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a b s t r a c t 

The non-stationarity of resting-state brain activity has received increasing attention in recent years. Functional 

connectivity (FC) analysis with short sliding windows and coactivation pattern (CAP) analysis are two widely 

used methods for assessing the dynamic characteristics of brain activity observed with functional magnetic reso- 

nance imaging (fMRI). However, the statistical nature of the dynamics captured by these techniques needs to be 

verified. In this study, we found that the results of CAP analysis were similar for real fMRI data and simulated 

stationary data with matching covariance structures and spectral contents. We also found that, for both the real 

and simulated data, CAPs were clustered into spatially heterogeneous modules. Moreover, for each of the mod- 

ules in the real data, a spatially similar module was found in the simulated data. The present results suggest that 

care needs to be taken when interpreting observations drawn from CAP analysis as it does not necessarily reflect 

non-stationarity or a mixture of states in resting brain activity. 
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. Introduction 

In contrast to initial studies of resting-state functional connectivity

FC), which assumed FC was stable throughout a relatively long scan-

uration, recent studies are increasingly focusing on non-stationary as-

ects of resting brain activity ( Calhoun et al., 2014 ; Hutchison et al.,

013 ; Matsui et al., 2018a ; Mitra et al., 2018 ; Preti et al., 2016 ;

hine et al., 2016 ). This dynamic view of resting brain activity hypoth-

sizes that the brain switches between various states within which the

ctivity of different sets of brain regions are coordinated. Sliding win-

ow correlation analysis and co-activation pattern (CAP) analysis have

een developed to assess such non-stationary characteristics of resting

rain activity ( Allen et al., 2014 ; Karahano ğlu and Van De Ville, 2015 ;

iu et al., 2013 ; Liu and Duyn, 2013 ). 

Sliding-window correlation analysis and CAP analysis detect mo-

entary brain activity patterns by using FC within a short sliding-

indow ( ∼40 s) ( Allen et al., 2014 ) and brain activations in selected sin-

le volumes ( Liu et al., 2013 ; Liu and Duyn, 2013 ), respectively. The de-

ected momentary brain activity patterns are often heterogeneous, even

ithin the same run, and grouped into distinct clusters of modules. In

oth sliding-window correlation analysis and CAP analysis, these mod-

les exhibit specific spatial patterns which are therefore interpreted as
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istinct states of the resting brain ( Liu and Duyn, 2013 ; Liu et al., 2018 ).

umerous studies have applied these methods to characterize the non-

tationary aspects of resting brain activity in healthy individuals, pa-

ients with neurological disorders and animals [see ( Liu et al., 2018 ;

reti et al., 2016 ) for review]. 

Importantly, whether the results obtained from sliding-window cor-

elation analysis or CAP analysis truly reflect the non-stationarity

f resting brain activity is a crucial issue that needs careful study

 Handwerker et al., 2012 ; Hindriks et al., 2016 ; Liégeois et al., 2017 ;

urie et al., 2020 ; Zalesky and Breakspear, 2015 ). In fact, several stud-

es have shown that some results claimed to reflect the non-stationarity

f resting brain activity can be replicated from simulated data with sta-

ionary null models ( Cifer et al., 2017 ; Laumann et al., 2016 ; Novelli and

azi, 2021 ). The stationarity of resting brain activity implies, in contrast

o the commonly held assumption, that the resting brain does not alter-

ate between meta-stable states ( Hutchison et al., 2013 ) but occupies

 single resting-state. On the other hand, the non-stationarity of resting

rain activity implies an alternation between meta-stable states. Each

eta-stable state exhibits a functional connectivity that is distinct from

ther meta-stable states. [See ( Liégeois et al., 2017 ) for further details of

he stationarity and non-stationarity of resting-brain activity]. Although

hese studies do not prove or claim that resting brain activity is station-

ry, they provide the necessary and important background required for
 Japan. 
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ppropriately interpreting the results obtained with these analyses de-

igned to capture the non-stationarity of resting brain activity. In this re-

ort, we add to this discussion by examining whether simulated station-

ry data can reproduce the spatially heterogeneous modules obtained

ith CAP analysis ( Liu et al., 2018 ). To our surprise, we found that CAP

nalysis applied to a stationary null model yielded spatially heteroge-

eous modules, each of which closely approximated the modules found

n the real data. 

. Materials and methods 

.1. Dataset 

We used S1200 release of resting-state fMRI distributed by the

uman Connectome Project (HCP; http://humanconnectomeproject.

rg/ )( Van Essen et al., 2013 ). The data was a collection of region-of-

nterest (ROI) time series (1200 vol × 264 ROIs × 64 individuals; Rep-

tition time (TR), 0.72 s) ( Power et al., 2011 ). Note that the data went

hrough several preprocessing including ICA-based denoising (ICA-FIX)

 Glasser et al., 2013 ). Each time course was normalized to have zero

ean and unit variance. Global signal regression was conducted by fol-

owing a standard procedure. For each scan, a global signal time course

as obtained by averaging time courses across all ROIs. Then for each

OI, the global signal time course was regressed out from the ROI’s time

ourse. The data for group analysis was made by concatenating data of

ll the individuals in the volume dimension ( Liu and Duyn, 2013 ). 

For voxel-based analyses, we selected a single axial slice ( z = 27

n the MNI coordinate) containing the posterior parietal cortex (PPC)

n the HCP resting-state data to mitigate computational demand. The

ata of 60 individuals were used in the analysis. All data were pre-

rocessed according to the HCP’s standard pipeline. To select the vox-

ls corresponding gray matter, we made a gray matter mask for each

ndividual using the segmentation program implemented in SPM12

 https://www.fil.ion.ucl.ac.uk/spm/software/spm12/ ; threshold set at

.7) and then took a union of the masks. The obtained mask was ap-

lied to each axial slice to extract 2320 voxels corresponding to the

ray matter. 

.2. Static FC 

Static FC was calculated by taking the correlation coefficient be-

ween the time courses of two ROIs using all volumes in the concate-

ated runs ( Fox et al., 2005 ; Matsui et al., 2011 ). For the voxel-based

nalyses, an ROI centered at the PPC (6 mm by 6 mm centered at MNI

oordinates [0, − 53, 27]) was used, and the temporal correlation was

alculated between the ROI and each voxel. 

.3. Generation of simulated data 

The simulated data were generated by adapting previously described

ethods and codes ( Laumann et al., 2016 ; Matsui et al., 2018b ). Briefly,

andom samples were drawn from a Gaussian distribution with dimen-

ions matching the real data. These time courses were multiplied in the

pectral domain by the spectrum derived from the real data, ensuring

hat the power spectra of real data were preserved. The time courses

ere then projected onto eigenvectors of the covariance matrix derived

rom the real data, ensuring that the covariance structure of the real data

as preserved. This procedure enabled the construction of simulated

ime courses, stationary by construction, with covariance structures and

pectral contents equivalent to the real data. Here after, we call this null

odel the Laumann null. Unless otherwise noted, the Laumann null was

sed to produce simulated data. Simulated time courses were generated

or each run and each individual. The results were similar when the

ata were generated for the real data concatenated across individuals

data not shown). Global signal regression was similarly performed for
2 
he real data. Group data were then obtained by concatenating all the

imulated data across individuals. 

In addition to the Laumann null, three null models were additionally

ested. The first was a static null, which retained only the covariance

tructure of the real data (static null). Simulated data for static null

ere generated using a multivariate Gaussian whose covariance matrix

as set to the covariance matrix of the real data. The second was an

utoregressive randomization null model (ARR null). The lag of ARR

ull was set to 1. Thus, ARR null assumed that the fMRI data at time

 is a sum of the linear transformation ( A 1 ) of the fMRI data at time t-

 and a zero-mean multivariate Gaussian noise with covariance matrix

 Σ). The parameters for the autoregressive equation ( Σ,A 1 ) are fitted as

escribed previously ( Liégeois et al., 2017 ). Simulated data for ARR null

ere generated using a randomly selected time point from the real fMRI

ata as the seed and by iteratively applying the autoregressive equation.

he third model was a phase randomization null model (PR null). PR

ull retained the complete autoregressive structure of the real data as

ell as the covariance structure ( Liégeois et al., 2017 ). Simulated data

or PR null were generated by first applying discrete Fourier transform

DFT) to the real fMRI data. Random phases were added to the Fourier

ransformed data, and then inverse DFT was applied. Added phases were

ndependently generated for each frequency, but were the same across

rain regions ( Liégeois et al., 2017 ). Note that static null and Laumann

ull did not retain cross-spectral properties (unlike ARR null and PR

ull). 

.4. CAP analysis 

The CAP analysis was conducted according to standard procedures

 Liu and Duyn, 2013 ; Liu et al., 2018 ). For each ROI time course, time

oints exceeding the percentile threshold (top 15%, unless otherwise

oted) were collected. The set of volumes corresponding to these time-

oints were defined as CAPs (using the ROI as Seed). In the group anal-

sis, for each chosen ROI, CAPs were selected using the concatenated

ime courses. For the voxel-based analyses, the same PPC ROI used to

alculate the static FC was used. Average CAP (for a Seed ROI) was ob-

ained by averaging across all detected CAPs. Modules were extracted

y k-means clustering of the CAPs using the correlation distance. The

umber of clusters was set to eight as in the original study ( Liu and

uyn, 2013 ). The similarity of the modules, both within and across data

ypes, was measured by calculating the ROI-wise or voxel-wise correla-

ion between two modules. The distribution of states was calculated as

he fraction of each module in the total number of CAPs. The transi-

ion probability was calculated as the probability that module A was

ollowed by module B in the consecutive CAPs. The transition proba-

ility matrix was obtained by calculating the transition probability for

ll combinations of modules. In the transition probability matrix, the

robability was normalized for each seed module ( i.e. module A). Com-

arisons of the real and the simulated distributions of state were done

y calculating the correlation of the two after reordering the modules

f the simulated data (to maximize the match with the real modules).

imilarly, comparisons of the real and the simulated transition proba-

ility matrices were done by calculating the elementwise correlation of

he two after reordering the modules of the simulated data. 

.5. Statistical comparison of the real and simulated CAPs 

For each pair of real and simulated CAPs obtained with a seed ROI,

e tested the null hypothesis that the two sets of random multivari-

te variables, i.e., the real and simulated CAPs, were drawn from the

ame distribution using energy statistics ( Szekely and Rizzo, 2013 ). This

tatistics quantifies statistical distance between the distributions of ran-

om vectors, which characterizes equality of the distributions. We used

 Matlab implementation provided by Dr. Brian Lau to analyze the en-

rgy statistics. (R codes developed by the original authors are also avail-

ble [ https://github.com/mariarizzo/energy ]). Because of a limitation

http://humanconnectomeproject.org/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://github.com/mariarizzo/energy
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Fig. 1. The average CAPs of the real and simulated data closely approximated static FC. a–c. Scatter plots of a representative ROI showing close correspondence 

between FC, CAP data , and CAP sim . d, e. ROI by ROI matrices of FC, CAP data , and CAP sim . 
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n computational power, the real and simulated CAPs were each sub-

ampled to 1000 samples before being subjected to the energy test. Co-

ariance matrices were compared by taking the correlation coefficient

f the off-diagonal elements. 

.6. Data and code availability 

All data used in the present study are from distributed by HCP. A

ode for reproducing essential results is available for download ( https:

/github.com/teppei-matsui/CAP ). All codes used for the analysis will

e provided upon reasonable request to the corresponding author. 

. Results 

.1. A small number of volumes suffices to approximate static FC in both 

eal and simulated data 

A key observation in the CAP analysis was that static FC could

e closely approximated with a small fraction of time points. Because

his observation was the conceptual starting point of the CAP analysis

 Liu and Duyn, 2013 ), we first examined if this property was genuine to

he real fMRI data or reproducible with the simulated stationary data.

ig. 1 shows comparisons between static FC, the average CAP of the real

ata, and the average CAP of the simulated data whose covariance struc-

ure and spectral contents were matched to the real data. Supplemen-

ary Fig. 1 shows similar comparisons for two representative individuals.

hese results suggest that a small number of volumes can be used to ap-

roximate static FC for both real and simulated data. Consistent results

ere found for CAPs obtained using the top 5% as the threshold (Sup-

lementary Fig. 2) and for the analysis without global signal regression

Supplementary Fig. 3). Thus, these results suggest that the stationary

ull model replicated the observation that a small fraction of time points

as sufficient to approximate static FC. 
3 
.2. Both real and simulated CAPs can be clustered into heterogeneous 

odules 

Another key finding from the initial CAP analysis was that CAPs

ould be clustered into modules with distinct spatial patterns. The pres-

nce of these modules was interpreted as distinct states of resting-state

rain dynamics and regarded them as an indication of non-stationarity

 Liu and Duyn, 2013 ). If this interpretation were true, CAPs obtained in

he stationary null model would not yield spatially heterogeneous mod-

les. To test this, we clustered CAPs into modules for both the real and

imulated data. Fig. 2 shows the similarity between modules, within the

ame data type, for the real and simulated data. The clustering of CAPs

esulted in spatially heterogeneous modules ( i.e. , low spatial correlation

etween modules) for both real and simulated data. Thus, the presence

f spatially heterogeneous modules cannot be taken as evidence for non-

tationarity in resting brain activity. 

This result seemingly contradicts the original report by Liu and

uyn, (2013) where they found no modular structure in CAPs obtained

ith control (simulated) data generated using normal distributions. Im-

ortantly, unlike the simulation devised by Laumann et al. (2016 ), the

imulation used by Liu and Duyn, (2013) did not impose spatial covari-

nce among voxels ( i.e. , each voxel treated as independent). We found

hat simulated data with zero spatial covariance among ROIs greatly

ncreased the similarity between CAP modules (Supplementary Fig. 4),

eplicating the results described by the previous study. Thus, the appar-

nt contradiction between the present simulation results ( Fig. 2 ) and

iu and Duyn, (2013) study is due to the difference in null model con-

truction. Because the assumption of zero spatial covariance among vox-

ls or ROIs is unlikely to hold for real brain activity, we only considered

he Laumann-type null model in the following analyses. 

Having seen that the stationary null model can produce heteroge-

eous modules of CAPs, we next proceeded to ask whether modules of

APs obtained from the real and simulated data were similar. If the

eal and simulated modules were alike, it would mean that the spa-

https://github.com/teppei-matsui/CAP
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Fig. 2. Spatially heterogeneous modules were 

found both for the real and simulated CAPs. 

a. Example of CAP modules for the real (top) 

and simulated data (bottom). Module IDs of 

the simulated data were reordered to maximize 

the match with the real CAP modules (see also 

Fig. 3 ). b. Colored matrices show similarities 

between modules obtained by clustering the 

real or simulated CAPs. Left, real data. Right, 

simulated data. 
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ial pattern of modules is primarily determined by static properties of

he real data, i.e., the covariance structure and spectral contents. Fig. 3

hows (between datasets) a comparison of the modules obtained from

he real and simulated data. Unexpectedly, for each module obtained

rom the real data, a similar module could be found from the simu-

ated data ( Fig. 3 a). To quantify the similarity of the two sets of mod-

les, we matched the two sets to maximize the mean of the diagonal

lements of the correlation matrix ( Fig. 3 b). The similarity index de-

ned by the mean of the diagonal elements was 0.83. Importantly, this

alue was within the range of the similarity index calculated by com-

aring two sets of modules derived from two independent simulations

mean ± SD, 0.81 ± 0.045, n = 100 pairs of simulations; Fig. 3 c), in-

icating that the similarity between the real and simulated modules

as close to the noise ceiling set by statistical sampling error. A high

egree of similarity was found between the real and simulated mod-

les across all ROIs (mean ± SD, 0.81 ± 0.037, n = 264 ROIs; Fig. 3 d).

aken together, these results suggest that CAPs were clustered into spa-

ially heterogeneous modules in both real and simulated data. Moreover,

ndividual modules obtained from the simulated data were similar to

odules obtained from the real data, suggesting that the spatial pattern

f modules is largely determined by static properties of resting brain

ctivity. 
4 
To specify further the statistical properties of the real data that pro-

uced these results, we tested three additional null models (see Meth-

ds). The first null model retained only the covariance structure of the

ata (static null). The second null model was an autoregressive model

ith lag equal to 1 (ARR null). The last null model was a phase random-

zed data (PR null). The results obtained with the Laumann null were

eproduced with all three null models ( Fig. 4 ). The similarity index of

AP modules was 0.81 ± 0.043 for static null, 0.80 ± 0.040 for ARR

ull, and 0.81 ± 0.044 for PR null (mean ± SD, n = 264 ROIs; recall

hat the value for the Laumann null was 0.81 ± 0.047). The fact that

he results obtained with the static null did not differ from the results

btained with the other null models suggests that the spatial structures

f CAP and modules were determined by the covariance structure of the

eal data. 

We also examined the distributions of states ( i.e. CAP modules) and

atrices of transition probability between states to analyze the temporal

tructure of CAPs. We found that the distributions of states were similar

or real data and the four null models ( Fig. 5 a). The correlation of the

istribution of the state in real and that of a null model was 0.56 ± 0.27

or the Laumann null (mean ± SD., n = 264 ROIs), 0.53 ± 0.28 for static

ull, 0.53 ± 0.29 for ARR null and 0.56 ± 0.26 for PR null ( Fig. 5 c). The

ransition probability matrices differed among null models ( Fig. 5 b): The
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Fig. 3. CAP modules derived from real and 

simulated data were very similar. The similar- 

ity between modules was measured by the cor- 

relation coefficient. a. original ordering as in 

Fig. 2 . b. same as a but the modules were re- 

ordered to maximize matching (mean of diago- 

nal elements = 0.83). c. similarity distribution 

of modules between two independent simula- 

tions (same ROI as in a,b ). For each pair of 

simulations, module matching was performed 

(as in b ), and the mean of the diagonal ele- 

ments was taken as the similarity value. The 

magenta line indicates the similarity value for 

the data sown in a,b . d. similarity distribution 

of the modules between the real and simulated 

data tested for all ROIs. The magenta line indi- 

cates the similarity value for the data sown in 

a,b . 
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atrix for static null appeared very different from that of the real data.

he matrix for the Laumann null was more similar to that of the real data

han static null but was less so than ARR null and PR null. The matrices

or ARR null and PR null were similar. The element-wise correlation of

he transition probability matrix in the real data and that of a null model

as 0.84 ± 0.040 for the Laumann null, 0.38 ± 0.12 for static null,

.96 ± 0.017 for ARR null, and 0.95 ± 0.018 for PR null ( Fig. 5 d). High

alues of the element-wise correlation in ARR null and PR null were

onsistent with a previous report that these models closely recapitulate

he dynamics of resting fMRI activity ( Liégeois et al., 2017 ). The fact that

RR null and PR null better reproduced the dynamics of real CPAs than

he Laumann null suggests that between (auto- and cross-) covariance

ith lag 1 contributed significantly to the dynamics of CAPs. 

We next conducted analyses with voxel-based data to visualize each

odule and confirm that the spatial averaging for the ROI-based anal-

sis did not cause the similarity between real and simulated data. To

itigate computational demand, we performed this analysis on a single

lice containing PPC (see Methods). Overall, the results from the voxel-

ased analysis were similar to those of the ROI-based analysis described

bove. Like the results shown in Fig. 1 a-c, we found the average CAP data 

nd CAP sim 

maps were similar to the static FC map ( Fig. 6 a). For both

he real and simulated data, modules of CAPs were dissimilar to each

ther within the same data type ( Fig. 6 b, c; see also Fig. 2 for compa-

able results in the ROI-based analysis). Finally and most importantly,

imulated modules with similar spatial patterns were found for most of

he modules in the real data ( Fig. 6 d, e). Fig. 7 shows spatial maps of the

odules shown in Fig. 6 d, e. These examples visually demonstrate the

igh degree of similarity between the real and simulated modules. Thus,

he voxel-based results corroborate the findings of the ROI-based anal-

ses and further show that the presence or absence of spatial averaging

oes not change the results. 
5 
Why were modules of CAPs in the real data so similar to those in

he simulated data? We hypothesized that this observation was because

he real and simulated CAPs shared the same underlying statistical dis-

ribution. In k-means clustering, data points were grouped into clus-

ers according to the correlation distance between the data points. Ev-

dently, the distribution of the correlation distance was determined by

he distribution of the data points. Therefore, if the datasets were de-

ived from the same distribution, provided enough data points were in-

luded in each set, the results of k-means clustering should have been

imilar. 

To compare the statistical similarity of the two sets of CAPs, we first

ompared the covariance matrices. Note that the covariance matrices

ere calculated only using CAPs and were hence different from those us-

ng all volumes. For a representative ROI, we found the covariance ma-

rices of the real and simulated CAPs were very similar ( R = 0.97; Fig. 8 a,

). A high degree of similarity was found between covariance matrices

f the real and simulated CAPs for all ROIs (mean ± SD, 0.97 ± 0.0026,

 = 264 ROIs; Fig. 8 c), consistent with the hypothesis that they share

he same multivariate distribution. Next, we conducted statistical test-

ng to examine the null hypothesis that the two datasets were drawn

rom the same multivariate distribution (see Methods). If the real and

imulated CAPs were derived from different distributions, the null hy-

othesis should be rejected. Statistical testing was not significant for the

epresentative ROI used in Fig. 8 a ( P > 0.87). Across all ROIs, p -values

ere mostly distributed above the typical significance threshold (mean

 SD, 0.49 ± 0.30; Fig. 6 d; Note that p -values were uncorrected). The

ull hypothesis was rejected in 20 out of 264 ROIs (7.6% of all ROIs)

hen the significance threshold was 5%. With a significance threshold

f 1%, the null hypothesis was rejected in 7 ROIs (2.7% of all ROIs).

hus, for most ROIs, the statistical distributions of the real and simu-

ated CAPs were similar and hence yielded similar clustering results. 
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Fig. 4. Comparison of null models. a-d. Panels 

a-e shows the results corresponding to Figs. 1 c 

and f, 2 b and 3 a for all four null models. 

Similar results were obtained for all the null 

models, suggesting that the spatial structure of 

CAPs is determined by the covariance structure 

of the real data (which is the only factor re- 

tained in the static null). e. Similarity Index 

(same index as in Fig. 3 d) for four null mod- 

els. Mean values across 264 ROIs are shown. 

Error bars indicate S.D. 
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. Discussion 

In this study, we asked to what extent could the results of CAP anal-

sis be attributed to the non-stationarity of resting brain activity. To

his end, we conducted CAP analysis on real fMRI data and simulated

ata based on a stationary null model with matching covariance struc-
6 
ures and spectral contents. Overall, we found that two key observa-

ions drawn from the CAP analysis were replicated in the simulated data,

hich has previously been interpreted as evidences for non-stationary

esting brain activity. First, in both the real and simulated data, a small

ercentage of time points were sufficient to approximate FC calculated

sing all time points ( Figs. 1 and 6 a). Second, both the real and simu-
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Fig. 5. Distribution of states and Transition Probability Matrix for the real data and null models. a. Examples of state distribution for the real data and four null 

models. b. Examples of transition probability matrices. c. Histogram of the correlation of state distributions for the real and a null model. d. Histogram of the 

correlation of transition probability matrices for the real and a null model. 
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e  
ated CAPs were classified into spatially dissimilar modules ( Figs. 2 and

 b,c). More interestingly, it was possible to find a simulated module

losely resembling the spatial pattern of most modules obtained from

he real data ( Figs. 3 , 6 d, e and 7 ). The fact that key results of CAP

nalysis were replicated in simulated stationary data suggests that the

esults need to be interpreted with care. 

The present study adds to a series of previous studies reporting that it

s difficult to find signatures of the non-stationarity of resting brain activ-

ty in fMRI data ( Cifer et al., 2017 ; Hindriks et al., 2016 ; Laumann et al.,

016 ; Novelli and Razi, 2021 ). The temporal variability in FC observed

ith sliding-window FC analysis has been attributed to statistical sam-

ling error ( Hindriks et al., 2016 ; Laumann et al., 2016 ). Notably, Lau-

ann and colleagues developed a stationary null model based on a mul-
7 
ivariate Gaussian distribution and matching covariance structures and

pectral contents to real data. They used this null model to show that

esults obtained with sliding window FC analysis are similar for real

nd simulated data, suggesting that the stationarity of the data cannot

e distinguished based on sliding window FC analysis. In relation to

AP analysis, Cifer et al. (2017) pointed out that long temporal auto-

orrelation of the (stationary) fMRI signal can explain the finding that a

mall fraction of time points suffices to approximate static FC . More re-

ently, Novelli and Razi asked whether edge-centric FC ( Faskowitz et al.,

020 ; Zamani Esfahlani et al., 2020 ), a recently developed point-process

ethod similar to CAP analysis performed in the connectivity space, can

apture the non-stationarity of FC in resting brain activity. They math-

matically showed that the results obtained with the edge FC method,
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Fig. 6. Voxel-based analysis yielded the simi- 

lar results to the ROI-based analysis. a. Com- 

parison of the FC map, mean CAP data map, and 

mean CAP sim map. As in Fig. 1 , the three maps 

appear very similar. b, c. The similarity be- 

tween CAP modules within the same data type. 

Following the same convention as in Fig. 2 . d- 

e. The similarity between modules across data 

types. d. original ordering as in (b), (c). e. Same 

as (d) but modules are reordered to maximize 

matching (mean of diagonal elements = 0.72). 

See Fig. 7 for details of each module. 
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t least in its present form, can be explained by assuming a stationary

aussian distribution with a covariance matrix matched to real data. In

he present study, we extended these previous studies by showing that

he results obtained with CAP analysis, another widely used analysis

echnique for assessing resting brain activity, were similar for real fMRI

ata and for simulated data generated using the Laumann null model.

his was surprising because the fact that a set of CAPs made from the

ime course of a single Seed ROI can be clustered into spatially hetero-

eneous modules appeals to our intuition that these modules represent

istinct states of resting brain activity. The present results suggest that

his intuition is incorrect. Spatially heterogeneous modules of CAPs were

ound with simulated data generated by a stationary null model. More-

ver, many of the modules found in the simulated data were similar to

he modules found in the real data. Thus, the presence of spatially het-

rogeneous modules of CAPs is insufficient to determine whether the

ata was generated by a mixture of distributions ( i.e. , non-stationary

ctivity with multiple states). In Supplementary Fig. 4, we replicated

he findings of the original CAP study by Liu and Duyn (2013 ) in which

APs obtained from surrogate data were spatially uniform. However, be-

ause these surrogate data broke down the static statistical properties of

he data ( e.g. , covariance across voxels), the result cannot be attributed

niquely to the stationarity of the resting-brain activity. These studies

ollectively suggest that extra care needs to be taken when interpreting

he results from these analysis techniques designed to extract dynamic

tructures of resting brain activity. 
8 
The assessment of non-stationary dynamics requires a temporal

eshuffling approach or fitting an AR with non-zero delay ( Liégeois et al.,

017 ). Recent studies have shown that fitting an AR is a promising ap-

roach to take into account the dynamic aspect of resting-brain activity

 Liégeois et al., 2019 ). However, AR does not provide intuitive under-

tanding of resting-brain activity, which could be important for guiding

ubsequent investigations. Thus, we believe that unification of an intu-

tive approach such as CAP with temporal reshuffling or AR would be

n important topic for future studies of resting-brain activity. 

We would like to emphasize that we are not claiming or trying to

rove that resting brain activity is best represented by a stationary Gaus-

ian distribution. In fact, careful statistical analyses suggest that resting

rain activity is non-stationary ( Liégeois et al., 2017 ). Similar to a pre-

ious study that examined sliding window FC analysis ( Laumann et al.,

016 ), our intention was to make clear what can and cannot be con-

luded from CAP analysis. We would also like to note that the aim

f the present study was not to deny the potential clinical usefulness

f CAP analysis. Several studies have applied CAP analysis to clinical

ata and found valuable features of brain activity that characterize pa-

ient groups ( Liu et al., 2018 ; Marshall et al., 2020 ; Rey et al., 2021 ;

ang et al., 2021 ). It is important to emphasize that the usefulness or

linical relevance of these features are not diminished by the present re-

ults ( Liegeois et al., 2021 ). Nevertheless, the present study sets a limit

n how these features might be interpreted. For example, even when

patial patterns of modules are informative for distinguishing between
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Fig. 7. Examples modules derived from the 

real and simulated data. For the example 

shown in Fig. 6 , eight pairs of modules derived 

from the real data (left) and the simulated data 

(right) are shown side-by-side. The modules are 

paired according to Fig. 6 e. 

Fig. 8. Statistical properties of the real and 

simulated CAPs were approximately equal. 

a, b. ROI-by-ROI covariance matrices of the 

CAP data (a) and CAP sim (b). c. The correlation 

distribution between off-diagonal elements of 

the covariance matrices of the real and sim- 

ulated CAPs ( n = 264 ROIs). d. The distribu- 

tion of p -values from Szekeley and Rizzo’s En- 

ergy Test, which tests the null hypothesis that 

CAP data and CAP sim are drawn from the same 

multivariate distribution (One test per ROI. 

n = 264 ROIs). 

9 
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APs from patients and healthy controls, it may be incorrect to interpret

he result as evidence of distinct “meta-states ” between the two groups.

e believe that the correct interpretation of CAP analysis and sliding

indow FC analysis is indispensable for constructing realistic models

f resting activity among healthy people and those affected by mental

isorders ( Wang and Krystal, 2014 ). Beyond fMRI studies, the present

esults indicate that appropriate surrogate data is likely to be important

lso in other settings such as micro-state analysis of electroencephalo-

ram data ( Michel and Koenig, 2018 ). 
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