1	Fgf10-CRISPR mosaic mutants demonstrate the gene dose-related
2	loss of the accessory lobe and decrease in the number of alveolar
3	type 2 epithelial cells in mouse lung
4	
5	Munenori Habuta ¹ [¶] , Akihiro Yasue ² [¶] *, Ken-ichi T Suzuki ^{3,4} , Hirofumi Fujita ¹ , Keita
6	Sato ¹ , Hitomi Kono ¹ , Ayuko Takayama ⁴ , Tetsuya Bando ¹ , Satoru Miyaishi ⁵ , Seiichi
7	Oyadomari ⁶ , Eiji Tanaka ² , Hideyo Ohuchi ^{1*}
8	
9	¹ Department of Cytology and Histology, Okayama University Graduate School of
10	Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
11	² Department of Orthodontics Dentofacial Orthopedics, Institute of Biomedical Sciences,
12	Tokushima University Graduate School, Tokushima, Japan
13	³ Department of Mathematical and Life Sciences, Hiroshima University, Hiroshima,
14	Japan
15	⁴ Center for the Development of New Model Organisms, National Institute for Basic
16	Biology, Okazaki, Aichi, Japan

17	⁵ Department of Legal Medicine, Okayama University Graduate School of Medicine,
18	Dentistry and Pharmaceutical Sciences, Okayama, Japan
19	⁶ Division of Molecular Biology, Institute for Genome Research, Tokushima University,
20	Tokushima, Japan
21	
22	* Corresponding authors
23	E-mail: hohuchi@okayama-u.ac.jp (HO); yasuea@tokushima-u.ac.jp (AY)
24	
25	[¶] These authors contributed equally to this work.
26	

28 Abstract

29 CRISPR/Cas9-mediated gene editing often generates founder generation (F0) mice that 30 exhibit somatic mosaicism in the targeted gene(s). It has been known that Fibroblast 31 growth factor 10 (Fgf10)-null mice exhibit limbless and lungless phenotypes, while intermediate limb phenotypes (variable defective limbs) are observed in the Fgf10-32 33 CRISPR F0 mice. However, how the lung phenotype in the *Fgf10*-mosaic mutants is 34 related to the limb phenotype and genotype has not been investigated. In this study, we 35 examined variable lung phenotypes in the *Fgf10*-targeted F0 mice to determine if the lung phenotype was correlated with percentage of functional Fgf10 genotypes. Firstly, 36 37 according to a previous report, Fgf10-CRISPR F0 embryos on embryonic day 16.5 (E16.5) were classified into three types: type I, no limb; type II, limb defect; and type III, 38 39 normal limbs. Cartilage and bone staining showed that limb truncations were observed in 40 the girdle, (type I), stylopodial, or zeugopodial region (type II). Deep sequencing of the Fgf10-mutant genomes revealed that the mean proportion of codons that encode putative 41 functional FGF10 was $8.3 \pm 6.2\%$ in type I, $25.3 \pm 2.7\%$ in type II, and $54.3 \pm 9.5\%$ in 42 43 type III (mean \pm standard error of the mean) mutants at E16.5. Histological studies

44	showed that almost all lung lobes were absent in type I embryos. The accessory lung lobe
45	was often absent in type II embryos with other lobes dysplastic. All lung lobes formed in
46	type III embryos. The number of terminal tubules was significantly lower in type I and II
47	embryos, but unchanged in type III embryos. To identify alveolar type 2 epithelial
48	(AECII) cells, known to be reduced in the Fgf10-heterozygous mutant, immunostaining
49	using anti-surfactant protein C (SPC) antibody was performed: In the E18.5 lungs, the
50	number of AECII was correlated to the percentage of functional Fgf10 genotypes. These
51	data suggest the $Fgf10$ gene dose-related loss of the accessory lobe and decrease in the
52	number of alveolar type 2 epithelial cells in mouse lung. Since dysfunction of AECII cells
53	has been implicated in the pathogenesis of parenchymal lung diseases, the Fgf10-CRISPR
54	F0 mouse would present an ideal experimental system to explore it.
55	

- 56 KEYWORDS: Genome editing, Fibroblast growth factor 10, Mouse, Lung, Somatic
 57 mosaicism

59 Introduction

60 The recently developed CRISPR/Cas9 system provides a highly efficient means for 61 editing the genomes of model and non-model organisms. This powerful tool can help 62 elucidate pathophysiological mechanisms underlying various genetic diseases (reviewed 63 in [1,2]). CRISPR/Cas9 promises the possibility of an ultimate cure for genetic diseases 64 by enabling replacement of mutated genes with normal alleles (reviewed in [3]); however, 65 genome-edited founder mice often exhibit somatic mosaicism in the targeted gene, 66 meaning more than two mutated alleles for that gene are mixed in the same mouse [4-6]. 67 Such mosaicism may be undesirable when it complicates phenotypic analysis [7]. 68 However, mosaic mice may help the study of genes whose constitutive mutations are lethal, or the study of interactions between mutant and normal cells in the same individual 69 70 [8]. Furthermore, recent DNA sequencing advances have enabled us to identify genetic 71 mosaicism even in phenotypically normal individuals, the pathological significance of 72 which is still unclear (reviewed in [9,10]).

Previously, we reported that somatic mosaicism of a homeobox gene *Pax6* mutation
causes variable eye phenotypes correlated with its gene dosage [11]. In this study, we

75	focused on the variable phenotypes of genome-edited $Fgf10$ founder generation (F0) mice.
76	The Fgf10 gene is required for limb and lung formation; Fgf10 null mutants suffer
77	embryonic lethality at birth due to lung agenesis [12,13]. Recent studies have shown that
78	a fraction of Fgf10 genome-edited F0 mice exhibits typical limbless and lungless
79	phenotypes, and that the severity of the limbless phenotype depends on the $Fgf10$
80	mutation rate [7,14,15]. However, the lung phenotype has not been described. In this
81	study, we sought to determine the relationship between lung and limb phenotypes, and
82	correlation of these phenotypes to putative functional FGF10 dosage.

85 Materials and methods

86 Reagents and equipment used in this study are listed in S1 Table.

87

88 Mice and ethical statement

89 The animal experimental design was approved by the Committee of Animal Experiments 90 of Tokushima University, Tokushima, Japan, and by the Animal Care and Use Committee, 91 Okayama University, Okayama, Japan (Permit numbers: T27-16, T30-8, OKU-2017404, 92 OKU2018605). All surgeries were performed under sodium pentobarbital anesthesia, and 93 all efforts were made to minimize suffering. In vitro fertilized (IVF) eggs were prepared 94 from male and female BDF1 (C57BL/6 x DBA2 F1) mice as previously reported [14]. 95 CRISPR/Cas9 genome editing was performed on one-cell stage zygotes by microinjection (analysis on E16.5 embryos) with Cas9 mRNA and sgRNA targeted at 96 97 exon 3 of the Fgf10 gene according to Yasue et al. (2014) [14] (S1 Fig). After culturing 98 genome-edited zygotes until the two-cell stage, embryos were transferred to the uterine 99 tube of foster mice (Jcl: MCH (ICR) strain developed by CLEA Japan, Inc. (Tokyo, Japan); Jcl for Japan clea, MCH for Multi-Cross Hybrid, and ICR for Institute of Cancer 100

101	<u>R</u> esearch) and allowed to develop until E16.5. To obtain E18.5 F0 embryos, <i>Cas9</i> mRNA
102	(100 ng/ μ L) and synthesized guide RNA (50 ng/ μ L) were electroporated into one-cell
103	stage IVF eggs and further manipulation of embryos was performed according to
104	Hashimoto et al. (2016) [7]. CRISPR-control embryos were obtained by electroporation
105	of medium only into IVF eggs before processing them for sequencing and histological
106	examination. To know developmental variations, the weight of E18.5 embryos was
107	measured with a standard electronic scale.

109 Enzyme mismatch cleavage assay

110	Approximately 25 μ g genomic DNA were extracted from neck skin tissue (epidermis and
111	dermis) of collected embryos using a Qiagen DNeasy Blood & Tissue Kit. The genomic
112	region encompassing the CRISPR/Cas9 target site was amplified by polymerase chain
113	reaction (PCR) using a primer set specific for the <i>Fgf10</i> gene (S3A Fig, S1 Table) [14].
114	The amplicons were processed for a mismatch cleavage assay using the Guide-it Mutation

115 Detection Kit and the products were analyzed by 2% agarose gel electrophoresis (S3B

116 Fig).

117

118 **DNA sequencing**

119 To verify the presence of the target site mutation, single bands of PCR amplicons of 120 approximately 500 bp derived from the collected embryos at E16.5 (neck skin tissues) 121 were subjected to Sanger sequencing. The resulting DNA sequence waves were 122 dissociated using a web tool for TIDER data analysis available at https://tide.nki.nl [16]. 123 Deep sequencing analysis using DNA extracted from neck skin, lung, and/or limb 124 dermal tissues (Table 1 for E18.5; neck skin only for E16.5 embryos in Table 3; neck skin 125 only for additional E18.5 embryos in S3 Table) for the Fgf10 target site was performed 126 according to the previous report on Illumina MiSeq system [17]. Briefly, the Fgf10 on-127 target site from each individual embryo was amplified using custom barcode primers 128 shown in S1 Table. Library construction and sequencing were performed at the National 129 Institute for Basic Biology (NIBB, Japan) and Bioengineering Lab (Kanagawa, Japan). 130 The pooled sequence data was demultiplexed into each sample and analyzed subsequently

131 using a web-based tool, CLiCKAR [17].

132

133 Correction and calculation of putative somatic mutation rate

134 in the case of large insertions/deletions (indels)

135 PCR amplicons for deep sequencing were analyzed using TAPEStation 4200 system. 136 When larger or smaller DNA bands were detected above or below the main bands, their approximate molecular size was recorded. "Peak Molarity" value for each DNA band was 137 138 documented and the percentage of large indel was estimated by calculating the total value. 139 The putative somatic mutation rate for large indels was calculated proportionally. In 140 embryos #3 (type II, E16.5), #23 (type III, E18.5), #25 (type III, E18.5), and #11 2 (type 141 II, E18.5), and #22 2 (type III, E18.5), large indels were detected and corrected 142 accordingly.

143

144 Cartilage and bone staining

After Cesarean dissection, E18.5 embryos, removed their skin and internal organs, were
fixed in 95% ethanol and processed for whole mount skeletal staining with Alcian blue
8GX and Alizarin red S according to standard procedures [18].

148

149 Histology and analysis of terminal tubules

150 Hematoxylin-eosin (HE) staining was performed on mouse sections according to standard 151 procedures. Briefly, sections of 5 µm-thickness were made of the pectoral region of 152 paraffin-embedded embryos and mounted on microscope slides. After deparaffinization 153 and rehydration, sections were stained with Mayer's hematoxylin solution and 0.125% 154 eosin. Following staining, sections were washed, dehydrated, and mounted with DPX. After HE staining, photos were taken with a 10x objective lens for each embryonic lung 155 (n = 3 for each type, at E16.5) (Fig 5E-H) and tiled using ImageJ 156 (https://imagej.nih.gov/ij/index.html) (RRID:SCR 003070). Terminal tubules were 157 158 scored in the tiled full-field image (n = 1 for each embryo). The area for the full-field was calculated by ImageJ and the number of terminal tubules per mm² were obtained and 159 160 further analyzed statistically.

162	Immunohistochemistry and analysis of SPC-positive cells
163	Immunohistochemistry was performed on the 5 µm-thick deparaffinized sections using
164	ImmPRESS Polymer Detection Kit for IHC. A rabbit polyclonal antibody against a
165	synthetic peptide fragment of human prosurfactant protein \underline{C} (SPC) (within residues 1-
166	100) was used at 1:5,000 dilution. The specificity of the antibody for AECIIs in the mouse
167	lung has been validated [19]. The public identifier from the Antibody Registry is RRID:
168	AB_10674024. After immunohistochemistry, SPC-positive cells were scored in random
169	portions of a section in eight photomicrographs using a 40x objective lens. The total
170	number of 6627 cells on average was counted per sample. The results were presented as
171	a ratio of the number of positive cells per total number of cells [20]. This method has a
172	limitation, in which as Fgf10 mutations have been known to affect epithelial tube
173	formation and branching [21] and therefore the number of distal airway epithelial cells in
174	total may be impacted, the accuracy of the data would be ensured by normalizing AECII
175	cell number to total epithelial cell number.

177 Microscopy and image processing

178	Images for sections were collected with a Nikon DS-Fi1 camera on a Leica DM5000B
179	microscope. Embryos, skeletons, and intestines were observed and imaged using a Leica
180	DFC310FX camera on a Leica M165FC stereomicroscope. Image manipulation such as
181	levels and color balance adjustments, made to some images, and assembly of figures were
182	performed with Adobe Photoshop CS6 Extended (RRID:SCR_014199).
183	
184	Reverse transcription quantitative polymerase chain reaction
185	(RT-qPCR)
186	Dissected embryonic lungs (E18.5) were immersed in RNAlater at 4 °C overnight and

Dissected emotyonic lungs (E18.5) were immersed in RNAiater at 4 °C overhight and
stored at -80 °C until further use. Total RNA was extracted using NucleoZOL. Five
micrograms of RNA were reverse-transcribed to cDNA with FastGene cDNA Synthesis
5x ReadyMix. RT-qPCR was performed in duplicate wells with BrightGreen 2X qPCR
MasterMix-No Dye and LightCycler Nano System using primers as shown in S4 Table.
The PCR conditions employed were according to the manufacturer's protocol: 10 min at
95°C for enzyme activation, 40 cycles of 15 sec at 95°C (denaturation) and 60 sec at 60°C

193	(annealing and extension). We performed no template negative control experiments, as
194	well as melting curve analysis according to manufacturer's instructions. Gene expression
195	was normalized to a housekeeping gene, Glyceraldehyde-3-phosophate dehydrogenase
196	(Gapdh). Relative mRNA levels were determined by the comparative Ct method (Winer
197	et al. 1999). Error bars in S6 Fig show standard deviation and p values were calculated
198	by Microsoft Excel (RRID:SCR_016137) and confirmed by WaveMetrics Igor Pro
199	(RRID:SCR_000325).

201 Morphometric analysis of the cecum

202	Wild type $(n = 3)$, type I $(n = 4)$, and type II $(n = 2)$ dissected intestines containing the
203	cecum, colons, and part of small intestines at E18.5 were photographed at the same
204	magnification (S7 Fig). The length of each cecum was measured using ImageJ. Briefly,
205	multi-points were set from the most proximal point abutting the small intestine and colon
206	to the most distal cecum, approximately 16 to 18 points in the case of wild type cecum.
207	The sum of distance between each point was regarded as the length of the cecum.

209 Statistical analysis

210 Significance was determined by one-way analysis of variance (ANOVA) (Fig 4B), 211 Dunnett's test (Fig 5I), or two-tailed unpaired Student's t-test (S5L Fig, S7J Fig). 212 Correlation analysis was done by calculating correlation coefficient (Fig 6J-L, S5M Fig). 213 Chi-square test was used for the comparison of deep sequencing data on DNA from two 214 or three different tissues (Table 4). Data were presented as mean \pm standard error of the 215 mean (SEM). Values of p<0.05 were considered significant otherwise stated. Data 216 analysis was essentially performed using Microsoft Excel except for Dunnett's test, 217 which was done using R (https://www.r-project.org) (RRID:SCR 001905).

218 **Results**

Generation of *Fgf10*-CRISPR founder embryos and their limb skeletal structures

221 To generate Fgf10-CRISPR mice, we used a single guide RNA (sgRNA) to target exon 222 3, as previously described (S1 Fig) [14]. According to Hashimoto and Takemoto (2015) [15], the resultant *Fgf10*-CRISPR F0 embryos were classified by the limb phenotype into 223 224 three types: type I, no limb; type II, limb defect; and type III, normal limbs. Since skeletal 225 pattern of these three limb phenotypes has not been revealed, cartilage and bone staining was performed on E18.5 *Fgf10*-crispants (n = 4 for wild type; n = 11 for mutant embryos) 226 227 (Table 2, Fig 1, S2 Fig). Normally, the appendicular skeleton consists of girdle ("pectoral" for forelimb and "pelvic" for hindlimb) and limb elements. The skeletons of the fore- and 228 229 hindlimbs consist of stylopod for humerus/femur, zeugopod for the radius/ulna and 230 tibia/fibula, and autopod for hand/foot (S2I-K Fig). In type I embryos (n = 6), all limb 231 bones were lost and remaining girdle bones were affected to varying degrees (Fig 1A-D; 232 S2A-D Fig). The pectoral girdle consists of the scapula and clavicle, while the pelvic 233 girdle consists of the ilium, pubis, and ischium (S2I-K Fig) (for review [22]). In four out

234	of six type I embryos, the size of scapula was reduced and its spine was not formed,
235	indicating that the posterior blade was lost (Fig 1A). As for the pelvic girdle, the ischial
236	and pubic bones were lost, while iliac bones reduced bilaterally (Table 2 and Fig 1B). In
237	the remaining two embryos, the scapula was intact with a spine, while the pubis and
238	ischium were lost or reduced with the ilium intact bilaterally (Table 2 and Fig 1C, D; S2C,
239	D Fig). Thus, we regarded the latter phenotype as a type between I and II (type I/II). In
240	type II embryos ($n = 2$), all limb elements were lost in one or two appendages and in the
241	remaining appendages, limb truncations were observed at the stylopod or zeugopod level
242	(Table 2 and Fig 1E-O; S2E, F Fig). In type III embryos examined ($n = 3$), all limb and
243	girdle bone structures were normal (Fig 1P-R). These limb skeletal patterns indicated that
244	limb truncations were observed in the stylopodial, zeugopodial (type II), or pelvic region
245	(type I). Formation of the clavicle, and the superior part of the scapula and pelvic girdle
246	were not affected by lack of $Fgf10$ gene products.

248 Genomic analysis of *Fgf10*-CRISPR founder embryos

249	To prescreen mutations at the $Fgf10$ locus, we performed an enzyme mismatch cleavage
250	assay (S3A, B Fig) and Sanger sequencing with the use of DNA from neck skin tissues
251	of the E16.5 embryos. We estimated mutation frequencies based on band intensities [23],
252	and found an embryo (type II, #4) with obvious limb defects but showed faint band
253	intensities for mutated DNA after endonuclease treatment (S3B Fig). Sanger sequencing
254	indicated a mixed genotype of wild type and a single nucleotide insertion in this embryo
255	(S3C Fig).
256	To get more accurate mutation frequencies, we performed deep sequencing of PCR
257	amplicons containing the <i>Fgf10</i> target site by use of embryonic (E16.5) neck DNA. By
258	multiple amplicon analysis, we could distinguish between wild type, in-frame and
259	frameshift mutations (Fig 2). We also deduced amino acid sequences encoded by the
260	targeted Fgf10 locus (Fig 3). Among in-frame mutations, we found that codons that
261	encode Lys196 and His201 were preserved or those that encode His201 alone were
262	preserved as in #3, #5, and #9 embryos; both residues are known to be indispensable for
263	FGF receptor dimerization [24]. We calculated the percentage of the gene sequence that
264	still encodes putative functional FGF10 proteins with both residues in each type of mutant

265 at E16.5, finding $8.3 \pm 6.2\%$ for type I, $25.3 \pm 2.7\%$ for type II, and $54.3 \pm 9.5\%$ for type

266 III, n = 3 for each type, mean \pm SEM) (Table 3) (Fig 4A, B). In the case of E18.5 neck

267 DNA, it was $3.4 \pm 2.9\%$ for type I (n = 3), 33% for type II (n = 1), and $66.5 \pm 8.8\%$ for

268 type III, respectively (n = 8) (Table 1).

269 To know whether genotyping results using DNA from different tissues were similar, we performed deep sequencing on DNA extracted from lung and limb dermal tissues as 270 271 well as neck skin tissues of the E18.5 embryos (Table 1; S2 Table). We evaluated deep 272 sequencing results on type III embryos (n = 10) with Chi-square test (Table 4). We found that in 6 embryos there was a significant difference in the frequencies of the functional 273 274 Fgf10 genotypes from the different tissues and in 4 embryos there was no significant difference in the frequencies of the functional *Fgf10* genotypes from the different tissues 275 276 (Table 4).

277

278 Analysis of lung phenotypes

We next examined the lung histology of *Fgf10*-mosaic F0 embryos on E16.5 (Table 3,
Fig 5, S4 Fig). In the normal mouse lung, there are five lung lobes, four on the right

281	(cranial, middle, caudal, and accessory) and one on the left (Fig 5A). The lung histology
282	of type I embryos demonstrated either the absence of all lobes (two of three embryos) or
283	only the presence of a residual lobe (one of three) (Fig 5B). We found that the accessory
284	lobe was absent in two out of three type II embryos, and that either middle or caudal lobe
285	was additionally absent or hypoplastic (Fig 5C). In type III embryos, all five lung lobes
286	were present (Fig 5D). In E18.5 type II embryos, the accessory lung lobe was absent from
287	all three embryos examined (embryo #11_2, 24_2, 25_2; S5I-K Fig).
288	Mouse lung development is divided into five stages, namely embryonic,
289	pseudoglandular (E9.5 to 16.5), canalicular (E16.5 to 17.5), saccular (E17.5 to P5), and
290	alveolar (P5 to P28) [25]. At E16.5, after branching morphogenesis the lung is in the
291	transition of pseudoglandular to canalicular stage. We found that the number of terminal
292	tubules was significantly decreased in type I and II residual lungs (Fig 5F, G, I), but not
293	significantly altered in type III lungs (Fig 5H, I), compared with wild type (Fig 5E, I). By
294	E18.5, the lung enters the saccular stage and cuboidal cells that produce surfactant protein
295	C (SPC), i.e. alveolar type 2 epithelial (AECII) cells, differentiate on the wall of the
296	developing airway space. Since AECII cell differentiation is perturbed in the Fgf10-

297	heterozygous lung [26,27], we performed immunohistochemistry on E18.5 lung sections
298	to detect AECII. We counted the number of SPC-positive cells in lungs of type III
299	embryos and examined whether it was correlated to the percentage of functional Fgf10
300	genotype. Representative data of immunostaining for type III lungs are shown (Fig 6B,
301	E) along with those for type II lungs (Fig 6A, D) and positive/negative controls (Fig. 6C,
302	F, G-I). We found that the number of SPC-positive cells in lungs of type III embryos was
303	correlated to the percentage of functional Fgf10 genotype (Fig 6J, correlation coefficient
304	is 0.909 for limb DNA; Fig. 6K, 0.924 for neck DNA). Since the delay in development
305	can be caused by variation between embryos even from a same litter due to crowding in
306	the uterus, we also examined whether the number of SPC-positive cells was correlated to
307	the weight of each embryo, as an index for developmental stage (Table 1). It seemed that
308	there was no correlation between them (Fig 6L; correlation coefficient is 0.301).
309	On the other hand, since it was reported that the mesenchymal FGF10 is also important
310	for proper mesenchymal lineage formation during lung development as revealed by
311	Fgf10-hypomorphic lungs [20,28], we examined expression of mesenchymal and its
312	related marker genes [29] in type III lungs at E18.5 by quantitative PCR (Table 1, S4

320 **Discussion**

Fgf10 genome edited F0 mice are classified into three limb phenotypes: no limb (type I), 321 322 limb defect (type II), and normal limbs (type III). In this study, we first examined 323 appendicular skeletal patterns of the Fgf10 mosaic mutant mice by cartilage and bone 324 staining. We found that varying degrees of limb and girdle bone truncations were 325 observed in type I and type II embryos. We next estimated the rate of putative functional 326 Fgf10 genotypes in each mutant type and the mean percentage for type II embryos is 25.3 \pm 2.7 by deep sequencing of neck DNA. Comparison of deep sequencing results on DNA 327 328 from different tissues (neck, lung, and limb dermis) revealed that in half of the embryos 329 the rate of putative functional *Fgf10* genotypes were significantly varied between the three DNA. Lung phenotypes were examined on two embryonic stages, E16.5 and E18.5. 330 331 In type II embryos, the accessory lobe was lost and the number of terminal tubules was 332 significantly reduced. In type II and "normal limb (type III)" embryos, the number of 333 alveolar type 2 cells, immunostained by anti-surfactant C protein, was correlated with the rate of putative functional Fgf10 genotypes. 334

Truncation patterns of girdle and limb bones in Fgf10-mosaic 336 mutants

337

338 Skeletal staining in this study revealed that in type II embryos, limb bone structures are 339 truncated in more distal structures rather than forming a miniature of whole limb and 340 girdle structures. Also, in the mutants, the zeugopodial element consists of one ulna- or 341 tibia-like bone: This pattern is different from those after extirpation of apical ectodermal ridge in chicken limb buds, where both zeugopod bones are truncated [30]. Although the 342 343 number of type II embryos examined in this study is only two and therefore further studies 344 are needed, a reduced number of Fgf10-expressing cells in the mosaic mutants does not 345 seem to know the morphological pattern to be formed. Looking the expression of zeugopod patterning genes could help to elucidate the underlying mechanisms. 346 Regarding girdle bones, it has been known that the posterior (inferior) half of the 347 348 scapula is absent and most of the pelvic structures is lacking in *Fgf10*-null embryos 349 [12,13]. This study showed that in type I/II Fgf10-mosaic mutants the posterior scapula 350 with the spine retained. In the mouse, while the pelvic girdle and most of the scapular

351 blade derives solely from the lateral plate mesoderm (LPM), the medial edge of the blade arises from dermomyotome cells and the neural crest cells contribute to the scapular spine [31-33]. Thus, it is likely that a reduced number of *Fgf10*-expressing cells in the LPM and neural crest cells [34] contributed to the formation of the posterior (inferior) scapula in type I/II embryos. In the case of pelvic girdle, a reduced number of *Fgf10*-expressing cells in the LPM contributed to the formation of the inferior pelvic structures in type I/II embryos.

358

359 *Fgf10* mutation rate may not be identical in different tissues

360 Here we showed that there is a correlation between limb phenotypes, lung phenotypes, 361 and overall defective mutation rate in Fgf10-CRISPR knockout F0 mice. It has been shown that even if CRISPR-genome editing materials are introduced into fertilized eggs 362 at the one-cell stage, mosaicism in the target genotype is caused under certain 363 364 experimental conditions until the target sequences are mutated [6,7]. During the early 365 embryonic stage, mutated cells and non-mutated cells are intermingled and distributed to lung and limb primordia proportionally [35], which we believe contributes to the 366 367 correlation between limb and lung phenotypes. However, statistical analysis on deep

368	sequencing data of the genotypes shows in more than half cases there is a significant
369	difference of the defective mutation rate in DNA from different tissues. In this study, we
370	could not identify the reason why there were differences in the rate of the functional $Fgf10$
371	genotypes. In some developmental settings, Fgf10-expressing normal cells might have a
372	growth advantage than Fgf10-deficient cells, which should be further explored in the next
373	studies [10].

Fgf10-CRISPR F0 mice possess degrees of lung dysgenesis that 374

correlate with putative functional FGF10 dosage 375

formation has been observed in loss-of-function mutants of Gli3, Fog2, and Gata4 [36-

385 38], FGF10 signaling may be related to the expression of these transcription factors386 during accessory lobe formation.

387 Lineage-tracing analysis of Fgf10-expressing cells during mouse lung development has 388 revealed that there are two waves of *Fgf10* expression; the first begins from E11.5 and 389 the second from E15.5 [29]. We think that a reduction in the latter cells would cause the 390 decrease in the number of terminal tubules in type I and type II Fgf10-CRISPR F0 391 embryos. A recent study has shown that AECII as well as AECI independent progenitors 392 are present at E13.5 as revealed by single cell RNA sequencing analysis [39]. By the 393 saccular stage, the lung mesenchyme surrounding the epithelium becomes thinner and 394 cuboidal AECII cells, characterized by the production of surfactant proteins, begin to 395 differentiate (summarized in [40]). The number of AECII cells is found to be lower in the 396 Fgf10-heterozygous lung [26,27], which is similar to our result in type III Fgf10-mosaic 397 mice. Taken together, Fgf10 expression levels regulate the number of alveolar type 2 398 epithelial cells in mouse lung in somewhat dose-dependent manner.

399	Regarding FGF10 dosage, the <i>Fgf10</i> -hypomorphic mouse aforementioned [20,28] has
400	also clarified that higher FGF10 dosage is required for full development of colonic crypts
401	[41]. Our preliminary observation (S7 Fig) showed that in type I embryos the length of
402	the cecum was significantly shorter than the wild type and there was an atresia of the
403	colon as reported in the <i>Fgf10</i> -null mutants [41,42]. The length of the blind colon varied
404	depending upon the embryos (S7D-G Fig), suggesting a correlation with their FGF10
405	dosage.

407 Fgf10-CRISPR F0 mice can serve as a series of lung disease

408 models

409 Volckaert et al. (2013) reported that lung branching morphogenesis does not require 410 localized Fgf10 expression in the distal mesenchyme, because ubiquitous Fgf10411 overexpression can induce lung formation in Fgf10 knockout mice [43]. Furthermore, 412 Fgf10 expression after lung initiation is required for branching and proximal-distal 413 differentiation by regulating Sox2/9 expression in the epithelium [43]. Our result also supports this property of *Fgf10* as the number of terminal tubules decreased in the *Fgf10*mosaic mutants where functional FGF10 dosage is reduced.

416 Recent papers have reported that mutations and single nucleotide polymorphisms

- 417 (SNPs) in the *Fgf10* gene are correlated with human lung disease (reviewed in [44]). For
- 418 example, the absence of the right medial-basal airway is associated with a type of chronic
- 419 obstructive pulmonary diseases and two types of SNPs are found within the same intron
- 420 of *Fgf10* in those cohorts [45]. Although some molecular and cellular differences have
- 421 been identified between mouse and human lungs (reviewed in [46]), the F0 mice
- 422 generated by CRISPR/Cas9-mediated *Fgf10* gene editing can become a model animal to
- 423 study the pathophysiology of human pulmonary hypoplasia and related chronic lung
- 424 diseases that may be rooted in the developmental stage as recently postulated [47]).
- 425

426 Acknowledgements

We are grateful for assistance in deep sequencing analysis given from Prof. Shuji
Shigenobu, Functional Genomics Facility, NIBB Core Research Facilities, and the NIBB
Collaborative Research Program (18-202 to T.H).

431 **References**

432	1.	Doudna JA, Charpentier E. Genome editing. The new frontier of genome
433		engineering with CRISPR-Cas9. Science. 2014;346(6213):1258096.
434	2.	Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9
435		for genome engineering. Cell. 2014;157(6):1262-78.
436	3.	Cornu TI, Mussolino C, Cathomen T. Refining strategies to translate genome
437		editing to the clinic. Nat Med. 2017;23(4):415-23.
438	4.	Sung YH, Kim JM, Kim HT, Lee J, Jeon J, Jin Y, et al. Highly efficient gene
439		knockout in mice and zebrafish with RNA-guided endonucleases. Genome Res.
440		2014;24(1):125-31.
441	5.	Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R. One-step
442		generation of mice carrying reporter and conditional alleles by CRISPR/Cas-
443		mediated genome engineering. Cell. 2013;154(6):1370-9.
444	6.	Yen ST, Zhang M, Deng JM, Usman SJ, Smith CN, Parker-Thornburg J, et al.
445		Somatic mosaicism and allele complexity induced by CRISPR/Cas9 RNA
446		injections in mouse zygotes. Dev Biol. 2014;393(1):3-9.

447	7.	Hashimoto M, Yamashita Y, Takemoto T. Electroporation of Cas9
448		protein/sgRNA into early pronuclear zygotes generates non-mosaic mutants in
449		the mouse. Dev Biol. 2016;418(1):1-9.
450	8.	Zhong H, Chen Y, Li Y, Chen R, Mardon G. CRISPR-engineered mosaicism
451		rapidly reveals that loss of Kcnj13 function in mice mimics human disease
452		phenotypes. Sci Rep. 2015;5:8366.
453	9.	Biesecker LG, Spinner NB. A genomic view of mosaicism and human disease.
454		Nat Rev Genet. 2013;14(5):307-20.
455	10.	Gajecka M. Unrevealed mosaicism in the next-generation sequencing era. Mol
456		Genet Genomics. 2016;291(2):513-30.
457	11.	Yasue A, Kono H, Habuta M, Bando T, Sato K, Inoue J, et al. Relationship
458		between somatic mosaicism of Pax6 mutation and variable developmental eye
459		abnormalities-an analysis of CRISPR genome-edited mouse embryos. Sci Rep.
460		2017;7(1):53. Epub 2017/03/02. doi: 10.1038/s41598-017-00088-w
461	12.	Min H, Danilenko DM, Scully SA, Bolon B, Ring BD, Tarpley JE, et al. Fgf-10
462		is required for both limb and lung development and exhibits striking functional

463		similarity to Drosophila branchless. Genes Dev. 1998;12(20):3156-61.
464	13.	Sekine K, Ohuchi H, Fujiwara M, Yamasaki M, Yoshizawa T, Sato T, et al.
465		Fgf10 is essential for limb and lung formation. Nat Genet. 1999;21(1):138-41.
466	14.	Yasue A, Mitsui SN, Watanabe T, Sakuma T, Oyadomari S, Yamamoto T, et al.
467		Highly efficient targeted mutagenesis in one-cell mouse embryos mediated by
468		the TALEN and CRISPR/Cas systems. Sci Rep. 2014;4:5705.
469	15.	Hashimoto M, Takemoto T. Electroporation enables the efficient mRNA
470		delivery into the mouse zygotes and facilitates CRISPR/Cas9-based genome
471		editing. Sci Rep. 2015;5:11315.
472	16.	Brinkman EK, Kousholt AN, Harmsen T, Leemans C, Chen T, Jonkers J, et al.
473		Easy quantification of template-directed CRISPR/Cas9 editing. Nucleic Acids
474		Res. 2018;46(10):e58.
475	17.	Iida M, Suzuki M, Sakane Y, Nishide H, Uchiyama I, Yamamoto T, et al. A
476		simple and practical workflow for genotyping of CRISPR-Cas9-based knockout
477		phenotypes using multiplexed amplicon sequencing. Genes Cells. 2020;00:1-12.
478		doi: 10.1111/gtc.12775

479	18.	Hogan BLMB, R.; Costantini, F.; Lacy, E Manipulating the mouse embryo: a
480		laboratory manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory
481		Press; 1994.
482	19.	Stachtea XN, Tykesson E, van Kuppevelt TH, Feinstein R, Malmstrom A,
483		Reijmers RM, et al. Dermatan Sulfate-Free Mice Display Embryological
484		Defects and Are Neonatal Lethal Despite Normal Lymphoid and Non-
485		Lymphoid Organogenesis. PLoS One. 2015;10(10):e0140279.
486	20.	Ramasamy SK, Mailleux AA, Gupte VV, Mata F, Sala FG, Veltmaat JM, et al.
487		Fgf10 dosage is critical for the amplification of epithelial cell progenitors and
488		for the formation of multiple mesenchymal lineages during lung development.
489		Dev Biol. 2007;307(2):237-47.
490	21.	Bellusci S, Grindley J, Emoto H, Itoh N, Hogan BL. Fibroblast growth factor
491		10 (FGF10) and branching morphogenesis in the embryonic mouse lung.
492		Development. 1997;124(23):4867-78.
493	22.	Sears KE, Capellini TD, Diogo R. On the serial homology of the pectoral and
494		pelvic girdles of tetrapods. Evolution. 2015;69(10):2543-55. doi:

495 10.1111/evo.12773

- 496 23. Abu-Bonsrah KD, Zhang D, Newgreen DF. CRISPR/Cas9 Targets Chicken
 497 Embryonic Somatic Cells In Vitro and In Vivo and generates Phenotypic
- 498 Abnormalities. Sci Rep. 2016;6:34524.
- 499 24. Ibrahimi OA, Yeh BK, Eliseenkova AV, Zhang F, Olsen SK, Igarashi M, et al.
- 500 Analysis of mutations in fibroblast growth factor (FGF) and a pathogenic
- 501 mutation in FGF receptor (FGFR) provides direct evidence for the symmetric
- 502 two-end model for FGFR dimerization. Mol Cell Biol. 2005;25(2):671-84.
- 503 25. Gao X, Hogan BL. Development of the Respiratory System. Kaufman's Atlas
- 504 of Mouse Development Supplement: With Coronal Sections: Academic Press;505 2016.
- 506 26. Chao CM, Yahya F, Moiseenko A, Tiozzo C, Shrestha A, Ahmadvand N, et al.
- 507 Fgf10 deficiency is causative for lethality in a mouse model of 508 bronchopulmonary dysplasia. J Pathol. 2017;241(1):91-103.
- 509 27. Li J, Wang Z, Chu Q, Jiang K, Li J, Tang N. The Strength of Mechanical Forces
- 510 Determines the Differentiation of Alveolar Epithelial Cells. Dev Cell.

- 511 2018;44(3):297-312 e5.
- 512 28. Mailleux AA, Kelly R, Veltmaat JM, De Langhe SP, Zaffran S, Thiery JP, et al.
- 513 Fgf10 expression identifies parabronchial smooth muscle cell progenitors and
- 514 is required for their entry into the smooth muscle cell lineage. Development.
- 515 2005; 132(9):2157-66. doi: 10.1242/dev.01795
- 516 29. El Agha E, Herold S, Al Alam D, Quantius J, MacKenzie B, Carraro G, et al.
- 517 Fgf10-positive cells represent a progenitor cell population during lung 518 development and postnatally. Development. 2014;141(2):296-306.
- 519 30. Summerbell D. A quantitative analysis of the effect of excision of the AER from
- 520 the chick limb-bud. J Embryol Exp Morphol. 1974;32(3):651-60.
- 521 31. Durland JL, Sferlazzo M, Logan M, Burke AC. Visualizing the lateral somitic
- frontier in the Prx1Cre transgenic mouse. J Anat. 2008;212(5):590-602. doi:
- 523 10.1111/j.1469-7580.2008.00879.x
- 524 32. Valasek P, Theis S, Krejci E, Grim M, Maina F, Shwartz Y, et al. Somitic origin
- 525 of the medial border of the mammalian scapula and its homology to the avian
- 526 scapula blade. J Anat. 2010;216(4):482-8. doi: 10.1111/j

527	33.	Matsuoka I, Ahlberg PE, Kessaris N, Iannarelli P, Dennehy U, Richardson WD,
528		et al. Neural crest origins of the neck and shoulder. Nature.
529		2005;436(7049):347-55. doi: 10.1038/nature03837
530	34.	Teshima TH, Lourenco SV, Tucker AS. Multiple Cranial Organ Defects after
531		Conditionally Knocking Out Fgf10 in the Neural Crest. Front Physiol.
532		2016;7:488. doi: 10.3389/fphys.2016.00488
533	35.	Soriano P, Jaenisch R. Retroviruses as probes for mammalian development:
534		allocation of cells to the somatic and germ cell lineages. Cell. 1986;46(1):19-29.
535	36.	Grindley JC, Bellusci S, Perkins D, Hogan BL. Evidence for the involvement
536		of the Gli gene family in embryonic mouse lung development. Dev Biol.
537		1997;188(2):337-48.
538	37.	Ackerman KG, Herron BJ, Vargas SO, Huang H, Tevosian SG, Kochilas L, et
539		al. Fog2 is required for normal diaphragm and lung development in mice and
540		humans. PLoS Genet. 2005;1(1):58-65.
541	38.	Ackerman KG, Wang J, Luo L, Fujiwara Y, Orkin SH, Beier DR. Gata4 is
542		necessary for normal pulmonary lobar development. Am J Respir Cell Mol Biol.

527 33. Matsuoka T, Ahlberg PE, Kessaris N, Iannarelli P, Dennehy U, Richardson WD.

543 2007;36(4):391-7.

544	39.	Frank DB, Penkala IJ, Zepp JA, Sivakumar A, Linares-Saldana R, Zacharias
545		WJ, et al. Early lineage specification defines alveolar epithelial ontogeny in the
546		murine lung. Proc Natl Acad Sci U S A. 2019;116(10):4362-71. doi:
547		10.1073/pnas.1813952116
548	40.	Ornitz DM, Yin Y. Signaling networks regulating development of the lower
549		respiratory tract. Cold Spring Harb Perspect Biol. 2012;4(5).
550	41.	Sala FG, Curtis JL, Veltmaat JM, Del Moral PM, Le LT, Fairbanks TJ, et al.
551		Fibroblast growth factor 10 is required for survival and proliferation but not
552		differentiation of intestinal epithelial progenitor cells during murine colon
553		development. Dev Biol. 2006;299(2):373-85. doi: 10.1016/j.ydbio.2006.08.001
554	42.	Burns RC, Fairbanks TJ, Sala F, De Langhe S, Mailleux A, Thiery JP, et al.
555		Requirement for fibroblast growth factor 10 or fibroblast growth factor receptor
556		2-IIIb signaling for cecal development in mouse. Dev Biol. 2004;265(1):61-74.
557		doi: 10.1016/j.ydbio.2003.09.021.
558	43.	Volckaert T, Campbell A, Dill E, Li C, Minoo P, De Langhe S. Localized Fgf10

559		expression is not required for lung branching morphogenesis but prevents
560		differentiation of epithelial progenitors. Development. 2013;140(18):3731-42.
561	44.	Danopoulos S, Shiosaki J, Al Alam D. FGF Signaling in Lung Development
562		and Disease: Human Versus Mouse. Front Genet. 2019;10:170.
563	45.	Smith BM, Traboulsi H, Austin JHM, Manichaikul A, Hoffman EA, Bleecker
564		ER, et al. Human airway branch variation and chronic obstructive pulmonary
565		disease. Proc Natl Acad Sci U S A. 2018;115(5):E974-E81.
566	46.	Nikolic MZ, Sun D, Rawlins EL. Human lung development: recent progress and
567		new challenges. Development. 2018;145(16).
568	47.	Hobbs BD, de Jong K, Lamontagne M, Bosse Y, Shrine N, Artigas MS, et al.
569		Genetic loci associated with chronic obstructive pulmonary disease overlap with
570		loci for lung function and pulmonary fibrosis. Nat Genet. 2017;49(3):426-32.
571		

572 Tables

573 Table 1. Summary of Fgf10-CRISPR F0 embryos at E18.5. These embryos were 574 genotyped by deep sequencing (NGS). 575 *SPC (+) cells/total cells (mean \pm SEM %) is shown in parenthesis of IHC for Fig 6J and 576 K. -, no limb; c-b staining, cartilage and bone staining; N.A., not applicable; N.A.**, not 577 applicable due to low expected frequency (<5); N.D., not done; qPCR, quantitative PCR. *** contains wild type genotype and in-frame genotype retaining nucleotides for Lys196 578 579 and His201. 580 581 Table 2. Summary of Fgf10-CRISPR F0 embryos (E18.5) processed for cartilage 582 and bone staining.

-, no bone; ±, bone hypoplasia; +, normal bones; N.A., not applicable; N.D., not
determined due to separation of proximal parts of the limb from the trunk for lung analysis.

586 Table 3. Summary of limb and lung phenotypes of *Fgf10*-CRISPR F0 embryos at

587 E16.5.

588	-, no limb or no lung lobe; ±, limb defect or small lung lobes; +, normal limbs or normal
589	appearance of lung lobes. *a residual lung lobe. Genotypes of crispants (types I-III) were
590	prescreened by an enzyme mismatch cleavage assay (S3B Fig) and determined by deep
591	sequencing (NGS).
592	
593	Table 4. Chi-square test for genotyping results of DNA derived from different tissues.
594	The number of sequence reads in deep sequencing is shown in contingency tables for
595	observed frequencies. Wt, wild type Fgf10 genotype; Out, frameshift mutations in the
596	<i>Fgf10</i> gene; W/o & Out, in-frame mutation without nucleotides encoding Lys196 and/or
597	His201 plus frameshift mutations in the $Fgf10$ gene; In (w), in-frame mutations with
598	nucleotides encoding Lys196 and His201; In (w/o), in-frame mutations without
599	nucleotides encoding Lys196 and/or His201. When p -values <0.05, there is statistically
600	significant difference in the <i>Fgf10</i> genotypes of the different tissues.

Туре	Embry	Fore	limb	Hind	Hindlimb		Analysis*	Tissues for NGS	Chi-square test of	Functional	Functional Fgf10	Functional Fgf10	Functional Fgf10	Genotype	Figure
Турс	o No.	Left	Right	Left	Right	(gram)	Analysis	1135003 101 1100	(p-value)	(%) in neck DNA	%) in neck DNA	DNA	DNA	different DNA	riguie
	#18	_	—	-	—	0.6303	collected for c-b staining	Neck	N.A.	9.27		N.D.	N.D.		
I	#19	—	-	 	-	0.6899	collected for c-b stainig	Neck	N.A.	0.50	3.4 ± 2.9	N.D.	N.D.		
	#26	—	-		-	0.4682	C-b staining	Neck	N.A.	0.45		N.D.	N.D.		
II	#14	—	Humeru s only	-	Short femur	0.5784	C-b staining	Neck	N.A.	32.96	N.A.	N.D.	N.D.		Fig 1J-O
	#11					0.7799	Lung qPCR	Limb, lung, neck	3.34357E-29	67.75		61.19	64.23	Not identical	
	#12					0.9111	Lung qPCR	Limb, lung	0.751528903	N.D.		65.98	66.45	Identical	Fig 1P-R
	#13	Normal Normal				0.9699	Lung collected for qPCR	Limb, lung	4.01545E-05	N.D.	65.8 ± 0.0	82.59	84.77	Not identical	
	#15					0.9572	Lung collected for qPCR	Limb, lung, neck	2.89945E-11	59.78		56.84	56.22	Not identical	
	#16					0.9254	Lung collected for qPCR	Limb, lung	N.A.**	N.D.		100.00	100.00	Identical	
	#17		Normal	Normal	Normal	0.7524	Lung qPCR	Limb, lung	3.37691E-50	N.D.		70.11	64.00	Not identical	
	#20		normai		i normai	1.0555	IHC (19.9 ± 0.7)	Limb, neck	1.892E-09	100.00***	05.0 ± 9.0	N.D.	100.00***	Not identical**	Fig 6J-M
	#21					0.7742	IHC (16.9 ± 0.8)	Limb, neck	0.176029751	56.92		N.D.	57.52	Identical	Fig 6J-M
	#22					0.8757	IHC (9.8 ± 0.5)	Limb, neck	0.271069452	28.92		N.D.	29.94	Identical	Fig 6B,E,H;Fig 6J-M
	#23					0.9232	IHC (24.2 ± 0.8)	Limb, neck	N.A.**	100.00		N.D.	97.20	Identical	Fig 6J-M
	#24					0.9976	IHC (18.8 ± 0.7)	Limb, neck	1.18483E-26	73.06		N.D.	82.26	Not identical	Fig 6J-M
	#25					0.9832	IHC (15.2 ± 1.4)	Limb, neck	0.139527497	40.75	5	N.D.	40.16	Identical	Fig 6J-M
Wild type	#2	Normal	Normal	Normal	Normal	0.7472	Lung qPCR	Limb, lung, neck	N.A.**	99.63	N.A.	100.00	100.00	Identical	

Table 1. Summary of Fgf10-CRISPR F0 embryos at E18.5. These embryos were genotyped by deep sequencing (NGS).

*SPC (+) cells/total cells (mean ± SEM %) is shown in parenthesis of IHC for Fig 6J and K. -, no limb; c-b staining, cartilage and bone staining; N.A., not applicable; N.A.**, not applicable due to low expected frequency (<5); N.D., not done; qPCR, quantitative PCR. ***contains wild type genotype and in-frame genotype retaining nucleotides for Lys196 and His201.

Table 2. Summary of *Fgf10*-CRISPR F0 embryos (E18.5) processed for cartilage and bone staining.

		Embruo	Forelimb		Pectoral girdle				Hi	Hindlimb Pelvic girdle						Eurotional Ect10	Euroctional Eaf10	Eunctional Eaf10		
Туре	Subtype	Embryo	l off	Diabt	Le	eft	ft Right		Loft Digbi	Dight	Left			Right			genotypes (%) in neck	genotypes (%) in lung	genotypes (%) in limb	Figure
		NO.	Leit	Right	Scaplua	Clavicle	Scaplua	Clavicle	Leit	Right	llium	Ischium	Pubis	llium	Ischium	Pubis	DNA	DNA	DNA	
		#4_18	-	-	±	+	±	+	-	-	±	-	-	±	-	-	N.A.	N.A.	N.A.	Fig 1,Fig S2
	1	#26	-	-	±	+	±	+	-	-	±	-	-	±	-	-	0.45	N.A.	N.A.	
I		#34	-	-	±	+	±	+	-	-	±	-	-	±	-	-	N.A.	N.A.	N.A.	
		#35	-	-	±	+	±	+	-	-	±	-	-	±	-	-	N.A.	N.A.	N.A.	
	1/11	#40	-	-	+	+	+	+	-	-	+	±	-	+	±	-	N.A.	N.A.	N.A.	
		#46	-	-	+	+	+	+	-	-	+	±	-	+	-	-	N.A.	N.A.	N.A.	Fig 1,Fig S2
		#14	N.D.	Humerus only	N.D.	N.D.	+	+	-	Truncated at distal femur	+	±	-	+	-	±	32.96	N.A.	N.A.	Fig 1
	II	#33	+	Humerus, radius only,no autopod	+	+	+	+	-	Truncated at distal tibia, no fibula	+	+	-	+	+	+	N.A.	N.A.	N.A.	Fig 1,Fig S2
		#11	+	+	+	N.D.	+	N.D.	+	+	+	+	+	+	+	+	67.75	61.19	64.23	
	III	#12	+	+	+	N.D.	+	N.D.	+	+	+	+	+	+	+	+	N.A.	65.98	66.45	Fig 1
		#17	+	+	+	N.D.	+	N.D.	+	+	+	+	+	+	+	+	N.A.	70.11	64.00	
		#1	+	+	+	N.D.	+	N.D.	+	+	+	+	+	+	+	+	N.A.	N.A.	N.A.	
\\/il	d type	#4	+	+	+	N.D.	+	N.D.	+	+	+	+	+	+	+	+	N.A.	N.A.	N.A.	
VVII	u iype	#5	+	+	+	N.D.	+	N.D.	+	+	N.D.	N.D.	N.D.	+	+	+	N.A.	N.A.	N.A.	
		#7_18	+	+	+	+	+	+	+	+	+	+	+	+	+	+	N.A.	N.A.	N.A.	Fig 1,Fig S2

-, no bone; ±, bone hypoplasia; +, normal bones; N.A., not applicable; N.D., not determined due to separation of proximal parts of the limb from the trunk for lung analysis.

	Embruo	For	elimb	Hine	dlimb			Lung			# of	# of terminal	Functional Fgf10	Functional Fgf10	
Туре	No.	Left	Right	Left	Right	Cranial lobe	Middle lobe	Caudal lobe	Accessory lobe	Left lobe	terminal tubules /mm2	tubules/mm2 (mean ± SEM)	genotype (%) (neck DNA)	genotype (mean ± SEM %)	Figure
	#9	-	-	-	-	-	-	-	-	-	0		0.00		Fig S4
I	#5	-	-	-	-	-	-	-	-	-	0	6.2 ± 6.2	4.63	8.3 ± 6.2	Fig S4
	#7	-	-	-	-			±*		-	18.7		20.35		Fig 5,Fig S4
	#11	±	±	±	±	+	+	±	-	+	87.4		20.60		Fig S4
I	#3	±	±	±	±	+	-	+	-	+	59.0	84.4 ± 13.9	25.39	25.3 ± 2.7	Fig 5,Fig S4
	#4	±	+	+	±	+	+	+	+	+	106.8		29.96		Fig S4
	#1	+	+	+	+	+	+	+	+	+	113.4		42.83		Fig 5,Fig S4
III	#2	+	+	+	+	+	+	+	+	+	127.1	120.9 ± 4.0	46.97	54.3 ± 9.5	Fig S4
	#8	+	+	+	+	+	+	+	+	+	122.2		73.06		Fig S4
	#1	+	+	+	+	+	+	+	+	+	131.2				Fig 5,Fig S4
WT	WT #2	+	+	+	+	+	+	+	+	+	117.9	135.6 ± 11.6	Not deter	mined	Not shown
	#3	+	+	+	÷	+	+	+	+	+	157.6			Not shown	

	Table 3. Table 3. Sumn	narv of limb and lun	g phenotypes of Fgfl	0-CRISPR F0 embry	os at E16.5.
--	------------------------	----------------------	----------------------	--------------------------	--------------

-, no limb or no lung lobe; \pm , limb defect or small lung lobes; +, normal limbs or normal appearance of lung lobes. *a residual lung lobe. Genotypes of crispants (types I-III) were prescreened by an enzyme mismatch cleavage assay (Fig S3B) and determined by deep sequencing (NGS).

2			1									-	
3	Embryo No.	Туре	C	bserved	l frequer	ncies			Expected	d frequer	ncies (EF))	p-value
4	#2	type	Wt	Neck 4877	Lung 8760	Limb 58889	Total 72526	Wt	Neck 4894	Lung 8758	Limb 58874	Total 72526	N.A.
_			Out	18	0	0	18	Out	0.067	2.174	15	18	
5			Total	4895	8760	58889	72544	Total	4895 EF: less	8760 than 5	58889	72544	
6	#11	Ш		Neck	Lung	Limb	Total		Neck	Lung	Limb	Total	3E-29
7			Wt Out	6686 3182	12893 8178	18549 10331	38128 21691	Wt Out	6290 3578	13430 7641	18408 10472	38128 21691	
,			Total	9868	21071	28880	59819	Total	9868	21071	28880	59819	
8	#12		14/	Lung	Limb	Total		1.4.4	Lung	Limb	Total		0.752
9			Out	364	19627 9911	10275		Out	710.8 359.2	19622 9916	10275		
10			Total	1070	29538	30608		Total	1070	29538	30608		
10	#13			Lung	Limb	Total			Lung	Limb	Total		4E-05
11			Wt	4203	45331	49534		Wt	4304	45230	49534		
10			Total	5089	8147 53478	9033 58567		Total	784.9 5089	8248 53478	9033 58567		
12	#15			Neck	Luna	Limb	Total		Neck	Luna	Limb	Total	3E-11
13			Wt	7295	20266	22243	49804	Wt	6952	20313	22539	49804	02 11
			W/o & Out	4908	15388	17318	37614	Out	5251	15341	17022	37614	
14			Total	12203	35654	39561	87418	Total	12203	35654	39561	87418	
15	#16	III	14/	Lung	Limb	Total		14/	Lung	Limb	Total		N.A.
15			Out	15698	38223	53921		Out	15698	38223	53921		
16			Total	15698	38223	53921		Total	15698	38223	53921		
17									EF: less	s than 5			
1/	#17	III		Lung	Limb	Total			Lung	Limb	Total		3E-50
18			Wt	3441	21706	25147		Wt	3505	21642	25147		
10			In (w) Out	2869	13857	16726		In (w)	2331	14395	22697		
19			Total	9000	55570	64570		Total	9000	55570	64570		
20	#20			Neck	Limb	Total			Neck	Limb	Total		2E-10
20			Wt	29282	5549	34831		Wt	29043	5788	34831		
21			In (w)	11875	2653	14528		In (w)	12114	2414	14528		
			Total	41157	8202	49359		Total	41157	8202	49359		
22	#21		۱۸/+	Neck	Limb	Total		\ \ / †	Neck 23153	Limb	Total		0.176
23			Out	17464	7923	25387		Out	17388	7999	25387		
23			Total	40541	18649	59190		Total	40541	18649	59190		
24	#22			Neck	Limb	Total			Neck	Limb	Total		0.271
25			Wt	2653	963	3616		Wt	2677	938.6	3616		
25			Out Total	6521 9174	2253 3216	8774 12390		Out	6497 9174	3216	8774		
	"00		10101			T 1 1		1014			- 12000 - 1		
	#23 *including	- 111	\//t	Neck 82324	LIMD 1146	10tal 83470		\//t	Neck 82291	LIMD 1179	10tal 83470		N.A.
	large		Out*	02024	33	33		Out*	32.53	0.466	33		
	deletion		Total	82324	1179	83503		Total	82324	1179	83503		
										EF: les	s than 5		
	#24			Neck	Limb	Total			Neck	Limb	Total		1E-26
			Wt	8862	2633	11495		Wt	9095	2400	11495		
			Out Total	3268	3201	3836		Out	3035	3201	3836		
		•••	- Otal	12130	5201			Total	12130	0201			0.15
	#25	111	ln(w)	Neck	Limb	Total		In (w)	Neck	Limb	Total		0.155
	larae		Out**	18415	15520	33935		Out**	18498	15437	33935		
	insertion		Total	31080	25937	57017		Total	31080	25937	57017		

1 Table 4. Chi-square test for genotyping results of DNA derived from different tissues.

The number of sequence reads in deep sequencing is shown in contingency tables for observed frequencies. Wt, wild type Fgf10 genotype; Out, frameshift mutations in the Fgf10 gene; W/o & Out, in-frame mutation without nucleotides encoding Lys196 and/or His201 plus frameshift mutations in the Fgf10 gene; In (w), in-frame mutations with nucleotides encoding Lys196 and His201; In (w/o), in-frame mutations without nucleotides encoding Lys196 and/or His201. When *p*-values <0.05, there is statistically significant difference in the Fgf10 genotypes of the different tissues.

35 Figure legends

 A-I, L-R, left or right lateral views of limb and girdle regions (at E18.5) are shown Cartilage is stained with Alcian blue and bone is stained with Alizarin red. A, B, type #4_18 embryo. C, D, type I/II #46 embryo. E-I, type II #33 embryo. L-O, type II #14 embryo. P-R, type III #12 embryo. J, K, Lateral views of type II #14 embryo are shown Arrows in (K) show truncated limbs. au, autopod; f, femur; fi, fibula; h, humerus; il ilium; is, ischium; p, pubis; r, radius; sc, scapula; sp, spine; st, stylopod t, tibia; u, ulna ze, zeugopod. Scale bars: 1 mm. Fig 2. Genomic analysis of the <i>Fgf10</i>-CRISPR F0 embryos at E16.5 as revealed by deep sequencing. The target nucleotide sequence is highlighted in yellow. Proto-spacer adjacent moti sequence is shown in blue. Insertion and deletion sequences are shown in red. Fig 3. Deduced amino acids for in-frame mutations after deep sequencing. 	36	Fig 1. Cartilage and bone staining to reveal limb skeletal structures.
 Cartilage is stained with Alcian blue and bone is stained with Alizarin red. A, B, type #4_18 embryo. C, D, type I/II #46 embryo. E-I, type II #33 embryo. L-O, type II #14 embryo. P-R, type III #12 embryo. J, K, Lateral views of type II #14 embryo are shown Arrows in (K) show truncated limbs. au, autopod; f, femur; fi, fibula; h, humerus; il ilium; is, ischium; p, pubis; r, radius; sc, scapula; sp, spine; st, stylopod t, tibia; u, ulna ze, zeugopod. Scale bars: 1 mm. Fig 2. Genomic analysis of the <i>Fgf10</i>-CRISPR F0 embryos at E16.5 as revealed by deep sequencing. The target nucleotide sequence is highlighted in yellow. Proto-spacer adjacent moti sequence is shown in blue. Insertion and deletion sequences are shown in red. Fig 3. Deduced amino acids for in-frame mutations after deep sequencing. 	37	A-I, L-R, left or right lateral views of limb and girdle regions (at E18.5) are shown.
 #4_18 embryo. C, D, type I/II #46 embryo. E-I, type II #33 embryo. L-O, type II #14 embryo. P-R, type III #12 embryo. J, K, Lateral views of type II #14 embryo are shown Arrows in (K) show truncated limbs. au, autopod; f, femur; fi, fibula; h, humerus; il ilium; is, ischium; p, pubis; r, radius; se, scapula; sp, spine; st, stylopod t, tibia; u, ulna ze, zeugopod. Scale bars: 1 mm. Fig 2. Genomic analysis of the <i>Fgf10</i>-CRISPR F0 embryos at E16.5 as revealed by deep sequencing. The target nucleotide sequence is highlighted in yellow. Proto-spacer adjacent moti sequence is shown in blue. Insertion and deletion sequences are shown in red. Fig 3. Deduced amino acids for in-frame mutations after deep sequencing. 	38	Cartilage is stained with Alcian blue and bone is stained with Alizarin red. A, B, type I
 embryo. P-R, type III #12 embryo. J, K, Lateral views of type II #14 embryo are shown Arrows in (K) show truncated limbs. au, autopod; f, femur; fi, fibula; h, humerus; il ilium; is, ischium; p, pubis; r, radius; se, scapula; sp, spine; st, stylopod t, tibia; u, ulna ze, zeugopod. Scale bars: 1 mm. Fig 2. Genomic analysis of the <i>Fgf10</i>-CRISPR F0 embryos at E16.5 as revealed by deep sequencing. The target nucleotide sequence is highlighted in yellow. Proto-spacer adjacent moti sequence is shown in blue. Insertion and deletion sequences are shown in red. Fig 3. Deduced amino acids for in-frame mutations after deep sequencing. 	39	#4_18 embryo. C , D , type I/II #46 embryo. E-I , type II #33 embryo. L-O , type II #14
 Arrows in (K) show truncated limbs. au, autopod; f, femur; fi, fibula; h, humerus; ii ilium; is, ischium; p, pubis; r, radius; sc, scapula; sp, spine; st, stylopod t, tibia; u, ulna ze, zeugopod. Scale bars: 1 mm. Fig 2. Genomic analysis of the <i>Fgf10</i>-CRISPR F0 embryos at E16.5 as revealed by deep sequencing. The target nucleotide sequence is highlighted in yellow. Proto-spacer adjacent moti sequence is shown in blue. Insertion and deletion sequences are shown in red. Fig 3. Deduced amino acids for in-frame mutations after deep sequencing. 	40	embryo. P-R , type III #12 embryo. J , K , Lateral views of type II #14 embryo are shown.
 42 ilium; is, ischium; p, pubis; r, radius; sc, scapula; sp, spine; st, stylopod t, tibia; u, uha 43 ze, zeugopod. Scale bars: 1 mm. 44 45 Fig 2. Genomic analysis of the <i>Fgf10</i>-CRISPR F0 embryos at E16.5 as revealed by 46 deep sequencing. 47 The target nucleotide sequence is highlighted in yellow. Proto-spacer adjacent moti 48 sequence is shown in blue. Insertion and deletion sequences are shown in red. 49 50 Fig 3. Deduced amino acids for in-frame mutations after deep sequencing. 	41	Arrows in (K) show truncated limbs. au, autopod; f, femur; fi, fibula; h, humerus; il,
 43 ze, zeugopod. Scale bars: 1 mm. 44 45 Fig 2. Genomic analysis of the <i>Fgf10</i>-CRISPR F0 embryos at E16.5 as revealed by 46 deep sequencing. 47 The target nucleotide sequence is highlighted in yellow. Proto-spacer adjacent moti 48 sequence is shown in blue. Insertion and deletion sequences are shown in red. 49 50 Fig 3. Deduced amino acids for in-frame mutations after deep sequencing. 	42	ilium; is, ischium; p, pubis; r, radius; sc, scapula; sp, spine; st, stylopod t, tibia; u, ulna;
 44 45 Fig 2. Genomic analysis of the <i>Fgf10</i>-CRISPR F0 embryos at E16.5 as revealed by 46 deep sequencing. 47 The target nucleotide sequence is highlighted in yellow. Proto-spacer adjacent moti 48 sequence is shown in blue. Insertion and deletion sequences are shown in red. 49 50 Fig 3. Deduced amino acids for in-frame mutations after deep sequencing. 	43	ze, zeugopod. Scale bars: 1 mm.
 Fig 2. Genomic analysis of the <i>Fgf10</i>-CRISPR F0 embryos at E16.5 as revealed by deep sequencing. The target nucleotide sequence is highlighted in yellow. Proto-spacer adjacent moti sequence is shown in blue. Insertion and deletion sequences are shown in red. Fig 3. Deduced amino acids for in-frame mutations after deep sequencing. 	44	
 deep sequencing. The target nucleotide sequence is highlighted in yellow. Proto-spacer adjacent moti sequence is shown in blue. Insertion and deletion sequences are shown in red. Fig 3. Deduced amino acids for in-frame mutations after deep sequencing. 	45	Fig 2. Genomic analysis of the <i>Fgf10</i> -CRISPR F0 embryos at E16.5 as revealed by
 47 The target nucleotide sequence is highlighted in yellow. Proto-spacer adjacent moti 48 sequence is shown in blue. Insertion and deletion sequences are shown in red. 49 50 Fig 3. Deduced amino acids for in-frame mutations after deep sequencing. 	46	deep sequencing.
 48 sequence is shown in blue. Insertion and deletion sequences are shown in red. 49 50 Fig 3. Deduced amino acids for in-frame mutations after deep sequencing. 	47	The target nucleotide sequence is highlighted in yellow. Proto-spacer adjacent motif
 Fig 3. Deduced amino acids for in-frame mutations after deep sequencing. 	48	sequence is shown in blue. Insertion and deletion sequences are shown in red.
50 Fig 3. Deduced amino acids for in-frame mutations after deep sequencing.	49	
	50	Fig 3. Deduced amino acids for in-frame mutations after deep sequencing.

51	Wild type (WT) sequences are shown on the top. The embryo (E16.5) number (#),
52	nucleotide number of small insertion (+) or deletion (-) (Indels) are shown on the left.
53	Classified "types" are shown on the right. Amino acids corresponding to the guide RNA
54	sequence are underlined. Deleted and altered amino acids are indicated in red.
55	
56	Fig 4. Schematic representation of genomic analysis of <i>Fgf10</i> -CRISPR F0 embryos
57	at E16.5 by deep sequencing.
58	A, percentage of total reads for the $Fgf10$ crispants. wt, wild type $Fgf10$ target nucleotide
59	sequence; in, in-frame mutations by small insertion or deletion; out, frameshift mutations.
60	Among in-frame mutations, the percentage of those that preserve the codons for Lys196
61	and His201 is shown in green, while the percentage that eliminate either of them is shown
62	in yellow. B , percentage of wild type and in-frame mutations in which nucleotides for
63	both Lys196 and His201 are retained: $8.3 \pm 6.2\%$ for type I, $25.3 \pm 2.7\%$ for type II, and
64	54.3 \pm 9.5% for type III. Data are presented as means \pm SEM. * <i>p</i> <0.01 (<i>p</i> =0.008).
65	

66 Fig 5. Limb phenotypes and lung histology of *Fgf10*-CRISPR F0 embryos at E16.5.

67	Representative embryos are shown for wild type (WT), type I (embryo #7), type II (#3),
68	and type III (#1). A–D, transverse section of the embryonic chest region. E–H, close-up
69	of the embryonic lung (boxed area) shown in (A-D), respectively. Asterisks show
70	putative terminal tubules in the lung. I, the number of lung terminal tubules per unit area.
71	In type I and type II embryos, there is a significant decrease in the number compared with
72	that of wild type. Data are presented as means ± SEM. Source data are available in Table
73	3. Ac, accessory lobe; Ca, caudal lobe; Cr, cranial lobe; L, left lobe; Mi, middle lobe.
74	Scale bars: 500 μm in (A–D), and 100 μm in (E–H).
75	
76	
	Fig 6. Immunohistochemistry of the lung in type II and type III Fgf10-crispants and
77	Fig 6. Immunohistochemistry of the lung in type II and type III <i>Fgf10</i> -crispants and wild type embryos at E18.5.
77 78	Fig 6. Immunohistochemistry of the lung in type II and type III Fgf10-crispants and wild type embryos at E18.5. Representative data are shown. Nuclei are stained with Hematoxylin. A-C, Localization
77 78 79	 Fig 6. Immunohistochemistry of the lung in type II and type III <i>Fgf10</i>-crispants and wild type embryos at E18.5. Representative data are shown. Nuclei are stained with Hematoxylin. A-C, Localization of Surfactant protein C (SPC) (alveolar type 2 epithelial cells) is indicated by brown
77 78 79 80	 Fig 6. Immunohistochemistry of the lung in type II and type III <i>Fgf10</i>-crispants and wild type embryos at E18.5. Representative data are shown. Nuclei are stained with Hematoxylin. A-C, Localization of Surfactant protein C (SPC) (alveolar type 2 epithelial cells) is indicated by brown staining. D-F, close-up of the boxed area shown in (A–C), respectively. G-I, negative
77 78 79 80 81	 Fig 6. Immunohistochemistry of the lung in type II and type III <i>Fgf10</i>-crispants and wild type embryos at E18.5. Representative data are shown. Nuclei are stained with Hematoxylin. A-C, Localization of Surfactant protein C (SPC) (alveolar type 2 epithelial cells) is indicated by brown staining. D-F, close-up of the boxed area shown in (A–C), respectively. G-I, negative control, using normal rabbit IgG instead of anti-SPC antibody. Scale bars: 100 µm in (A-

83	correlated to the percentage of functional $Fgf10$ genotypes in limb (J) or neck DNA (K).
84	L, the number of SPC-positive cells in type III embryos is not to correlated to their weight
85	(K). Source data for (J-L) are available in Table 1. M, Schematic drawings to show
86	percentage of total reads for the type III Fgf10 crispants. wt, wild type Fgf10 target
87	nucleotide sequence; in, in-frame mutations by small insertion or deletion; out, out-of-
88	frame mutations. Among in-frame mutations, the percentage of those that preserve the
89	codons for Lys196 and His201 is shown in green, while the percentage that eliminate
90	either of them is shown in yellow.

92 Supporting information

- 93 Supplementary Tables
- 94 S1 Table. List of reagents and equipment used in this study.
- 95

96	S2 Table. Summary of deep sequencing data on DNA from different tissues of E18.5
97	embryos.
98	The percentage of sequence reads for each genotype category is shown in contingency
99	tables. Wt, wild type Fgf10 genotype; In, in-frame mutations in the Fgf10 gene; Out,
100	frameshift mutations in the <i>Fgf10</i> gene; N.D., not done; N.A., not applicable. <i>p</i> -values of
101	Chi-square test (see Table 4) are shown for reference.
102	
103	S3 Table. Summary of type II and type III embryos examined for E18.5 lungs by
104	immunohistochemistry, shown in Fig 6 and Fig S5.
105	*Approximately 295- (#11_2) and 79- (#22_2) bp insertion were detected by microchip
106	electrophoresis and the number of sequence reads in deep sequencing was corrected
107	accordingly (see Materials and methods). N.D., not determined.

109	S4 Table. Primers used for quantitative PCR (qPCR) analysis.
-----	--

110

S1 Fig. Structure of the mouse Fgf10 gene indicating the target sites for 112 CRISPR/Cas9 system.

114

113

115 S2 Fig. Cartilage and bone staining to reveal skeletal structures.

- 116 A-H, whole mount staining. Left (A, C, E, G) and right (B, D, F, H) lateral views are
- 117 shown. Arrows show truncated limb and girdle bones. I-K, wild type skeletal structures,
- 118 showing scapula and forelimb (I), hindlimb (J), and pelvic girdle (K). au, autopod; f,
- 119 femur; fi, fibula; h, humerus; il, ilium; is, ischium; p, pubis; r, radius; sc, scapula; sp,
- 120 spine; st, stylopod; t, tibia; u, ulna; ze, zeugopod. Scale bars: 1 mm.

121

122 S3 Fig. Mismatch cleavage assay.

123	A , PCR primers were designed in the upstream region of the exon 3 and in the exon 3,
124	giving rise to a PCR amplicon size of 501 bp. DNA fragments of 309 bp and 192 bp are
125	generated by the Resolvase when the Fgf10 genome has been cleaved by Cas9 and non-
126	homologous end joining has been achieved. B, Electrophoresis of the enzyme-treated
127	mouse genomic DNA from the Fgf10-CRISPR F0 embryonic necks. The DNA ladder for
128	DNA size reference and a result of DNA from a wild type (WT) mouse are shown on the
129	left. Three DNA fragments of approximately 500 bp ($\mathbf{\nabla}$), 300 bp (∇ in gray), and 200
130	bp (∇) are seen in all the lanes except for the wild type and #4 lanes. In embryo #3, an
131	extra band for large insertion (328 base) is shown (see Fig 2). C, Genomic analysis of the
132	#4 embryo as revealed by Sanger sequencing. Deduced amino acid sequences are also
133	shown. Lys-196 and His-201 are highlighted in yellow and green, respectively. Altered
134	amino acids are indicated in red. Asterisks indicate stop codons.
135	

136 S4 Fig. Limb phenotypes and lung histology of all embryos examined at E16.5 as

137 summarized in Table 3.

138 Scale bars: 500 μm.

140 S5 Fig. Limb phenotypes, lung histology, and the number of SPC-positive cells per 141 total cell number of type II and type III embryos at E18.5. 142 Source data for (L, M) are available in S3 Table. Lateral views of type II (A-F), and type 143 III (G, H) embryos at E18.5. Arrowheads show limb defects. (I-K) In all three type II 144 embryos, the accessory lobe was lost. In embryo #24 2, (J), the middle lobe (Mi) was 145 also undetectable. Data in (L) are presented as means \pm SEM. (M) In these embryos, the 146 number of SPC-positive cells was more correlated to the percentage of wild type Fgf10 147 genotype (correlation coefficient [R] was 0.728 for neck DNA) than that including in-148 frame mutations with Lys196 and His201 retained (R=0.334). Scale bar: 2 mm (A-H). 149 150 S6 Fig. Quantitative PCR analysis for mRNA expression of mesenchymal and its 151 related marker genes in wild type and type III lungs at E18.5. 152 153 S7 Fig. Cecum and colons of the wild type and *Fgf10*-CRISPR F0 (type I and type

155	A-C, wild type (Wt) cecum (c), colon, and small intestine (si) are shown from three
156	embryos examined. Ileum and colon were cut at dissection. D-G , type I cecum is reduced
157	compared with the wild type. Whether the cecum epithelium is absent or not cannot be
158	identified from these photos. Type I embryos show an atresia of the colon, but the length
159	varies depending upon the embryos. H-I , type II embryos examined $(n = 2)$ do not exhibit
160	a reduced cecum or an atresia of the colon. The colons presented here were cut as distally
161	as possible. J, the approximate length of the cecum. The length of type I cecum is
162	significantly decreased compared with the wild type. The length of two type II embryos
163	examined is also shown for reference. Scale bar: 1 mm (in A for all to scale).