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Abstract: The clinical relevance of polyunsaturated fatty acids (PUFAs) in heart failure remains
unclear. The aim of this study was to investigate the association between PUFA levels and the
prognosis of patients with heart failure with preserved ejection fraction (HFpEF). This retrospective
study included 140 hospitalized patients with acute decompensated HFpEF (median age 84.0 years,
42.9% men). The patients’ nutritional status was assessed, using the geriatric nutritional risk index
(GNRI), and their plasma levels of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA),
arachidonic acid (AA), and dihomo-gamma-linolenic acid (DGLA) were measured before discharge.
The primary outcome was all-cause mortality. During a median follow-up of 23.3 months, the primary
outcome occurred in 37 patients (26.4%). A Kaplan–Meier analysis showed that lower DHA and
DGLA levels, but not EPA or AA levels, were significantly associated with an increase in all-cause
death (log-rank; p < 0.001 and p = 0.040, respectively). A multivariate Cox regression analysis also
revealed that DHA levels were significantly associated with the incidence of all-cause death (HR: 0.16,
95% CI: 0.06–0.44, p = 0.001), independent of the GNRI. Our results suggest that low plasma DHA
levels may be a useful predictor of all-cause mortality and potential therapeutic target in patients
with acute decompensated HFpEF.

Keywords: heart failure with preserved ejection fraction; docosahexaenoic acid; geriatric nutritional
risk index

1. Introduction

Heart failure (HF) is a common and growing public health problem with an estimated
prevalence of over 37.7 million cases worldwide [1]. Despite recent developments of HF
treatments, including pharmacological and device therapy, HF still results in high mortality
and re-hospitalization rates [2]. HF clinically manifests in two modes, which are defined
by ventricular function: HF with reduced ejection fraction (HFrEF) and HF with preserved
ejection fraction (HFpEF) [3]. Unfortunately, standard pharmacological therapies for HFrEF
such as angiotensin-converting enzyme inhibitors and β-blockers show a lack of efficacy in
the treatment of HFpEF [4]. Patients with HFpEF are more likely to be older, female, and
have hypertension, renal disease, atrial fibrillation, and malnutrition [5]. Malnutrition, in
particular, is a common problem in elderly patients with HFpEF and is a known risk factor
for a poor prognosis [6].
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Polyunsaturated fatty acids (PUFAs) play structural and functional roles as membrane
components and precursors of physiologically active substances involved in inflamma-
tion [7]. Fish oils, sunflower, safflower, and corn oils are rich in omega-3 PUFAs, while meat
from farm animals are rich in omega-6 PUFAs [8]. Omega-3 PUFAs, such as eicosapen-
taenoic acid (EPA) and docosahexaenoic acid (DHA), and oemga-6 PUFAs, such as arachi-
donic acid (AA) and dihomo-gamma-linolenic acid (DGLA), have been shown to have
opposite effect [9]. It has been reported that AA-derived metabolites are pro-inflammatory,
while EPA- and DHA-derived metabolites are pro-resolution/anti-inflammatory [10–12].
Some metabolites have been reported to play a critical role in the development of cardiac
hypertrophy and heart failure by regulating inflammatory reactions [12–14]. However,
omega-7 and omega-9 monounsaturated fatty acids, such as palmitoleic acid and oleic acid,
are components of complex lipids, such as sphingosines and phospholipids, and could
interfere with cellular injury [15–17].

Several clinical trials and meta-analysis have demonstrated that omega-3 PUFAs are
beneficial for patients with cardiovascular events [18–20]. Regarding the association be-
tween omega-3 PUFAs and heart failure, a meta-analysis of seven prospective studies with
176,441 subjects and 5480 cases of HF found a lower risk of HF in patients that took high
amounts of marine omega-3 PUFAs [21]. Another study including 6562 patients, in over
13 years, found that plasma EPA levels were significantly lower in HF patients, compared
to HF-free patients [22]. Small-scale clinical trials have indicated that omega-3 PUFAs may
improve the outcomes of patients with HF [23–26]. However, recent large-scale random-
ized controlled studies investigating cardiovascular benefit of omega-3 supplementation
showed conflicting findings [27,28].

The aim of this study was to investigate the role of PUFAs in the prognosis of patients
with acute decompensated HFpEF. In addition, the impact of the patients’ nutritional status
on the association between PUFAs and their prognosis was evaluated.

2. Materials and Methods
2.1. Study Design and Participants

This study was a retrospective single-center cohort study. The study protocol was
approved by the Institutional Review Board of Mitoyo General Hospital (19CR01-122)
and conducted in accordance with the principles of the Declaration of Helsinki. The
requirement for informed consent was waived because of the low-risk nature of the study
and inability to obtain consent directly from all the study subjects. Instead, we announced
this study protocol extensively at Mitoyo General Hospital and on the hospital website
(http://mitoyo-hosp.jp) and provided patients with the opportunity to withdraw from the
study. We initially enrolled 301 consecutive patients with acute decompensated HFpEF
that were not receiving hemodialysis and who were admitted to Mitoyo General Hospital
between August 2015 and January 2019. Acute decompensated HF was diagnosed based
on the Framingham’s criteria. [29]. A diagnosis of HF was made if a patient had at
least two major criteria or one major criterion and two minor criteria. The major criteria
are acute pulmonary edema, cardiomegaly, hepatojugular reflex, distended neck veins,
paroxysmal nocturnal dyspnea, pulmonary rales, and third heart sound. The minor
criteria are ankle edema, dyspnea on exertion, hepatomegaly, nocturnal cough, pleural
effusion, and tachycardia [29]. HFpEF was defined as HF with a left ventricular ejection
fraction ≥50%. Patients with HFrEF and those receiving omega-3 PUFA therapy were
excluded. Figure 1 shows the flow diagram of this study. Follow-ups were performed by
referring to patient electronic medical records, direct contact with the patients’ physicians
in the outpatient clinic, and telephone interviews with patients or family members. A total
of 140 patients were ultimately included in the final analysis.

http://mitoyo-hosp.jp
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Figure 1. Flowchart of study population. Heart failure (HF) was defined based on the Framingham 
criteria. Heart failure with reduced ejection fraction (HFpEF) was defined as HF with a left ventric-
ular ejection fraction ≥50%. PUFAs, polyunsaturated fatty acids. 

2.2. Blood Sampling and Equations 
Whole blood samples were collected within 24 h of admission. Approximately 20 mL 

of blood was collected by venipuncture and separated into tubes containing clot activator, 
gel serum separator, ethylenediaminetetraacetic acid dipotassium, and heparin sodium. 
Plasma levels of EPA, DHA, AA, and DGLA were measured by using gas chromatog-
raphy (SRL Inc., Tokyo, Japan) [30]. Routine laboratory tests were performed, using an 
automated analyzer, at Mitoyo General Hospital. The estimated glomerular filtration rate 
(eGFR) was calculated based on the Japanese equation that uses serum creatinine level, 
age, and sex as follows: eGFR (mL/min/1.73 m2) = 194 × serum creatinine−1.094 × age−0.287 (for 
females = ×0.739) [31]. The geriatric nutritional risk index (GNRI) was calculated as fol-
lows, using the serum albumin level, body weight, and height obtained on admission: 
GNRI = 14.89 × serum albumin (g/dL) + 41.7 × (actual body weight/ideal body weight). 
GNRI is a nutrition-related risk index that makes it possible to classify patients according 
to a risk of morbidity and mortality, and the GNRI ≥98 means no nutritional-related risk 
[32]. The ideal body weight in the present study was calculated by using a body mass 
index of 22 kg/m2. 

2.3. Assessment of Additional Risk Factors 
Hypertension was defined as having a seated blood pressure >140/90 mmHg or un-

dergoing current treatment with antihypertensive medications. Diabetes mellitus was de-
fined as having a previous diagnosis of diabetes mellitus in the medical records, a hemo-
globin A1C (national glycohemoglobin standardization program calculation) level ≥6.5%, 
or receiving treatment with oral antidiabetic agents or insulin. Dyslipidemia was defined 
as one or more of the following characteristics: ≥150 mg/dL serum triglyceride, <40 mg/dL 
high-density lipoprotein cholesterol (HDL-cholesterol), ≥140 mg/dL low-density lipopro-
tein cholesterol (LDL-cholesterol), or current treatment with a lipid-lowering drug. Smok-
ing status was defined as “currently smoking”.  

2.4. Study Outcomes 
The primary endpoint was all-cause mortality. Furthermore, as an ad hoc analysis, 
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The results are presented as the mean ± standard deviation when they are normally 

distributed, and as the median and interquartile range (IQR) when they are non-normally 
distributed. The normality of distribution was determined by the Kolmogorov–Smirnov 

Figure 1. Flowchart of study population. Heart failure (HF) was defined based on the Framingham
criteria. Heart failure with reduced ejection fraction (HFrEF); Heart failure with preserved ejection
fraction (HFpEF) was defined as HF with a left ventricular ejection fraction ≥50%. PUFAs, polyunsatu-
rated fatty acids.

2.2. Blood Sampling and Equations

Whole blood samples were collected within 24 h of admission. Approximately 20 mL
of blood was collected by venipuncture and separated into tubes containing clot activator,
gel serum separator, ethylenediaminetetraacetic acid dipotassium, and heparin sodium.
Plasma levels of EPA, DHA, AA, and DGLA were measured by using gas chromatog-
raphy (SRL Inc., Tokyo, Japan) [30]. Routine laboratory tests were performed, using an
automated analyzer, at Mitoyo General Hospital. The estimated glomerular filtration rate
(eGFR) was calculated based on the Japanese equation that uses serum creatinine level, age,
and sex as follows: eGFR (mL/min/1.73 m2) = 194 × serum creatinine−1.094 × age−0.287

(for females = ×0.739) [31]. The geriatric nutritional risk index (GNRI) was calculated as
follows, using the serum albumin level, body weight, and height obtained on admission:
GNRI = 14.89 × serum albumin (g/dL) + 41.7 × (actual body weight/ideal body weight).
GNRI is a nutrition-related risk index that makes it possible to classify patients according to
a risk of morbidity and mortality, and the GNRI ≥98 means no nutritional-related risk [32].
The ideal body weight in the present study was calculated by using a body mass index of
22 kg/m2.

2.3. Assessment of Additional Risk Factors

Hypertension was defined as having a seated blood pressure >140/90 mmHg or under-
going current treatment with antihypertensive medications. Diabetes mellitus was defined
as having a previous diagnosis of diabetes mellitus in the medical records, a hemoglobin
A1C (national glycohemoglobin standardization program calculation) level ≥6.5%, or re-
ceiving treatment with oral antidiabetic agents or insulin. Dyslipidemia was defined as one
or more of the following characteristics: ≥150 mg/dL serum triglyceride, <40 mg/dL high-
density lipoprotein cholesterol (HDL-cholesterol), ≥140 mg/dL low-density lipoprotein
cholesterol (LDL-cholesterol), or current treatment with a lipid-lowering drug. Smoking
status was defined as “currently smoking”.

2.4. Study Outcomes

The primary endpoint was all-cause mortality. Furthermore, as an ad hoc analysis,
patients were divided into four groups, based on the median DHA level and median GNRI,
so that the association between the primary endpoint and each group could be evaluated.
The secondary endpoints were cardiac death and re-hospitalization for HF.

2.5. Statistical Analyses

The results are presented as the mean ± standard deviation when they are normally
distributed, and as the median and interquartile range (IQR) when they are non-normally
distributed. The normality of distribution was determined by the Kolmogorov–Smirnov
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test. Differences between the groups were analyzed by using the unpaired Student’s t-test
or Mann–Whitney U test for continuous variables, and the chi-squared test or Fisher’s
exact test for dichotomous variables, as appropriate. For the survival analyses, Kaplan–
Meier survival plots were constructed by dividing the patients’ PUFA levels on admission
into two groups, according to the median values, and log-rank testing was performed to
study the influence of PUFA levels on primary and secondary endpoints. To evaluate the
influence of PUFA levels on the primary endpoint, Cox proportional-hazards regression
models were used to estimate the hazard ratio (HR) and 95% confidence interval (CI). To
avoid overfitting, variables that were included in the principal multivariate models were
adjusted for age, sex, hypertension, dyslipidemia, diabetes mellitus, and GNRI. All the
tests were two-tailed, and a value of p < 0.05 was considered statistically significant. All the
analyses were performed by using IBM SPSS statistics version 24.0 (IBM Corp., Armonk,
NY, USA).

3. Results
3.1. Baseline Characteristics

Table 1 shows the baseline characteristics of the patients in this study and a comparison
of those characteristics between the patients with and without primary endpoints. The
median age of all the patients was 84.0 years, 42.9% were male, and 56.4% had atrial
fibrillation. The prevalence of hypertension and diabetes mellitus within the group of
patients was 90.0% and 22.9%, respectively.

During the median follow-up of 23.3 months, 37 (26.4%) of the patients exhibited the
primary endpoint. Patients experiencing the primary endpoint were older; had lower BMI
and GNRI values; had a lower prevalence of hypertension and dyslipidemia; had lower
statin use; and had lower hemoglobin, albumin, HDL-cholesterol, and LDL-cholesterol
levels than those who did not experience the primary endpoint. No significant differences
in the prevalence of atrial fibrillation, prior hospitalization for HF, or medication use,
except for statins, were observed between the two groups. The median levels of EPA, DHA,
DGLA, and AA, as well as the ratio of EPA to AA (EPA/AA), DHA to AA (DHA/AA), and
AA + DGLA to EPA + DHA (AA + DGLA/EPA + DHA), on admission were 46.6 µg/mL,
116.1 µg/mL, 23.6 µg/mL, 159.8 µg/mL, 0.26, 0.74, and 1.15, respectively. The levels of
DHA, DGLA, and AA for the patients with adverse events were significantly lower than
for those patients without adverse events. The levels of EPA, EPA/AA, DHA/AA, and
AA+DGLA/EPA+DHA did not differ between the two groups.

3.2. Cumulative Event Rates Based on PUFA Levels

The Kaplan–Meier analyses showed that lower levels of DHA and DGLA on admission
were significantly associated with the incidence of adverse events (log-rank; p < 0.001 and
p = 0.040, respectively) (Figure 2B,D). However, the EPA and AA levels and the EPA/AA,
DHA/AA, and AA + DGLA/ EPA + DHA were not associated (log-rank; p = 0.051,
p = 0.154, p = 0.649, p = 0.887, p = 0.712, respectively) (Figure 2A,C,E–G).

3.3. Univariate and Multivariate Analyses of Parameters Contributing to the Primary and
Secondary Endpoints

The univariate Cox regression analyses showed that age, body mass index, statin use,
hemoglobin, albumin, LDL-cholesterol, GNRI, DGLA level, and DHA level were associated
with the incidence of the primary endpoint (Table 2). The multivariate Cox regression
analyses revealed that patients with high DHA levels was significantly associated with
a low incidence of the primary endpoint after an adjustment for age, sex, hypertension,
dyslipidemia, diabetes mellitus, and GNRI (HR: 0.16, 95% CI: 0.06–0.44, p = 0.001). How-
ever, the DGLA level was not significantly associated with the primary endpoint after an
adjustment for confounding variables.
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Table 1. Baseline characteristics according to the presence or absence of the primary endpoint.

Primary Endpoint

Variables All (n = 140) Absent (n = 103) Present (n = 37) p

Men 60 (42.9) 40 (38.8) 20 (54.1) 0.110
Age, years 84.0 (77.0, 88.0) 82.0 (76.0, 88.0) 86.0 (83.0, 89.0) 0.018

Body mass index, kg/m2 23.3 (20.4, 26.6) 22.4 (20.8, 27.5) 22.1 (19.9, 24.1) 0.008
Hypertension 126 (90.0) 96 (93.2) 30 (81.1) 0.035

Diabetes Mellitus 32 (22.9) 22 (21.4) 10 (27.0) 0.485
Dyslipidemia 45 (32.1) 38 (36.9) 7 (18.9) 0.045

Current smoker 49 (35.0) 33 (32.0) 16 (43.2) 0.223
Prior hospitalization for heart failure 19 (13.6) 13 (12.6) 6 (16.2) 0.587

Ischemic heart disease 18 (12.9) 15 (14.6) 3 (8.1) 0.318
Atrial fibrillation 79 (56.4) 59 (57.3) 20 (54.1) 0.736

Prior PCI 14 (10.0) 12 (11.7) 2 (5.4) 0.281
Prior CABG 5 (3.6) 5 (4.9) 0 (0) 0.175

Valve repair/placement 14 (10.0) 12 (11.7) 2 (5.4) 0.281
Pacemaker implantation 14 (10.0) 7 (6.8) 7 (18.9) 0.035

Medications
ACEIs/ARBs 55 (39.3) 43 (41.7) 12 (32.4) 0.323
β-blockers 48 (34.3) 39 (37.9) 9 (24.3) 0.139

CCBs 72 (51.4) 55 (53.4) 17 (45.9) 0.440
Loop diuretics 79 (56.4) 54 (52.4) 25 (67.6) 0.113

MRAs 26 (18.6) 16 (15.5) 10 (27.0) 0.125
Antiplatelets 31 (22.1) 27 (26.2) 4 (10.8) 0.053

Oral antidiabetic agents 22 (15.7) 17 (16.5) 5 (13.5) 0.671
Statins 35 (25.0) 31 (30.1) 4 (10.8) 0.020

Anticoagulants 22 (15.7) 46 (44.7) 17 (45.9) 0.894
Laboratory findings
Hemoglobin (g/dL) 11.0 ± 2.09 11.2 ± 2.10 10.3 ± 1.94 0.017
Creatinine (mg/dL) 1.08 (0.82, 1.62) 1.03 (0.83, 1.56) 1.27 (0.79, 1.75) 0.364

eGFR (ml/min/1.73 m2) 42.2 (29.0, 56.0) 43.0 (29.0, 55.0) 41.0 (26.2, 59.6) 0.530
Albumin (g/dL) 3.6 (3.2, 3.9) 3.6 (3.4, 3.9) 3.4 (2.9, 3.7) 0.001
hsCRP (mg/dL) 0.43 (0.17, 1.45) 0.36 (0.15, 1.08) 0.86 (0.24, 1.59) 0.581
BNP (pg/mL) 453.0 (260.4, 699.0) 464.0 (246.8, 739.4) 411.0 (269.9, 659.5) 0.107

Troponin I (pg/mL) 32.7 (15.2, 84.7) 33.0 (14.3, 84.7) 28.9 (16.3, 70.8) 0.520
Hemoglobin A1C (%) 5.9 (5.6, 6.5) 5.9 (5.6, 6.5) 5.9 (5.6, 6.6) 0.871
Triglycerides (mg/dL) 76 (57, 98) 78 (62, 98) 67 (50, 94) 0.110

HDL-C (mg/dL) 46 ± 14.4 48 ± 13.8 41 ± 15.5 0.047
LDL-C (mg/dL) 97 ± 36.7 102 ± 37.1 81 ± 30.8 0.014

EPA (µg/mL) 46.6 (30.7, 64.2) 48.0 (31.9, 67.8) 39.6 (28.0, 55.0) 0.076
DHA (µg/mL) 116.1 (96.7, 144.9) 126.7 (99.1, 149.8) 102.8 (94.3, 119.5) 0.009
AA (µg/mL) 159.8 (133.8, 194.5) 167.1 (144.2, 195.0) 139.1 (110.5, 180.7) 0.001

DGLA (µg/mL) 23.6 (19.6, 30.5) 24.2 (20.1, 32.5) 22.2 (18.4, 27.1) 0.019
EPA/AA 0.26 (0.20, 0.40) 0.27 (0.20, 0.40) 0.26 (0.21, 0.39) 0.812
DHA/AA 0.74 (0.62, 0.89) 0.74 (0.60, 0.90) 0.78 (0.63, 0.88) 0.287

AA + DGLA/EPA + DHA 1.15 (0.90, 1.38) 1.15 (0.90, 1.42) 1.14 (0.95, 1.32) 0.481
GNRI 97.7 ± 12.03 99.9 ± 11.59 90.8 ± 10.84 < 0.001

Categorical variables are presented as number of patients (%). Continuous variables are presented as the mean ± standard deviation
or median (interquartile range). PCI, percutaneous coronary intervention; CABG, coronary artery bypass grafting; ACEs, angiotensin-
converting enzyme inhibitors; ARBs, angiotensin II receptor blockers; CCBs, calcium channel blockers; MRAs, mineralocorticoid receptor
antagonists; eGFR, estimated glomerular filtration rate; hsCRP, high-sensitivity C-reactive protein; BNP, brain natriuretic peptide; HDL-C,
high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid;
DGLA, dihomo-gamma-linolenic acid; AA, arachidonic acid; DHA/AA, ratio of DHA to AA; AA+DGLA/EPA+DHA, ratio of AA+DGLA
to EPA+DHA; GNRI, geriatric nutritional risk index.
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Figure 2. The associations between the primary outcomes and PUFA levels. The cumulative incidences of the primary
endpoint (all-cause death) were estimated by using the Kaplan–Meier method. The patients were divided into two
groups, based on the median levels of (A) EPA, (B) DHA, (C) AA, (D) DGLA, (E) EPA/AA, (F) DHA/AA, and (G)
AA + DGLA/ EPA + DHA. Log-rank testing was performed to study the influence of PUFA levels on primary endpoint.
EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid; DGLA, dihomo-gamma-linolenic acid; AA, arachidonic acid;
EPA/AA, ratio of EPA to AA; DHA/AA, ratio of DHA to AA; AA + DGLA/EPA + DHA; ratio of AA + DGLA to
EPA + DHA.

Table 2. The association between PUFAs and the primary endpoint analyzed with Cox proportional hazards models.

Univariate Multivariate-1 Multivariate-2

HR 95% CI p HR 95% CI p HR 95% CI p

Age,
per 1 year 1.06 1.01–1.11 0.009 1.05 0.99–1.10 1.102 1.06 1.00–1.13 0.042

Male 1.76 0.92–3.37 0.087 1.76 0.81–3.83 0.155 1.98 0.91–4.29 0.083
Body mass index,

per 1.0 kg/m2 0.90 0.82–0.98 0.017 - - - - - -

Hypertension 0.52 0.26–1.06 0.071 0.65 0.26–1.59 0.342 1.13 0.45–2.82 0.793
Dyslipidemia 0.45 0.20–1.03 0.060 0.72 0.25–2.12 0.549 0.66 0.23–1.91 0.441

Diabetes mellitus 1.54 0.74–3.21 0.249 1.99 0.87–4.58 0.104 1.86 0.78–4.46 0.164
Statin use 0.34 0.12–0.95 0.040 - - - - - -

Hemoglobin,
per 1.0 mg/dL 0.82 0.70–0.96 0.013 - - - - - -

Albumin,
per 1.0 g/dL 0.34 0.18–0.63 0.001 - - - - - -

HDL-C,
per 1 mg/dL 0.96 0.93–1.00 0.054 - - - - - -

LDL-C,
per 1 mg/dL 0.98 0.96–0.99 0.004 - - - - - -

GNRI,
per 1 index 0.94 0.91–0.97 <0.001 0.95 0.91–0.99 0.010 0.95 0.91–0.98 0.002

High DGLA 0.50 0.26–0.98 0.044 1.02 0.47–2.19 0.969 - - -
High AA 0.61 0.31–1.21 0.158 - - - - - -
High EPA 0.52 0.27–1.01 0.055 - - - - - -
High DHA 0.25 0.12–0.53 <0.001 - - - 0.16 0.06–0.44 <0.001

High EPA/AA 0.86 0.45–1.65 0.650 - - - -
High DHA/AA 1.05 0.54–2.02 0.887 - - - -

High AA +
DGLA/

EPA + DHA
1.13 0.59–2.17 0.712 - - - -

The multivariate model-1 and model-2 were adjusted for age, sex, hypertension, dyslipidemia, diabetes mellitus, and GNRI. HR, hazard ra-
tio; CI, confidence interval; GNRI, geriatric nutritional risk index; EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid; DGLA, dihomo-
gamma-linolenic acid; AA, arachidonic acid. EPA/AA, ratio of EPA to AA; DHA/AA, ratio of DHA to AA; AA + DGLA/EPA + DHA;
ratio of AA + DGLA to EPA + DHA.
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As an ad hoc analysis, the patients were divided into four groups, based on the
median DHA and GNRI values. As shown in Figure 3, the low-GNRI and low-DHA
groups showed the greatest incidence of the primary endpoint, compared to the other
groups (log-rank; p < 0.001). In the multivariate Cox regression analyses, the low-GNRI
and low-DHA groups had a significantly higher risk of the primary endpoint, compared
with the high-GNRI and high-DHA groups, after an adjustment of age and sex (HR: 8.48,
95% CI: 2.47–29.07, p = 0.001) (Table 3).

The secondary endpoints occurred in 63 patients (cardiac death (n = 15) and re-
hospitalization for HF (n = 480)). As shown in Figure 4, none of the PUFA levels was
associated with the secondary endpoints.
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Table 3. The association between the DHA and GNRI values and primary endpoints analyzed with
Cox proportional hazards models.

Multivariate Analysis

Variables HR 95% CI P

Age, per 1-year 1.07 1.02–1.13 0.006
Male 1.67 0.87–3.22 0.123

High DHA and high
GNRI Reference

High DHA and low
GNRI 1.14 0.28–4.64 0.858

Low DHA and high
GNRI 3.03 0.80–11.48 0.104

Low DHA and low
GNRI 8.48 2.47–29.07 0.001

Multivariate analysis was adjusted by age, sex, hemoglobin, and GNRI. HR, hazard ratio; CI, confidence interval;
DHA, docosahexaenoic acid; GNRI, geriatric nutritional risk index.
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Figure 4. The associations between the secondary outcomes and PUFA levels. The cumulative incidences of the secondary
endpoints (cardiac death and re-hospitalization for heart failure) were estimated by using the Kaplan–Meier method.
Log-rank testing was performed to study the influence of PUFA levels on primary endpoint. The patients were divided into
two groups, based on the median levels of (A) EPA, (B) DHA, (C) AA, (D) DGLA, and (E) EPA/AA, (F) DHA/AA, and (G)
AA + DGLA/EPA + DHA. PUFA, polyunsaturated fatty acid; EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid; AA,
arachidonic acid; DGLA, dihomo-gamma-linolenic acid; EPA/AA, ratio of EPA to AA; DHA/AA, ratio of DHA to AA;
AA + DGLA/EPA + DHA; ratio of AA + DGLA to EPA + DHA.

4. Discussion

The data from the present study showed that the acute decompensated HFpEF patients
with lower plasma DHA levels had a significantly higher incidence of all-cause death,
independent of GNRI. These findings suggest that plasma DHA levels are an important
factor associated with prognosis, regardless of the nutritional status of patients with acute
decompensated HFpEF. This suggests that measuring plasma DHA levels may be useful
for the detection of high-risk patients hospitalized with HFpEF.

Several studies have shown the association between circulating concentrations of
PUFAs and the incidence of HF. A previous cohort study, which included 2735 adults in
the Cardiovascular Health Study from 1992 to 2006, reported that the total concentrations
of omega-3 fatty acid were associated with the incidence of primary congestive HF [19]. A
recent report from the Multi-Ethnic Study of Atherosclerosis (MESA) trial indicated that
higher plasma EPA levels were significantly associated with a reduced risk of HF (for both
reduced and preserved EF) [22]. In addition, regarding the association between PUFAs and
the prognosis of patients with acute decompensated HF, a study showed that decreased
plasma levels of DHA, DGLA, and AA were independently associated with long-term
mortality in patients with acute decompensated HF [33]. Other studies have shown that
lower omega-6 PUFAs levels were related to worse clinical outcomes in patients with acute
decompensated HF [34,35]. However, most of the patients included in these studies had
HFrEF. Thus, to the best of our knowledge, this is the first study to evaluate the correlation
between PUFA levels and the prognosis of patients with HFpEF.

This study showed that lower DHA levels, but not EPA levels, were independently
associated with all-cause mortality in patients with acute decompensated HFpEF. PUFAs
play an important role in cellular membrane function [36]. While DHA is abundant in the
cell membranes of cardiomyocytes [25], EPA is scarce. This difference may contribute to
the distinct effects that DHA and EPA have on cardiac health. It should be noted, however,
that while DHA can be obtained from the diet, it can also be synthesized from EPA [37]. In
fact, the data from MESA suggested that EPA was more important than DHA for HF [19].
Therefore, any interpretation of the differences between the effects of DHA and EPA on the
prognosis of HFpEF patients should be made with caution.
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Although the present study showed a relationship between lower plasma DHA levels
and a higher incidence of all-cause death, there was no significant association between
DHA levels and composite events of cardiac death and re-hospitalization for HF. According
to a Japanese cohort study called the Chronic Heart Failure Analysis and Registry in the
Tohoku (CHART), the temporal trend in the mode of death in symptomatic HF has changed.
As the prevalence of HFpEF in symptomatic HF increased from CHART-1 (2000–2005)
to CHART-2 (2006–2010), the proportion of non-cardiac deaths increased from 23% in
CHART-1 to 40% in CHART-2 [5]. In this study [5], those factors that were significantly
associated with all-cause death were reported to be advanced age, low BMI, high systolic
blood pressure, and absence of dyslipidemia. This is in line with our data shown in Table 1.
Patients with HFpEF had more comorbidities than HFrEF patients, and noncardiac deaths
occurred more frequently in HFpEF patients than in HFrEF patients [38].

Thus, the characteristics inherent to HFpEF patients specifically may be involved in
the significant impact that DHA levels have on all-cause death, as opposed to cardiac death
or re-hospitalization for HF.

Malnutrition is frequently observed and an important risk factor for poor outcomes in
patients with HF. The GNRI is a simple and objective nutritional index, and a GNRI < 92 is
generally used to evaluate the increased risk of morbidity and mortality in hospitalized
elderly patients [21]. In our study, patients with the primary endpoint had an average
GNRI of 90.8, suggesting a poor nutritional status. Although the patients with the primary
endpoint also showed lower omega-3 PUFA levels, which were affected by oral intake,
the Cox regression analyses revealed that the impact of the DHA levels on the patients’
prognoses was independent of the GNRI. Even in the patients with a poor nutritional
status, lower DHA levels were shown to be an independent predictor of all-cause mortality
in HFpEF patients.

Inflammation is a normal process that is part of the body’s defense and tissue-healing
mechanism. However, excessive or unresolved inflammation can lead to uncontrolled
tissue injury, and disease. Omega-6-derived metabolites, such as prostaglandins and
leukotrienes, have pro-inflammatory effects, while omega-3-derived metabolites, such as
resolvins and protectins, have anti-inflammatory and pro-resolving effects [10,11]. In this
context, several clinical studies showed that the ratio of omega-3 to omega-6 PUFAs is a
powerful predictor of heart disease [39–41]. Therefore, active screening of PUFAs would be
beneficial in identifying patients at high risk of cardiovascular disease.

The GISSI-HF (Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto Mio-
cardico Heart Failure) trial was a large-scale, placebo-controlled, randomized study that
showed that 1 g daily of omega-3 fatty acid administration reduced the risk of all-cause
death by 9% and the risk of hospitalization due to cardiovascular reasons by 8% in patients
with chronic heart failure [42]. Other clinical trials have indicated that omega-3 fatty acids
might improve outcomes in patients with HF [23–26]. In addition, animal studies have
shown that omega-3 fatty acids, including EPA and DHA, at supraphysiological levels,
preserve left ventricular function and prevent interstitial fibrosis in a mouse model of pres-
sure overload-induced HF [39,43,44]. Despite these potential benefits, the use of omega-3
fatty acids in patients with HF remains controversial. Future large-scale randomized clin-
ical trials to investigate the benefit of high dosages of omega-3 fatty acids, on top of the
guideline-directed medical therapy for patients with documented overt HF, will be needed.

This study had several limitations. First, the study was conducted in a single center,
the sample size was small, and the follow-up period was short. Therefore, it may be difficult
to generalize these results. Second, the PUFAs were not measured in the cell membrane.
PUFAs in the cell membrane have been reported to be direct precursors of pro- and anti-
inflammatory eicosanoids. However, it has also been reported that cell-membrane PUFAs
are significantly correlated with serum PUFAs in the Japanese population [30]. Third, food
intake is associated with blood levels of PUFAs; however, measurement of dietary intake
by using a frequency food questionnaire was not performed in this study. Moreover, the
multivariate cox regression model included a limited number of variates to avoid statistical
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overfitting, because of the small number of the primary outcome. Therefore, large-scale
studies will be needed to confirm our findings. Finally, the study was an observational
study, so the causal relationship between DHA levels and prognosis is uncertain.

5. Conclusions

Lower levels of DHA are significantly associated with an increase in all-cause death
in patients with acute decompensated HFpEF, independent of nutritional status. Measure-
ment of plasma DHA levels may be useful in identifying high-risk patients with HFpEF,
and supplementation with DHA may be a potential therapeutic target in these patients.
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