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τ-TILTING FINITENESS OF TWO-POINT ALGEBRAS I

Qi Wang

Abstract. As the first attempt to classify τ -tilting finite two-point
algebras, we have determined the τ -tilting finiteness for minimal wild
two-point algebras and some tame two-point algebras.

1. Introduction

In this paper, we always assume that Λ is a finite-dimensional basic al-
gebra over an algebraically closed field K. In particular, the representation
type of Λ is divided into representation-finite, (infinite-)tame and wild.
τ -tilting theory is introduced by Adachi, Iyama and Reiten [7], in which

they constructed support τ -tilting modules as a generalization of the clas-
sical tilting modules. We recall that a right Λ-module M is called sup-
port τ -tilting if HomΛM

(M, τM) = 0 and |M | = |ΛM | taking over ΛM :=
Λ/Λ(1−e)Λ, where e is an idempotent of Λ such that the simple summands
of eΛ/(erad Λ) are exactly the simple composition factors of M . Moreover,
a support τ -tilting Λ-module M is called τ -tilting if ΛM = Λ. This wider
class bijectively corresponds to the class of two-term silting complexes, func-
torially finite torsion classes, left finite semibricks and so on. We refer to [7]
and [2] for details.

We are interested in τ -tilting finite algebras studied in [13], that is, al-
gebras with only finitely many pairwise non-isomorphic basic (support) τ -
tilting modules. It is obvious that a representation-finite algebra is τ -tilting
finite. Also, it is not difficult to find a tame or a wild algebra which is
τ -tilting finite. The τ -tilting finiteness for several classes of algebras has
been determined, such as algebras with radical square zero [1], preprojec-
tive algebras of Dynkin type [19], Brauer graph algebras [3], biserial algebras
[20] and classical Schur algebras [25]. In particular, it has been proved in
some cases that τ -tilting finiteness coincides with representation-finiteness,
including gentle algebras [22], cycle-finite algebras [21], tilted and cluster-
tilted algebras [27], simply connected algebras [24], quasi-tilted algebras,
locally hereditary algebras, etc. [4].

We notice that local algebras, i.e., algebras with only one simple module,
are always τ -tilting finite. This motivates us to study the algebras with
exactly two simple modules (up to isomorphism), which are called two-point
algebras in this paper. We point out that Aihara-Kase [6] and Kase [18] have
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got some interesting results. For example, Kase [18, Theorem 6.1] showed
that one can always find a τ -tilting finite two-point algebra such that the
Hasse quiver of the poset of pairwise non-isomorphic basic support τ -tilting
modules, is isomorphic to a t-gon (t > 4). Besides, it is well-known that

Kronecker algebra K( • // // • ) is τ -tilting infinite (we present a proof in

Lemma 3.2 for the convenience of readers). Thus, Λ is τ -tilting infinite if
the quiver of Λ contains multiple arrows.

It is worth mentioning that two-point algebras are fundamental if we con-
sider the representation type of general algebras, and the representation type
of two-point algebras has been determined for many years. We may review
these results here: the maximal representation-finite two-point algebras are
classified by Bongartz and Gabriel [10], the tame two-point algebras are clas-
sified by several authors in [11, 12, 15, 16], and the minimal wild two-point
algebras are classified by Han [16].

As we mentioned above, τ -tilting finiteness is related to representation
type in some classes of algebras. Thus, in order to find a complete classifica-
tion of τ -tilting finite two-point algebras, it will be useful to determine the
τ -tilting finiteness of all minimal wild two-point algebras. We recall that a
complete list of minimal wild two-point algebras is given by Han [16], which
is displayed by Table W in his paper. (See also Appendix A of this paper.)
Then, the first main result in this paper is presented as follows.

Theorem 1.1. Let Wi be a minimal wild two-point algebra from Table W.

(1) W1, W2, W3 and W5 are τ -tilting infinite.
(2) W4 and W6 ∼W34 are τ -tilting finite. Moreover, we have

Wi W4 W6 W7 W8 W9 W10 W11 W12 W13 W14

#sτ -tilt Wi 5 6 8 6 7 5 10

Type H1,2 H1,3 H1,5 H1,3 H1,4 H1,2 H3,5

Wi W15 W16 W17 W18 W19 W20 W21 W22 W23 W24

#sτ -tilt Wi 9 8 9 8 7 8 10

Type H2,5 H3,3 H2,5 H3,3 H2,3 H3,3 H3,5

Wi W25 W26 W27 W28 W29 W30 W31 W32 W33 W34

#sτ -tilt Wi 7 8 6

Type H2,3 H2,4 H3,3 H2,4 H2,2

,

where #sτ -tilt Wi is the number of isomorphism classes of basic support
τ -tilting Wi-modules and the type of H(sτ -tilt Wi) is defined in Definition 4.

According to Theorem 1.1, most of the minimal wild two-point algebras
are τ -tilting finite so that one may expect to give a complete classification of
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τ -tilting finite tame two-point algebras. This should also be useful toward
the complete classification of τ -tilting finite two-point algebras. However,
it is difficult at this moment to give a complete result on tame two-point
algebras, because the tameness of two-point algebras depends on the tech-
nique called degeneration, and it is still open to finding the relation between
τ -tilting finiteness and degeneration.

We may give a partial result on tame two-point algebras. We recall from
[16] (see also Proposition 3.1 of this paper) that all tame two-point algebras
can degenerate to a finite set (Table T in [16]) of two-point algebras. Then,
we check the τ -tilting finiteness for algebras in Table T1 as follows. This is
the second main result in this paper.

Theorem 1.2. Let Ti be an algebra from Table T.

(1) T1, T3 and T17 are τ -tilting infinite.
(2) Others are τ -tilting finite. Moreover, we have the following posets,

Ti T2 T4 T5 T6 T7 T8 T9 T10 T11

#sτ -tilt Ti 6 5 6 5 8 12 8

Type H1,3 H1,2 H1,3 H1,2 H3,3 H5,5 H3,3

Ti T12 T13 T14 T15 T16 T18 T19 T20 T21

#sτ -tilt Ti 7 6 8 7 9 8 6 7 6

Type H2,3 H2,2 H3,3 H2,3 H2,5 H3,3 H2,2 H2,3 H2,2

.

We observe that Theorem 1.1 and Theorem 1.2 are useful to determine
the τ -tilting finiteness for several other classes of algebras, such as tame two-
point distributive algebras [15], two-point symmetric special biserial algebras
[8] and so on. We have given an easy observation in Proposition 3.9.

This paper is organized as follows. In Section 2, we review some basic
concepts of τ -tilting theory and silting theory. Besides, we list some reduc-
tion theorems that we will use and carry out several explicit computations.
In Section 3, we give the proofs of Theorem 1.1 and Theorem 1.2.

2. Preliminaries

We refer to [9] for the background on the representation theory of finite-
dimensional algebras and the basic knowledge of quiver representations.

Let mod Λ be the category of finitely generated right Λ-modules and
proj Λ the full subcategory of mod Λ consisting of projective Λ-modules.

1We mention that some relations are omitted in the original Table T in [16] so that
several algebras (e.g., T4 and T5) in the original Table T are not finite-dimensional. How-
ever, we have added these omitted relations in this paper so that all algebras in Table T
are finite-dimensional, see Appendix A.
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For any M ∈ mod Λ, we denote by add(M) (respectively, Fac(M)) the
full subcategory of mod Λ whose objects are direct summands (respectively,
factor modules) of finite direct sums of copies of M . We often describe Λ-
modules via their composition series. For example, each simple module Si
is written as i, and then 1

2 = S1
S2

is an indecomposable Λ-module M with a
unique simple submodule S2 such that M/S2 ≃ S1.

We denote by Λop the opposite algebra of Λ and by |M | the number of
isomorphism classes of indecomposable direct summands of M . Let τ be
the Auslander-Reiten translation on the module category. Note that it is
not functorial.

Definition 1 ([7, Definition 0.1]). Let M ∈ mod Λ. Then,

(1) M is called τ -rigid if HomΛ(M, τM) = 0.
(2) M is called τ -tilting if M is τ -rigid and |M | = |Λ|.
(3) M is called support τ -tilting if there exists an idempotent e of Λ

such that M is a τ -tilting (Λ/ΛeΛ)-module.

Let (M,P ) be a pair with M ∈ mod Λ and P ∈ proj Λ. We recall that
(M,P ) is said to be a support τ -tilting pair ifM is τ -rigid, HomΛ(P,M) = 0
and |M | + |P | = |Λ|. This is actually an equivalent definition for support
τ -tilting modules, i.e., (M,P ) is a support τ -tilting pair if and only if M is
a τ -tilting (Λ/ΛeΛ)-module and P = eΛ.

We denote by τ -rigid Λ (respectively, sτ -tilt Λ) the set of isomorphism
classes of indecomposable τ -rigid (respectively, basic support τ -tilting) Λ-
modules. It is known from [7] that any τ -rigid Λ-module is a direct summand
of some τ -tilting Λ-module.

Definition 2. A finite-dimensional algebra Λ is called τ -tilting finite if
it has only finitely many pairwise non-isomorphic basic τ -tilting modules.
Otherwise, Λ is called τ -tilting infinite.

Let C be an additive category and X, Y objects of C. A morphism f :
X → Z with Z ∈ add(Y ) is called a minimal left add(Y )-approximation of
X if it satisfies:

• every h ∈ HomC(Z,Z) that satisfies h ◦ f = f is an automorphism,
• HomC(f, Z

′) : HomC(Z,Z
′) −→ HomC(X,Z

′) is surjective for any
Z ′ ∈ add(Y ),

where add(Y ) is the category of all direct summands of finite direct sums of
copies of Y .

We recall the concept of left mutation which is the core of τ -tilting theory.

Definition-Theorem 2.1 ([7, Definition 2.19, Theorem 2.30]). Let T =
M ⊕N be a basic support τ -tilting Λ-module with an indecomposable direct



τ -TILTING FINITENESS OF TWO-POINT ALGEBRAS 121

summand M satisfying M /∈ Fac(N). We take an exact sequence with a
minimal left add(N)-approximation f :

M
f

−→ N ′ −→ coker f −→ 0.

We call µ−M(T ) := (coker f) ⊕ N the left mutation of T with respect to
M , which is again a basic support τ -tilting Λ-module. (The right mutation
µ+M (T ) can be defined dually.)

In the above, Zhang has shown in [26] that coker f is either 0 or inde-
composable. Moreover, one can show that coker f cannot be projective.

We may construct a directed graph H(sτ -tilt Λ) by drawing an arrow from
T1 to T2 if T2 is a left mutation of T1. On the other hand, we can regard
sτ -tilt Λ as a poset with respect to a partial order ≤. For any M,N ∈
sτ -tilt Λ, we say that N ≤ M if Fac(N) ⊆ Fac(M). Then, the directed
graph H(sτ -tilt Λ) is exactly the Hasse quiver on the poset sτ -tilt Λ, see [7,
Corollary 2.34].

The following statement implies that an algebra Λ is τ -tilting finite if we
can find a finite connected component of H(sτ -tilt Λ).

Proposition 2.2 ([7, Corollary 2.38]). If the Hasse quiver H(sτ -tilt Λ)
contains a finite connected component ∆, then H(sτ -tilt Λ) = ∆.

2.1. Silting theory. We denote by Cb(proj Λ) the category of bounded
complexes of projective Λ-modules and by Kb(proj Λ) the corresponding
homotopy category which is triangulated. Besides, we denote by ∼h the
homotopy equivalence in Kb(proj Λ). For any T ∈ Kb(proj Λ), let thick T
be the smallest full subcategory of Kb(proj Λ) containing T , which is closed
under cones, [±1], direct summands and isomorphisms.

Definition 3 ([5, Definition 2.1]). A complex T ∈ Kb(proj Λ) is called
presilting if

HomKb(proj Λ)(T, T [i]) = 0 for any i > 0.

A presilting complex T is called silting if thick T = Kb(proj Λ).

Similar to the left mutation of support τ -tilting modules, we recall the
irreducible left silting mutation ([5, Definition 2.30]) of silting complexes.
Let T = X ⊕ Y be a basic silting complex in Kb(proj Λ) with an indecom-
posable summand X. We take a minimal left add(Y )-approximation π and
a triangle

X
π

−→ Z −→ cone(π) −→ X[1].

Then, cone(π) is indecomposable and µ−X(T ) := cone(π)⊕Y is again a basic

silting complex in Kb(proj Λ), see [5, Theorem 2.31]. We call µ−X(T ) the
irreducible left mutation of T with respect to X.
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A complex in Kb(proj Λ) is called two-term if it is homotopy equivalent
to a complex T concentrated in degree 0 and −1, i.e.,

(T−1
d−1
T−→ T 0) := . . . // 0 // T−1

d−1
T // T 0 // 0 // . . . .

We denote by 2-silt Λ the set of isomorphism classes of basic two-term silting
complexes in Kb(proj Λ). Similarly, there is a partial order ≤ on the set
2-silt Λ which is introduced by [5, Theorem 2.11]. For any S, T ∈ 2-silt Λ,
we say that S ≤ T if HomKb(proj Λ)(T, S[i]) = 0 for any i > 0. We denote

by H(2-silt Λ) the Hasse quiver of 2-silt Λ, which is compatible with the
irreducible left mutations of silting complexes.

Proposition 2.3 ([7, Theorem 3.2]). There exists a poset isomorphism be-
tween sτ -tilt Λ and 2-silt Λ. More precisely, the bijection is given by

M ✤ // (P1 ⊕ P
[f,0]
−→ P0)

where (M,P ) is the corresponding support τ -tilting pair and P1
f

−→ P0 −→
M −→ 0 is a minimal projective presentation of M .

Since the poset sτ -tilt Λ has the unique maximal element Λ and the unique
minimal element 0, we can define the type of H(sτ -tilt Λ) (equivalently,
H(2-silt Λ)) as follows.

Definition 4. Let Λ be a τ -tilting finite algebra. We say that the Hasse
quiver H(sτ -tilt Λ) is of type Hm,n if it is of the form

△1
// △2

// . . . // △m
))❘❘❘

❘❘

Λ

66❧❧❧❧❧

((❘❘❘
❘❘ 0.

�1
// �2

// . . . // �n

55❦❦❦❦❦

Moreover, we have Hm,n ≃ Hn,m.

We have the following equivalent condition for Λ to be τ -tilting finite.

Proposition 2.4 ([13, Corollary 2.9]). An algebra Λ is τ -tilting finite if and
only if one of (equivalently, any of) the sets τ -rigid Λ, sτ -tilt Λ and 2-silt Λ
is finite.

2.2. Reduction theorems. There are some reduction theorems. First, we
review the brick-τ -rigid correspondence introduced by Demonet, Iyama and
Jasso [13]. Recall that M ∈ mod Λ is called a brick if EndΛ(M) = K. We
denote by brick Λ the set of isomorphism classes of bricks in mod Λ.

Lemma 2.5 ([13, Theorem 4.2]). Let Λ be a finite-dimensional algebra.
Then, Λ is τ -tilting finite if and only if the set brick Λ is finite.

Let Λ1, Λ2 be two algebras. We call Λ2 a quotient or quotient algebra of
Λ1 if there exists a surjective K-algebra homomorphism φ : Λ1 → Λ2.
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Corollary 2.6. Suppose that Λ2 is a quotient algebra of Λ1. If Λ2 is τ -tilting
infinite, then Λ1 is also τ -tilting infinite.

Proof. There exists a K-linear fully-faithful functor F : mod Λ2 → mod Λ1,
and F sends a brick in mod Λ2 to a brick in mod Λ1. Then, the statement
follows from Lemma 2.5. �

Lemma 2.7 ([7, Theorem 2.14]). There exists a poset anti-isomorphism
between sτ -tilt Λ and sτ -tilt Λop.

Lemma 2.8 ([14, Theorem 1]). Let I be a two-sided ideal generated by
central elements which are contained in the Jacobson radical of Λ. Then,
there exists a poset isomorphism between sτ -tilt Λ and sτ -tilt (Λ/I).

Lemma 2.9. If Y 6= 0 and

T1 := ( 0 // X
(1f) // X ⊕ Y

(−g◦f,g)// Z // 0 ) ∈ Kb(proj Λ),

T2 := ( 0 // X ⊕ Y

(

f1 f2
1 g
h1 h2

)

// Z ⊕X ⊕M // 0 ) ∈ Kb(proj Λ),

then T1 ∼h T
r
1 and T2 ∼h T

r
2 , where

T r
1 := ( 0 // Y

g // Z // 0 ) ∈ Kb(proj Λ),

T r
2 := ( 0 // Y

(

f2−f1◦g
h2−h1◦g

)

// Z ⊕M // 0 ) ∈ Kb(proj Λ).

Proof. (1) We define ϕ : T1 → T r
1 and ψ : T r

1 → T1 as follows,

T1 : 0 // X

0
��

(1f) // X ⊕ Y

(−f,1)
��

(−g◦f,g)// Z

1
��

// 0

T r
1 : 0 // 0

0

OO✤
✤

✤

0
// Y

(01)

OO✤
✤

✤

g
// Z

1

OO✤
✤

✤

// 0

.

Then, ϕ ◦ ψ = IdT r
1
and

ψ ◦ ϕ =
(
0,
(

0 0
−f 1

)
, 1
)
∼h IdT1 ,

because the difference IdT1 − ψ ◦ ϕ is null-homotopic as follows.

T1 : 0 // X

1

��

0

��

(1f) // X ⊕ Y

(

1 0
f 0

)

��

(−g◦f,g)//

(1,0)

||

Z

0

||

0

��

// 0

0

��
T1 : 0 // X

(1f)
// X ⊕ Y

(−g◦f,g)
// Z // 0

.
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(2) We define ϕ : T2 → T r
2 and ψ : T r

2 → T2 as follows,

T2 : 0 // X ⊕ Y

(0,1)

��

(

f1 f2
1 g
h1 h2

)

// Z ⊕X ⊕M
(

1 −f1 0
0 −h1 1

)

��

// 0

T r
2 : 0 // Y

(−g
1 )

OO✤
✤

✤

(

f2−f1◦g
h2−h1◦g

)

// Z ⊕M

(

1 0
0 0
0 1

)

OO✤
✤

✤

// 0

.

Then, ϕ ◦ ψ = IdT r
2
and

ψ ◦ ϕ =

((
0 −g
0 1

)
,

(
1 −f1 0
0 0 0
0 −h1 1

))
∼h IdT2 .

In fact, the difference IdT2 − ψ ◦ ϕ is null-homotopic as follows.

T2 : 0 // X ⊕ Y

0

zz

(

1 g
0 0

)

��

(

f1 f2
1 g
h1 h2

)

// Z ⊕X ⊕M

( 0 1 0
0 0 0 )

ww

(

0 f1 0
0 1 0
0 h1 0

)

��

// 0

0

xx
T2 : 0 // X ⊕ Y

(

f1 f2
1 g
h1 h2

)

// Z ⊕X ⊕M // 0

Therefore, we have T1 ∼h T
r
1 and T2 ∼h T

r
2 . �

3. Main Results

In this section, we will prove our main results mentioned in the intro-
duction. But before that, let us review the complete classification for the
representation type of two-point algebras. We refer to Appendix A for Table
T and Table W.

Proposition 3.1 ([16, Theorem 1, Theorem 2]). Let Λ be a two-point al-
gebra. Up to isomorphism and duality, Λ is representation-finite or tame if
and only if Λ degenerates to a quotient algebra of an algebra from Table T,
and Λ is wild if and only if Λ has a minimal wild algebra from Table W as
a quotient algebra.

We denote by rad(Λ) the Jacobson radical of Λ and by C(Λ) the center of
Λ. As explained in [14], although Λ has a complicated structure, its quotient
algebra

Λ̃ := Λ/ < C(Λ) ∩ rad(Λ) >
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Table Λ

Λ1 = K
(
1 // 2

)
;

Λ2 = K
(
1 // // 2

)
;

Q : 1
µ // 2 βee

(3) β2 = 0;
(4) β3 = 0;

Q : 1
µ //α

%%
2 βee

(5) α2 = β2 = 0;

Q : 1
µ // 2
ν

oo

(6) µν = νµ = 0;

Q : 1
µ //

α
%%

2
ν

oo

(7) α2 = µν = νµ = να = 0;
(8) α2 = µν = νµ = ναµ = 0;
(9) α3 = µν = νµ = να = 0;
(10) α3 = µν = νµ = ναµ = να2µ = 0;

Q : 1
µ //

α
%%

2
ν

oo βee

(11) α2 = β2 = µν = νµ = αµ = βν = 0;
(12) α2 = β2 = µν = νµ = βν = να = αµβ = 0.

may have a simpler structure. Moreover, by Lemma 2.8, we know that

#sτ -tilt Λ = #sτ -tilt Λ̃ and the Hasse quivers H(sτ -tilt Λ) and H(sτ -tilt Λ̃)
are of the same type. Then, by using this strategy and Corollary 2.6, we can
restrict the algebras (except forW4, T20 and T21) in Table W and Table T to
a small list (i.e., Table Λ) of two-point algebras. (In Table Λ, by an algebra
Λi, we mean the bound quiver algebra KQ/Ii, where Ii is the admissible
ideal generated by the relation (i).)

As a preparation for proving Theorem 1.1 and Theorem 1.2, we need
to determine the τ -tilting finiteness of Λi in Table Λ. We remark that
H(sτ -tilt Λ1) is of type H1,2 and H(sτ -tilt Λ6) is of type H2,2, and we omit
the details to show this.

It is well-known that the Kronecker algebra Λ2 admits infinitely many
(classical) tilting modules, so that it is obviously τ -tilting infinite. Since the
construction of tilting modules is not mentioned in this paper, we give a
different proof here for the convenience of readers.

Similar to the notion of minimal representation-infinite algebra, we call an
algebra Λ minimal τ -tilting infinite if Λ is τ -tilting infinite, but any proper
quotient algebra of Λ is τ -tilting finite.
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Lemma 3.2. The Kronecker algebra Λ2 is minimal τ -tilting infinite.

Proof. It is easy to check that

Mk = K
k //

1
// K

with k ∈ K is a brick in mod Λ2. Since the family (Mk)k∈K consists of
infinitely many pairwise non-isomorphic bricks, Λ2 is τ -tilting infinite by
Lemma 2.5. Besides, the minimality is obvious. �

Lemma 3.3. The two-point algebras Λ3 and Λ4 are τ -tilting finite.

Proof. Since Λ3 is a quotient algebra of Λ4, by Corollary 2.6, it suffices to
show that Λ4 is τ -tilting finite. We show that the poset 2-silt Λ4 has a finite
connected component and hence, it exhausts all two-term silting complexes
in Kb(proj Λ4) by Proposition 2.2 and Proposition 2.3. Then, Λ4 is τ -tilting
finite following from Proposition 2.4. Let P1 and P2 be the indecomposable
projective Λ4-modules. We have

P1 =

e1
µ
µβ

µβ2

≃
1
2
2
2
and P2 =

e2
β

β2
≃

2
2
2
.

We show that H(2-silt Λ4) is of type H1,5 as follows,

[
0−→P1

⊕
0−→P2

] [
P1−→0

⊕
0−→P2

]

[
P1−→0

⊕
P2−→0

]

[ 0−→P1
⊕

P2
f1
−→P⊕3

1

]

[
P2

f2
−→P⊕2

1
⊕

P2
f1
−→P⊕3

1

]

[
P2

f2
−→P⊕2

1
⊕

P⊕2
2

f3
−→P⊕3

1

] [
P2

µ
−→P1
⊕

P⊕2
2

f3
−→P⊕3

1

] [
P2

µ
−→P1
⊕

P2−→0

]

where

f1 =

(
µ
µβ

µβ2

)
, f2 =

( µ
µβ

)
, f3 =

(
µ 0

−µβ µ
0 µβ

)
.



τ -TILTING FINITENESS OF TWO-POINT ALGEBRAS 127

Since HomΛ4(P2, P1) = e1Λ4e2 = Kµ⊕Kµβ⊕Kµβ2 and HomΛ4(P1, P2) =
0, it is not difficult to compute the left mutations µ−P1

(Λ4) and µ−P2
(Λ4).

According to the bijection introduced in Proposition 2.3, one can find the
corresponding two-term silting complexes. We only show details for the rest
of the steps.

(1) Let T2 = X ⊕ Y := (0 −→ P1) ⊕ (P2
f1
−→ P⊕3

1 ). Then, µ−Y (T2) does
not belong to 2-silt Λ4 and therefore, we ignore this mutation. To compute
µ−X(T2), we take a triangle

X
π // Y // cone(π) // X[1] with π =

(
0,
(

0
0
1

))
.

We may check that π is a minimal left add(Y )-approximation. In fact,

• if we compose π with the endomorphism

Y : P2
f1 //

k1e2+k2β+k3β
2

��

P⊕3
1
(

k1 k2 k3
0 k1 k2
0 0 k1

)

��

Y : P2
f1 // P⊕3

1

,where k1, k2, k3 ∈ K,

then all elements of HomKb(proj Λ4)(X,Y ) are obtained;

• if

(
k1 k2 k3
0 k1 k2
0 0 k1

)(
0
0
1

)
=

(
0
0
1

)
, then k1 = 1 and k2 = k3 = 0.

Hence, π is indeed a minimal left add(Y )-approximation. By Lemma 2.9,

cone(π) = ( P1 ⊕ P2

(

0 µ
0 µβ

1 µβ2

)

// P⊕3
1 ) ∼h (P2

f2
−→ P⊕2

1 ).

Thus, µ−X(T2) = (P2
f2
−→ P⊕2

1 )⊕ (P2
f1
−→ P⊕3

1 ).

(2) Let T21 = X ⊕ Y := (P2
f2
−→ P⊕2

1 )⊕ (P2
f1
−→ P⊕3

1 ). Then, µ−X(T21) /∈

2-silt Λ4. To compute µ−Y (T21), we take a triangle

Y
π // X⊕3 // cone(π) // Y [1] with π =



(

e2
β

β2

)
,




1 0 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 0




.

Then, π is a minimal left add(X)-approximation. (In fact, we have

EndKb(proj Λ4)(X) = K

since EndΛ4(P1) = K. Furthermore,

EndKb(proj Λ4)(X
⊕3) ≃ Mat(3, 3,K).



128 Q. WANG

Secondly, λ◦π = π for λ ∈ Mat(3, 3,K) implies that λ is the identity. Thus,
π is indeed a minimal left add(X)-approximation.) By applying Lemma 2.9
twice, we have

cone(π) = ( P2













−µ
−µβ

−µβ2

e2
β

β2













// P⊕3
1 ⊕ P⊕3

2













1 0 0 µ 0 0
0 1 0 µβ 0 0
0 1 0 0 µ 0
0 0 1 0 µβ 0
0 0 1 0 0 µ
0 0 0 0 0 µβ













// P⊕6
1 )

∼h (P⊕2
2

f3
−→ P⊕3

1 ).

Thus, µ−Y (T21) = (P2
f2
−→ P⊕2

1 )⊕ (P⊕2
2

f3
−→ P⊕3

1 ).

(3) Let T212 = X ⊕ Y := (P2
f2
−→ P⊕2

1 ) ⊕ (P⊕2
2

f3
−→ P⊕3

1 ). Then,
µ−Y (T212) /∈ 2-silt Λ4. To compute µ−X(T212), we take a triangle

X
π // Y // cone(π) // X[1] with π =

((
0
e2

)
,
(

0 0
1 0
0 1

))
.

Then, π is a minimal left add(Y )-approximation. (If we compose π with

Y : P⊕2
2

f3 //

(

k1e2−k2β k2e2
−k2β

2 k1e2

)

��

P⊕3
1
(

k1 k2 0
0 k1 −k2
0 0 k1

)

��

Y : P⊕2
2

f3 // P⊕3
1

, where k1, k2 ∈ K,

then all elements of HomKb(proj Λ4)(X,Y ) are obtained; if
(

k1 k2 0
0 k1 −k2
0 0 k1

)(
0 0
1 0
0 1

)
=

(
0 0
1 0
0 1

)
,

then k1 = 1 and k2 = 0.) By applying Lemma 2.9 twice, we have

cone(π) = ( P2





−µ
−µβ
0
e2





// P⊕2
1 ⊕ P⊕2

2

(

0 0 µ 0
1 0 −µβ µ
0 1 0 µβ

)

// P⊕3
1 )

∼h (P2
µ

−→ P1).

Thus, µ−X(T212) = (P2
µ

−→ P1)⊕ (P⊕2
2

f3
−→ P⊕3

1 ).

(4) Let T2121 = X ⊕ Y := (P2
µ

−→ P1) ⊕ (P⊕2
2

f3
−→ P⊕3

1 ). Then,
µ−X(T2121) /∈ 2-silt Λ4. To compute µ−Y (T2121), we take a triangle

Y
π // X⊕3 // cone(π) // Y [1] with π =

((
e2 0
−β e2
0 β

)
,
(

1 0 0
0 1 0
0 0 1

))
.
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Then, π is a minimal left add(X)-approximation because of

EndKb(proj Λ4)(X) = K.

Then, we have

cone(π) = ( P⊕2
2













−µ 0
µβ −µ
0 −µβ
e2 0
−β e2
0 β













// P⊕3
1 ⊕ P⊕3

2

(

1 0 0 µ 0 0
0 1 0 0 µ 0
0 0 1 0 0 µ

)

// P⊕3
1 ) ∼h (P2 −→ 0).

Thus, µ−Y (T2121) = (P2
µ

−→ P1)⊕ (P2 −→ 0).

(5) Let T21212 = X ⊕ Y := (P2
µ

−→ P1) ⊕ (P2 −→ 0). Then, it is clear
that µ−Y (T21212) does not belong to 2-silt Λ4 and

µ−X(T21212) = (P1 −→ 0)⊕ (P2 −→ 0).

To sum up the above, we have constructed a finite connected component
in H(2-silt Λ4). We deduce that H(2-silt Λ4) is of type H1,5. By Proposition
2.3, this is equivalent to saying that H(sτ -tilt Λ4) is of type H1,5. �

Remark. Let P1 and P2 be the indecomposable projective Λ3-modules. Then,

P1 =
e1
µ
µβ

≃
1
2
2
and P2 =

e2
β ≃ 2

2 .

The Hasse quiver H(sτ -tilt Λ3) ≃ H(2-silt Λ3) is of type H1,3 as follows,
[
0−→P1

⊕
0−→P2

] [
P1−→0

⊕
0−→P2

]

[
P1−→0

⊕
P2−→0

][
0−→P1

⊕

P2

( µ
µβ)
−→ P⊕2

1

] 


P2
µ

−→P1
⊕

P2

( µ
µβ)
−→ P⊕2

1




[
P2

µ
−→P1
⊕

P2−→0

]

.

Lemma 3.4. The two-point algebra Λ5 is minimal τ -tilting infinite.

Proof. Note that Λ5 is a gentle algebra and it is representation-infinite by
Hoshino and Miyachi’s result [17, Theorem A]. Besides, Plamondon [22,
Theorem 1.1] showed that a gentle algebra is τ -tilting finite if and only if it
is representation-finite. Therefore, Λ5 is τ -tilting infinite.

For the minimality, we may consider

Λ̂5 := Λ5/ < αµβ >
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since the socle of Λ5 is Kαµβ⊕Kµβ⊕Kβ and any proper quotient Λ5/I of
Λ5 satisfies αµβ ∈ I. We denote by P1 and P2 the indecomposable projective
Λ̂5-modules, then

P1 =
e1

α µ
αµ µβ

and P2 =
e2
β .

By direct calculation, we find that H(sτ -tilt Λ̂5) ≃ H(2-silt Λ̂5)) is of type
H1,4 as follows,

[
0−→P1

⊕
0−→P2

] [
P1−→0

⊕
0−→P2

]

[
P1−→0

⊕
P2−→0

]

[
0−→P1

⊕

P2

( µ
µβ)
−→ P⊕2

1

]




P2
µ

−→P1
⊕

P2

( µ
µβ)
−→ P⊕2

1




[
P2

µ
−→P1
⊕

P⊕2
2

(µ,αµ)
−→ P1

] [
P2−→0

⊕

P⊕2
2

(µ,αµ)
−→ P1

]

.

This implies that Λ̂5 is τ -tilting finite and Λ5 is minimal τ -tilting infinite. �

Lemma 3.5. The two-point algebras Λ7, Λ8, Λ9 and Λ10 are τ -tilting finite.

Proof. Note that Λ7, Λ8 and Λ9 are quotient algebras of Λ10. By Corollary
2.6, it suffices to show that Λ10 is τ -tilting finite. The indecomposable
projective modules of Λ10 are

P1 = e1Λ10 =
α2

α2µ

α
αµ

e1
µ ≃

1
2

1
2

1
2 and P2 = e2Λ10 =

e2
ν
να
να2

≃
2
1
1
1
.

Since

HomΛ10(P1, P2) = e2Λ10e1 = Kν ⊕Kνα⊕Kνα2

and

HomΛ10(P2, P1) = e1Λ10e2 = Kµ⊕Kαµ⊕Kα2µ,

we know that the computation of the left mutation sequence started at P1

is similar to that of Λ4, and the computation of the left mutation sequence
started at P2 is similar to that of Λop

4 . By Lemma 2.7 and the calculation
in Lemma 3.3, we deduce that the Hasse quiver H(2-silt Λ10) is as follows,
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[
0−→P1

⊕
0−→P2

] [
P1

g1
−→P⊕3

2
⊕

0−→P2

] [
P1

g1
−→P⊕3

2
⊕

P1
g2
−→P⊕2

2

] [
P⊕2
1

g3
−→P⊕3

2
⊕

P1
g2
−→P⊕2

2

]

[
P⊕2
1

g3
−→P⊕3

2
⊕

P1
ν

−→P2

]

[
P1−→0

⊕

P1
ν

−→P2

]

[
P1−→0

⊕
P2−→0

]

[
0−→P1

⊕

P2
µ

−→P1

]

[
P⊕3
2

f1
−→P⊕2

1
⊕

P2
µ

−→P1

]

[
P⊕3
2

f1
−→P⊕2

1
⊕

P⊕2
2

f2
−→P1

] [
P⊕3
2

f3
−→P1

⊕

P⊕2
2

f2
−→P1

] [
P⊕3
2

f3
−→P1

⊕
P2−→0

]

,

where f1 =
(

αµ µ 0
0 −αµ µ

)
, f2 = ( αµ µ ), f3 = ( α2µ αµ µ ) and

g1 =
(

ν
να
να2

)
, g2 = ( ν

να ), g3 =
(

ν 0
−να ν
0 να

)
.

We conclude that H(sτ -tilt Λ10) ≃ H(2-silt Λ10) is of type H5,5. Thus,
Λ7, Λ8, Λ9 and Λ10 are τ -tilting finite. Next, we determine the type of the
Hasse quiver H(sτ -tilt Λi) for i = 7, 8, 9.

(1) The indecomposable projective Λ7-modules are

P1 =
e1

α µ
αµ

and P2 =
e2
ν .

We give the Hasse quiver H(2-silt Λ7) by direct calculation as follows,

[
0−→P1

⊕
0−→P2

] [
P1

ν
−→P2
⊕

0−→P2

] [
P1

ν
−→P2
⊕

P1−→0

]

[
P1−→0

⊕
P2−→0

][
0−→P1

⊕

P2
µ

−→P1

] [
P⊕2
2

(µ,αµ)
−→ P1

⊕

P2
µ

−→P1

] [
P⊕2
2

(µ,αµ)
−→ P1

⊕
P2−→0

]

.

Hence, H(sτ -tilt Λ7) ≃ H(2-silt Λ7) is of type H2,3.
(2) The indecomposable projective Λ8-modules are

P1 =
e1

α µ
αµ

and P2 =
e2
ν
να

,
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and the Hasse quiver H(2-silt Λ8) is given as follows,

[
0−→P1

⊕
0−→P2

] [
P1

( ν
να)
−→ P⊕2

2
⊕

0−→P2

] 
 P1

( ν
να)
−→ P⊕2

2
⊕

P1
ν

−→P2




[
P1−→0

⊕

P1
ν

−→P2

]

[
P1−→0

⊕
P2−→0

][
0−→P1

⊕

P2
µ

−→P1

] [
P⊕2
2

(µ,αµ)
−→ P1

⊕

P2
µ

−→P1

] [
P⊕2
2

(µ,αµ)
−→ P1

⊕
P2−→0

]

.

Hence, H(sτ -tilt Λ8) ≃ H(2-silt Λ8) is of type H3,3.
(3) Let Q1 and Q2 be the indecomposable projective Λ9-modules. Then,

Q1 = e1Λ9 =
α2

α2µ

α
αµ

e1
µ ≃

1
2

1
2

1
2 and Q2 = e2Λ9 =

e2
ν ≃ 2

1 .

Since HomΛ9(Q1, Q2) = e2Λ9e1 = Kν and

HomΛ9(Q2, Q1) = e1Λ9e2 = Kµ⊕Kαµ⊕Kα2µ,

the computation of the left mutation sequence started at Q2 is similar to
that of Λop

4 . Then, by Lemma 2.7 and the calculation in Lemma 3.3, we
deduce that H(2-silt Λ9) is presented as follows,

[
0−→Q1

⊕
0−→Q2

] [
Q1

ν
−→Q2
⊕

0−→Q2

] [
Q1−→0

⊕

Q1
ν

−→Q2

]

[
Q1−→0

⊕
Q2−→0

]

[
0−→Q1

⊕

Q2
µ

−→Q1

]

[
Q⊕3

2

f1
−→Q⊕2

1
⊕

Q2
µ

−→Q1

]

[
Q⊕3

2

f1
−→Q⊕2

1
⊕

Q⊕2
2

f2
−→Q1

] [
Q⊕3

2

f3
−→Q1

⊕

Q⊕2
2

f2
−→Q1

] [
Q⊕3

2

f3
−→Q1

⊕
Q2−→0

]

,

where f1 =
(

αµ µ 0
0 −αµ µ

)
, f2 = ( αµ µ ) and f3 = ( α2µ αµ µ ). By Proposition

2.3, we conclude that H(sτ -tilt Λ9) ≃ H(2-silt Λ9) is of type H2,5. �
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Lemma 3.6. The two-point algebras Λ11 and Λ12 are τ -tilting finite.

Proof. (1) The indecomposable projective Λ11-modules are

P1 =
e1

α µ
µβ

and P2 =
e2

β ν
να

.

We calculate the Hasse quiver H(2-silt Λ11) directly as follows,

[
0−→P1

⊕
0−→P2

] [
P1

( ν
να)
−→ P⊕2

2
⊕

0−→P2

] 
 P1

( ν
να)
−→ P⊕2

2
⊕

P1
ν

−→P2




[
P1−→0

⊕

P1
ν

−→P2

]

[
P1−→0

⊕
P2−→0

][
0−→P1

⊕

P2

( µ
µβ)
−→ P⊕2

1

] 


P2
µ

−→P1
⊕

P2

( µ
µβ)
−→ P⊕2

1




[
P2

µ
−→P1
⊕

P2−→0

]

.

Thus, H(sτ -tilt Λ11) ≃ H(2-silt Λ11) is of type H3,3.
(2) The indecomposable projective Λ12-modules are

P1 =
e1

α µ
αµ µβ

and P2 =
e2

β ν ,

and the Hasse quiver H(2-silt Λ12) is shown as follows,

[
0−→P1

⊕
0−→P2

] [
P1

ν
−→P2
⊕

0−→P2

] [
P1

ν
−→P2
⊕

P1−→0

]

[
P1−→0

⊕
P2−→0

]

[
0−→P1

⊕

P2

( µ
µβ)
−→ P⊕2

1

]




P2
µ

−→P1
⊕

P2

( µ
µβ)
−→ P⊕2

1




[
P2

µ
−→P1
⊕

P⊕2
2

(µ,αµ)
−→ P1

] [
P2−→0

⊕

P⊕2
2

(µ,αµ)
−→ P1

]

.

Thus, H(sτ -tilt Λ12) ≃ H(2-silt Λ12) is of type H2,4. �

Lastly, we summarize the number #sτ -tilt Λi and the type of H(sτ -tilt Λi)
for Λi with i 6= 2, 5 as follows,

Λi Λ1 Λ3 Λ4 Λ6 Λ7 Λ8 Λ9 Λ10 Λ11 Λ12

#sτ -tilt Λi 5 6 8 6 7 8 9 12 8 8

Type H1,2 H1,3 H1,5 H2,2 H2,3 H3,3 H2,5 H5,5 H3,3 H2,4

.
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3.1. The proof of Theorem 1.1. First, one can easily find that W1,
W2, W3 and W5 have Λ2 as a quotient algebra and therefore, they are
τ -tilting infinite. It is also not difficult to find that W4 is τ -tilting finite and
H(sτ -tilt W4) is of type H1,2.

We may distinguish the case W14. Note that ναµ ∈ C(W14) and the

indecomposable projective modules of W̃14 :=W14/ < ναµ > are

P1 =
e1

α µ

α2 αµ
and P2 =

e2
ν
να
να2

.

Then, we find that W̃14 is a quotient algebra of Λ10 by α2µ. Thus, by
similar calculation with Λ10 in the proof of Lemma 3.5, one can check that

H(sτ -tilt W̃14) is of type H3,5. By Lemma 2.8, we deduce that H(sτ -tiltW14)
is of type H3,5.

Next, we show that W6 ∼ W34 (except for W14) are τ -tilting finite by
determining the type of H(sτ -tiltWi) for i = 6, 7, . . . , 34 (i 6= 14). In order to
do this, we can apply Lemma 2.8 to construct a two-sided ideal I generated
by elements in C(Wi) ∩ rad(Wi) such that sτ -tilt A ≃ sτ -tilt (Wi/I). Then,
we can find the type of H(sτ -tilt Wi) following Table Λ. Here, we compute
the center of an algebra by GAP as follows, see [28].

Wi I A

W6 α2 Λop
3

W7 α3 Λop
4

W8 α Λ4

W9
α, β2 Λ3

W10

W11 β2 Λ̂5

W12
α, β Λ1

W13

W15 νµ Λop
9

W16 α2, νµ Λ8

W17 α3 Λop
9

W18
α2 Λ8

W19
Λ7

W20 µν + νµ

Wi I A

W21 αµν
Λ7

W22 α2, µν

W23 α2 + νµ, ναµ Λ8

W24 µν W̃ op
14

W25 α2, β Λ7

W26 α, µν Λop
7

W27

µν

Λop
12

W28 Λ11

W29 Λop
11

W30 Λ12

W31 α+ β, νµ

Λ6
W32 α+ β, νµ, µν

W33 α+ β

W34 α+ β, µν

In particular, we point out that although Λ7 6≃ W̃21 := W21/I, but sτ -tilt Λ7 ≃

sτ -tilt W̃21. To see this, one may check that νµ+µν ∈ C(W̃21) and therefore,

sτ -tilt W̃21 ≃ sτ -tilt
(
W̃21/ < µν, νµ >

)
≃ sτ -tilt Λ7.
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3.2. The proof of Theorem 1.2. Similar to the proof of Theorem 1.1,
one can check that T1 has Λ2 as a quotient algebra, T3 and T17 have Λ5 as
a quotient algebra. Hence, T1, T3 and T17 are τ -tilting infinite.

We may also apply Lemma 2.8 to construct a two-sided ideal I generated
by elements in C(Ti) ∩ rad(Ti) such that sτ -tilt B ≃ sτ -tilt (Ti/I). We have

Ti I B

T2 α2

Λop
3T4 β

T5 α, β Λ1

T6 α+ β2 Λ3

T7
α+ β Λ1

T8

T10 να2µ Λ10

T11 α2, ναµ Λ8

Ti I B

T12 α2, νµ Λ7

T13 α, µν + νµ Λ6

T14 α2 + νµ Λ8

T15 α2, νµ Λ7

T16 µν Λ9

T18
β, ναµ+

T̃9
αµν + µνα

T19 α, β, µν + νµ Λ6

,

for i 6= 9, 20, 21. Then, we look at the remaining cases as follows.

Case (T9). Since νµ, αµν + µνα+ ναµ ∈ C(T9) and αµν ∈ C(T̃9) with

T̃9 := T9/ < νµ, ναµ, αµν + µνα >.

Then, we have µν ∈ C(T̃9/ < αµν >) and therefore,

sτ -tilt T9 ≃ sτ -tilt (T9/ < µν, νµ, ναµ >) ≃ sτ -tilt Λ8.

Case (T20). For any k ∈ K/{0}, we have µν + νµ ∈ C(T20) such that

sτ -tilt T20 ≃ sτ -tilt T̃20 with T̃20 := T20/ < µν, νµ >.

Then, the indecomposable projective T̃20-modules are

P1 =
e1

α µ
µβ

and P2 =
e2

β ν
να

,

and the Hasse quiver H(2-silt T̃20) is given as follows,

[
0−→P1

⊕
0−→P2

] [
P1

( ν
να)
−→ P⊕2

2
⊕

0−→P2

] 
 P1

( ν
να)
−→ P⊕2

2
⊕

P1
ν

−→P2




[
P1−→0

⊕

P1
ν

−→P2

]

[
P1−→0

⊕
P2−→0

][
0−→P1

⊕

P2
µ

−→P1

] [
P2

µ
−→P1
⊕

P2−→0

]

.

Thus, H(sτ -tilt T20) ≃ H(sτ -tilt T̃20) ≃ H(2-silt T̃20) is of type H2,3.
Case (T21). For any k1, k2 ∈ K/{0}, we have µν+νµ ∈ C(T21). Similarly,

we have sτ -tilt T21 ≃ sτ -tilt (T21/ < µν, νµ >) and the corresponding Hasse
quiver is of type H2,2.
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3.3. Other applications. At the end of this paper, we give two easy ob-
servations. First, we have

Proposition 3.7. Let Λ be a connected two-point algebra without loops.
Then, Λ is τ -tilting finite if and only if it is representation-finite.

Proof. By our assumption, the quiver Q of Λ does not contain loops. If Q
contains multiple arrows, then Λ has the Kronecker algebra Λ2 as a quo-
tient algebra and hence, Λ is τ -tilting infinite. Then, we deduce that if

Λ is τ -tilting finite, then Q is either • // •oo or • // • . On the other

hand, any finite-dimensional algebra with quiver • // •oo or • // • is
representation-finite from Bongartz and Gabriel [10]. �

Second, we determine the τ -tilting finiteness of two-point symmetric spe-
cial biserial algebras. We refer to [23] for the basic concepts and properties of
symmetric special biserial algebras, or equivalently, Brauer graph algebras.
In [8], the authors classified two-point symmetric special biserial algebras
up to Morita equivalence, so that we can determine their τ -tilting finiteness.

Proposition 3.8 ([8, Theorem 7.1]). Let Λ be a two-point symmetric special
biserial algebra. Then, Λ is Morita equivalent to one of Bi = KQ/Ii below.

Q : •
µ // •
ν

oo I1 : (µν)
nµ = (νµ)nν = 0, n > 1.

Q : • //
µ1,µ2 //

•oo
ν1,ν2
oo

I2 : µ1ν2 = ν2µ1 = µ2ν1 = ν1µ2 = 0

(µ1ν1)
m = (µ2ν2)

n, (ν1µ1)
m = (ν2µ2)

n,m, n > 1

I3 : µ1ν2 = ν1µ1 = µ2ν1 = ν2µ2 = 0,
(µ1ν1µ2ν2)

n = (µ2ν2µ1ν1)
n, (ν1µ2ν2µ1)

n = (ν2µ1ν1µ2)
n, n > 1.

Q : •
µ //

α
%%

•
ν

oo
I4 : αµ = να = 0, αm = (µν)n,m > 2, n > 1.

I5 : α
2 = νµ = 0, (αµν)n = (µνα)n, n > 1.

Q : •
µ //

α
%%

•
ν

oo βee

I6 : αµ = µβ = βν = να = 0,
αm = (µν)n, βr = (νµ)n,m, r > 2, n > 1.

I7 : α
2 = νµ = µβ = βν = 0,

(αµν)n = (µνα)n, βm = (ναµ)n,m > 2, n > 1.
I8 : α

2 = β2 = µν = νµ = 0,
(ναµβ)n = (βναµ)n, (αµβν)n = (µβνα)n, n > 1.

In the above, we assume that m,n, r ∈ N.
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Proposition 3.9. Let Bi be a two-point symmetric special biserial algebra.
Then, Bi is τ -tilting finite if i = 1, 4, 5, 6, 7; τ -tilting infinite if i = 2, 3, 8.
Moreover, we have

Bi B1 B4 B5 B6 B7

#sτ -tilt Bi 6 8 6 8

Type H2,2 H3,3 H2,2 H3,3

.

Proof. One can easily check that B2 and B3 have Λ2 as a quotient algebra,
and B8 has Λ5 as a quotient algebra. Therefore, B2, B3 and B8 are τ -tilting
infinite. We show the remaining case by case.

Case (B1). If n = 1, then µν, νµ ∈ C(B1). If n > 2, then µν+νµ ∈ C(B1).
Both of them satisfy

sτ -tilt B1 ≃ sτ -tilt (B1/ < µν, νµ >) ≃ sτ -tilt Λ6.

Case (B4). If n = 1, then α, νµ ∈ C(B4). If n > 2, then α, µν + νµ ∈
C(B4). Both of them satisfy

sτ -tilt B4 ≃ sτ -tilt (B4/ < α, µν, νµ >) ≃ sτ -tilt Λ6.

Case (B5). If n = 1, then µν, ναµ ∈ C(B5). If n > 2, then αµν + µνα+

ναµ ∈ C(B5) and αµν ∈ C(B̃5) such that µν ∈ C(B̃5/ < αµν >), where

B̃5 := B5/ < ναµ, αµν + µνα >.

Hence, sτ -tilt B5 ≃ sτ -tilt (B5/ < µν, ναµ >) ≃ sτ -tilt Λ8.
Case (B6). If n = 1, then α, β ∈ C(B6). If n > 2, then α, β, µν + νµ ∈

C(B6). Both of them satisfy

sτ -tilt B6 ≃ sτ -tilt (B6/ < α, β, µν, νµ >) ≃ sτ -tilt Λ6.

Case (B7). If n = 1, then β, µν ∈ C(B7). If n > 2, then β, αµν + µνα+

ναµ ∈ C(B7) and αµν ∈ C(B̃7) such that µν ∈ C(B̃7/ < αµν >), where

B̃7 := B7/ < β, ναµ, αµν + µνα >.

Thus, sτ -tilt B7 ≃ sτ -tilt (B7/ < β, µν, ναµ >) ≃ sτ -tilt Λ8. �

Appendix A. Table T and Table W introduced in [16]

Table T

•

µ1,µ2 //
// •

ν1,ν2
oo
oo

(1) ν1µ1 = ν2µ2 = (ℓ1µ1+ℓ2µ2)(k1ν1+k2ν2) = (ℓ3µ1+ℓ4µ2)(k3ν1+k4ν2) = 0,
where k1, k2, k3, k4, ℓ1, ℓ2, ℓ3, ℓ4 ∈ K and k1k4 6= k2k3, ℓ1ℓ4 6= ℓ2ℓ3.
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•
µ //α

%%
•

(2) α6 = α2µ = 0;

•
µ //α

%%
• βee

(3) α2 = β2 = 0;
(4) α2 = βn = µβ = 0,

n > 2, n ∈ N;
(5) αm = βn = αµ = µβ = 0,

m,n > 2,m, n ∈ N;
(6) α2 = β3 = 0, αµ = µβ2;
(7) α3 = β6 = 0, αµ = µβ;
(8) α4 = β4 = 0, αµ = µβ;

•
µ //

α
%%

•
ν

oo

(9) α2 = µνµ = νµν = (ναµ)n = 0,
n > 1, n ∈ N;

(10) α3 = µν = νµ = ναµ = 0;
(11) α3 = µν, νµ = να2 = α2µ = 0;
(12) α4 = µν, να = α2µ = 0;
(13) αm = να = αµ = (µν)n = 0,

m > 2, n > 1,m, n ∈ N;
(14) α2 = µν, ναµ = 0;
(15) α3 = µν, να = α2µ = 0;
(16) α3 = µν, να = νµ = 0;

•
µ //

α
%%

•
ν

oo βee

(17) α2 = β2 = νµ = µν = 0;
(18) α2 = βm = νµ = µβ = βν = (ναµ)n = 0, m > 2, n > 1,m, n ∈ N;
(19) αm = βn = (νµ)r = αµ = να = µβ = βν = 0,

m,n > 2, r > 1,m, n, r ∈ N;
(20) α2 = µν, β2 = νµ, βν = 0, αµ = kµβ, k ∈ K/{0};
(21) αm = βn = 0, β2 = νµ, να = βν, k1α

2 = µν, αµ = k2µβ,
k1, k2 ∈ K/{0}, m,n > 2,m, n ∈ N.

Table W

•
µ1,µ2,µ3 ////// •

(1) KQ;
•

µ1,µ2 // // •
ν

oo

(2) µ1ν = µ2ν = 0;

•

µ1,µ2 //
// •

ν1,ν2
oo
oo

(3) ν2µ1 = ν1µ2, µ1ν1 = µ2ν1 = µ1ν2 = µ2ν2 = ν1µ1 = 0;

•
µ //

α1

��
α2 99 •

(4) α2
1 = α2

2 = α1α2 = 0,

α2α1 = α1µ = α2µ = 0;

•

α

�� µ1 //

µ2

// •
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(5) α2 = αµ1 = αµ2 = 0;

•
µ //α

%%
•

(6) α7 = α2µ = 0;
(7) α4 = α3µ = 0;

•
µ //α

%%
• βee

(8) α2 = β3 = αµ = 0;
(9) α3 = β3 = αµ = µβ2 = 0;
(10) α2 = β4 = αµ = µβ2 = 0;
(11) α2 = β3 = αµβ = µβ2 = 0;
(12) α4 = β5 = µβ2 = 0, αµ = µβ;
(13) α3 = β7 = µβ2 = 0, αµ = µβ;

•
µ //

α
%%

•
ν

oo

(14) α3 = µν = νµ = α2µ = 0;
(15) α3 = µν = αµ = 0;
(16) α3 = µν = ναµ = να2 = α2µ = 0;
(17) α4 = µν = νµ = αµ = να3 = 0;
(18) α4 = µν = νµ = 0,

ναµ = να2 = α2µ = 0;
(19) α5 = µν = νµ = να = α2µ = 0;
(20) α2 = να = νµν = αµν = 0;
(21) α2 = να = µνµ = 0;
(22) α3 = νµ = να = αµν = α2µ = 0;
(23) α2 = µν, α3 = α2µ = 0;
(24) α4 = νµ = ναµ = να2 = 0,

α3 = µν;

•
µ //

α
%%

•
ν

oo βee

(25) α3 = β2 = νµ = µν = να = µβ = βν = α2µ = 0;
(26) α2 = β2 = νµ = αµ = να = βν = 0;
(27) α2 = µν, β2 = νµ = αµ = µβ = βνα = 0;
(28) α2 = µν, β2 = νµ = αµ = βν = 0;
(29) α2 = µν, β2 = νµ = να = µβ = 0;
(30) α2 = µν, β2 = νµ = να = βν = αµβ = 0;
(31) αµ = µβ, α2 = β3 = µν = να = βν = µβ2 = 0;
(32) αµ = µβ, α2 = β2 = να = βν = µνµ = νµν = 0;
(33) αµ = µβ, α3 = β3 = νµ = µν = να = βν = µβ2 = α2µ = 0;
(34) αµ = µβ, α3 = β2 = νµ = να = βν = α2µ = 0;
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