detected in both analyses
based on population and the number of PCR tests. Blue and yellow-colored prefectures
were detected only in analysis based on population and only in analysis based on the
number of PCR tests, respectively.
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We considered how this aspect how this influenced the generation of clusters. Tokyo,

Kanagawa, Osaka, and Fukuoka, which were detected as clusters by the cylindrical scan

method, have large populations and are prefectures where many people move for business

purposes. Hokkaido and Okinawa are prefectures that many people visit for tourism.

Specifically, we considered that the number of tourists had increased compared in late

July when Okinawa began to be detected as a cluster; the summer holiday had begun

in Japan, and the government’s tourism support measures had been implemented. In

contrast, the AESM did not detect Okinawa as one of the top five clusters. Considering

Cluster 4, as shown in Fig. 8.3a, detected in Okinawa, the SMR exhibited a low value

on some days during the detected periods, presumably because multiple clusters that oc-

curred in a short time had been detected as a single cluster. Thus, when the AESM was

applied the short-term clusters had a lower log λK(Z) than the long-term cluster, and,

consequently, they were undetected as a high-ranking cluster.

The cylindrical scan method and the AESM identified the cluster in the Tokyo metropoli-

tan area as the MLC. The AESM detected similar areas in Clusters 2 and 5. Approxi-

mately 10% of the Japanese population lives in Tokyo; thus, many people enter and leave

the surrounding areas when commuting to work and school. Based on the spread of in-

fection in Tokyo, the surrounding area was also detected as a cluster. Thus, we assume

the cluster expansion and contraction would be reflected in the areas surrounding Tokyo.

Figure 8.1 shows the number of infected people rapidly increasing in late December 2020.

Figure 8.3b shows that the MLC expanded in these areas for the same period. In Japan,

many people return home during the New Year holidays or attend events such as Christ-

mas parties with their friends and family. However, during this period, we assume that

most people restricted their travel to distant areas due to the influence of COVID-19. As

a result, we considered that the movement of people increased in the area around Tokyo,

compared to other areas, and this spread infection. Figure 8.3b shows that Cluster 2

included Tokyo in late June, and Fig. 8.7 shows the number of newly infected people in

Japan and Tokyo. The number of infected people was small nationwide; however, the pro-

portion for Tokyo was very high during this period. We assume that Tokyo was detected

as Cluster 2 because the risk was relatively high compared to other prefectures.

Hokkaido (late October to early December) and Osaka (mid-November to mid-December)

were also detected as clusters by the cylindrical scan method and the AESM. Figure 8.8

and Fig. 8.9 are graphs showing the number of newly infected people in Hokkaido and

Osaka from October 1, 2020, to December 31, 2020, and the moving average for this num-

ber over the preceding seven days. In fact, Fig. 8.8 and Fig. 8.9 show that the number

of infected people is increasing rapidly when these areas were detected as clusters. Ini-

tially, Tokyo was not included in the tourism support project conducted by the Japanese

government, which started in July, however it was included from October 1. Therefore,
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Figure 8.7: Number of daily cases throughout Japan and in Tokyo from June 1 to July
1, 2020.

the number of tourists has increased nationwide since October, and it can be considered

that more people visited Hokkaido where is a popular tourist destination. In Osaka, in

addition to tourists, the movement of people due to commuting to business or school can

be also considered to be a factor in the generation of clusters. Since November 24, the

government’s tourism support project has been suspended in some areas in Hokkaido and

Osaka due to the spread of the infection. In Hokkaido, no clusters have been detected

since December 11, about two weeks after November 24. Because the incubation period

of COVID-19 is said to be up to 2 weeks, it is suggested that the increase in infected

people was suppressed by the decrease in tourists due to the suspension of project.

Next, we considered the space-time clusters based on the number of PCR tests. Figure

8.5 shows that the clusters detected based on these tests lasted for approximately one

month. It is also shown that Cluster 2 expanded to an extremely wide area, including

the regions surrounding Osaka and Tokyo. Figure 8.1 shows that the number of infected

people increased during the period close to November when Cluster 2 was detected. We

assume that this occurred because the number of prefectures in which the ratio of infected

persons to the number of PCR tests performed was high had increased during this period.

Ibaraki in particular, exhibited a high SMR value. Figure 8.10 shows the positive rate of

the PCR testing in Ibaraki during the period when the MLC and Cluster 2 were detected,

which reflected high values, e.g., 60% − 70%. On April 15, 2021, the Subcommittee on

Novel Coronavirus Disease Control, which is an organization of the Japanese government,

– 61 –



0

50

100

150

200

250

300

350

2020/1
0/1

2020/1
0/6

2020/1
0/1

1

2020/1
0/1

6

2020/1
0/2

1

2020/1
0/2

6

2020/1
0/3

1

2020/1
1/5

2020/1
1/1

0

2020/1
1/1

5

2020/1
1/2

0

2020/1
1/2

5

2020/1
1/3

0

2020/1
2/5

2020/1
2/1

0

2020/1
2/1

5

2020/1
2/2

0

2020/1
2/2

5

2020/1
2/3

0

C
a
s
e
s

Date

new cases per day 7 days average

Figure 8.8: Number of daily COVID-19 cases in Hokkaido from October 1 to December
31, 2020.

0

100

200

300

400

500

600

C
a
s
e
s

Date

new cases per day 7 days average

Figure 8.9: Number of daily COVID-19 cases in Osaka from October 1 to December 31,
2020.
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Figure 8.10: Changes in the rate of positive PCR tests in Ibaraki within the period it was
included in MLC and Cluster 2.

designated a positive test rate of 5% or more as one of the criteria identifying prefectures

where measures are required to avoid a rapid increase in the number of infected people

and occurrence of major obstacles to the medical care provision system. Ibaraki shows

a sufficiently high value compared to this criterion. Additionally, Fig. 8.11 shows the

positive test rate in Tokyo during the period when Cluster 3 and 5 were detected. Tokyo

also had a high positive test rate when infections first began to spread in Japan. High

positive test rates can make it difficult to provide tests for potentially infected people

who have not yet developed symptoms. We considered that these potentially infected

individuals eventually contributed to the expansion of the cluster.
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Figure 8.11: Changes in the rate of positive PCR tests in Tokyo within the period it was
included in Cluster 3 and 5.

– 64 –



9 Conclusion

In the first half of this paper, we proposed the AESM, which is a method that combines

Tango’s alpha and the spatial hierarchical structure obtained by the echelon analysis, as

a new method that can detect high-risk clusters. In addition, we compared the detection

accuracy of the AESM with existing methods by simulation and evaluated them visually.

The simulation result showed that the proposed method has ICDA equal to or higher

than that of the existing method and reduced the analysis time for large-scale spatial

data. Therefore, the AESM is effective as a cluster detection method for large-scale

spatial data. From this result, we expect the AESM can detect clusters of large-scale

spatial data, which has been difficult to apply by existing methods, even though it has

been collected in various fields, and it is possible to obtain new knowledge.

In the second half of this paper, as real data analysis, we applied the cylindrical

scan method and the AESM to detect space-time clusters in COVID-19 infection data in

Japan. The results of analysis show population-based clusters in densely populated and

well-traveled areas, such as Tokyo, suggesting that a large amount of human movement in

these areas is one of the factors influencing the spread of infection. Furthermore, results of

an analysis based on the number of PCR tests conducted showed detected clusters during

the period when the positive test rate was high. The clusters expanded to a wide range

when there were more infected persons. Therefore, we emphasize that it is important

to secure a sufficient number of tests to be prepared for the increase in the number of

infected people, which can be achieved by establishing cooperative relationships between

the medical systems of each prefecture. However, the properties of each of the clusters

may differ. Therefore, it is necessary to analyze each prefecture in more detail.

Finally, we discuss future works. First, we will consider how to set the value of α in

the AESM. This is a value arbitrarily determined according to the characteristics of the

cluster that the analyst wants to detect. However, from the simulation results in this

study, it can be seen that the detected cluster may change depending on the value of

α even if the data and scan method are the same. The criteria given by Tango (2008)

are just guidelines and may not apply to all data. For example, when analyzing large-

scale spatial data using the AESM, the size of the detected cluster may be large even if

α = 0.05. Therefore, the analyst must determine the value of α suitable as the cluster for

each data and method to be used. This problem is like the setting of MSWS in existing

methods in that it must be determined by the analyst. Han et al. (2016) proposed a

method using the Gini coefficient as a method for setting MSWS. We consider that it
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is necessary to carefully consider the value of α in AESM by utilizing various statistical

indicators including this method.

Second, we detected space-time clusters based on the retrospective method (Kulldorff

1998), which also detects clusters that had already ended at the time of the analysis.

In the case of people infected with COVID-19, where the data are updated daily, it is

important to identify ongoing clusters. These are referred to as “alive cluster.” Kulldorff

(2001) proposed the prospective method for detecting such clusters. This method can be

performed with the same software as the retrospective method and apply to the analysis

of various surveillance problems (Takahashi and Tango 2008). It is extremely important

to capture the shape change of alive clusters; however, this is currently difficult to do

using the AESM. Therefore, a new detection method is required. We consider this to be

a worthwhile direction for future work.
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