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1. Introduction

CM2 chondrites contain organic matter, which was exposed to 
the conditions present on meteorite parent bodies shortly after the 
formation of the solar system <4567.30 ± 0.16 Ma (Connelly et al., 
2012). These extraterrestrial objects and their organic cargo can re-
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able nature of the Raman response of ROM from Murchison and Mighei 
erited a ROM component that is chemically similar, reflecting either a 
ation of CM2 meteoritic ROM and/or that these meteorites probed the 
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veal much about the processes which operated during this period 
of abiotic chemistry, directly preceding the delivery of large quan-
tities of meteoritic material to Earth and the subsequent origin of 
life (Sephton, 2013).

Meteoritic organic matter, such as that found in CM2 chon-
drites, is composed of different fractions. Approximately 70% is 
insoluble/macromolecular organic matter (IOM/MOM) and only 
∼30% is present as solvent soluble/free organic matter (SOM/FOM) 
(Sephton, 2013). SOM/FOM has been studied more extensively 
than IOM/MOM and a great diversity of solvent soluble organic 
compounds have been identified (Glavin et al., 2018; Martins 
and Sephton, 2009; Pizzarello and Shock, 2010; Sephton, 2013). 
IOM/MOM is composed of two fractions: labile organic matter 
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(LOM) and refractory organic matter (ROM) (Sephton et al., 2003). 
Whilst ROM is relatively resistant to pyrolysis techniques, LOM is 
liberated by processes such as hydrous pyrolysis (Oba and Naraoka, 
2006), a laboratory simulation of parent body aqueous alteration.

Aqueous fluids have been implicated in both the alteration and 
synthesis of organic matter in carbonaceous chondrites. Hydrous 
pyrolysis of the MOM present within CM2 and CI1 chondrites was 

whether it is more similar to disordered amorphous carbon (con-
taining a larger amount of sp3 orbitals) (Beyssac et al., 2003; 
Busemann et al., 2007; Ferrari and Robertson, 2000; Tuinstra and 
Koenig, 1970).

Whilst investigations of bulk meteorite organic matter and FOM 
and LOM have been undertaken, few studies have probed the ROM 
fraction. The ROM fraction is depleted in the heavy isotopes 13C 

15
shown to liberate aromatic moieties, which were attached by ester 
and ether linkages (Sephton et al., 2000, 1999). The liberated com-
pounds possessed near identical δ13C values to their FOM coun-
terparts, indicating that LOM may be the originator of these FOM 
components (Sephton et al., 1998). Furthermore, the released com-
pounds demonstrated alteration-dependent genetic relationships. 
A decreasing abundance of products from the liberation of ether 
linkages and condensed aromatic networks was observed with in-
creasing levels of aqueous alteration (Sephton et al., 2000).

Previous studies have also investigated the effects of aque-
ous alteration on the generation of meteoritic organic matter us-
ing interstellar or cometary starting compositions. Kebukawa et 
al. (2017) used simple chemical starting compositions, consisting 
of cometary or interstellar analogues, to produce compounds in-
dicative of carbonaceous chondrite compositions. Meanwhile, Vino-
gradoff et al. (2018) studied the effects of aqueous alteration on a 
common organic interstellar ice analogue, hexamethylenetetramine 
(HMT). The experiment demonstrated that a large variety (>150) 
of compounds and an insoluble residue could be produced from 
this one starting material, under hydrothermal conditions. Sub-
sequently, Danger et al. (2021) use hydrothermal experiments to 
chart how meteorite SOM might form from material that was orig-
inally present as ice housed within dense molecular clouds.

Anhydrous or thermal alteration is also recorded by meteoritic 
organic matter. Quirico et al. (2003) used Raman spectroscopy to 
study the organic matter of 6 unequilibrated ordinary chondrites 
(UOCs) and concluded that parent body thermal metamorphism 
is the major control on the maturity of meteoritic organic mat-
ter among examples of this meteorite class, as opposed to nebula 
heating. Similar conclusions were drawn by studies of CV3 chon-
drites (Bonal et al., 2006) and CO3 chondrites (Bonal et al., 2007), 
with the former introducing quantification of the thermal meta-
morphic grade and the latter employing a geothermometer.

Busemann et al. (2007) studied 51 chondrites of different 
classes through Raman spectroscopy and concluded that they are 
representative of different processes. Contrasting styles of meta-
morphism were responsible for the differences in ordinary, CO and 
oxidised and reduced CV chondrites, whilst the presence of amor-
phous carbon in more primitive meteorites (CI, CM and CR) was 
the result of sputtering, UV or particle irradiation. Busemann et 
al. (2007) also calibrated a geothermometer, which related the full 
width at half maximum (FWHM) of the D bands to the Raman 
spectroscopy based peak metamorphic temperatures (PMT) of Huss 
et al. (2006). However, Quirico et al. (2009) suggested that the 
Raman response of organic matter is not as well correlated with 
thermal metamorphism as previously thought. Instead, the level 
of confinement (free volume), pressure and precursor composi-
tion are also major factors, especially among the chondrites con-
taining more primitive organic matter. Nevertheless, subsequent 
studies have highlighted the different effects of prolonged (radio-
genic heating in the case of >type 3) versus short term heating 
(most likely impact-related in the case of type 1 and 2) on the Ra-
man response of meteoritic organic matter (Busemann et al., 2007; 
Quirico et al., 2018, 2014; Starkey et al., 2013).

Raman spectroscopy has a proven history for studying macro-
molecular materials and provides information concerning the type 
of carbon bonding present in meteorite organic matter. Raman 
spectroscopy can indicate whether organic matter is closer to 
ordered graphite-like carbon (containing mostly sp2 orbitals) or 
2

and N (Sephton et al., 2003) and is seemingly unaffected by 
hydrous pyrolysis and, therefore, analogous processing associated 
with parent body aqueous alteration. However, to date a Raman 
spectroscopic investigation of isolated ROM and a comparison with 
bulk meteorite organic matter has not been undertaken. This is 
likely in part because of the assumption that IOM/MOM is a sin-
gle component, despite experimental evidence that suggests it is 
composed of two distinct fractions (LOM and ROM) in terms of 
composition, structure and isotopes (Kitajima et al., 2002; Sephton 
et al., 2003, 1999, 1998).

Chemical degradation can be used to target functionalities sim-
ilar to aqueous alteration, such as ether and ester linkages. How-
ever, chemical degradation, unlike hydrous pyrolysis, avoids the 
introduction of phenolic groups by interaction with water (at 
>250◦C) (Sephton et al., 1999). Experiments involving KOH and HI 
have been performed previously in order to liberate units from ter-
restrial samples (Höld et al., 1998; Schouten et al., 1998). Here we 
extract FOM compounds and liberate LOM via the use of potassium 
hydroxide (KOH) and hydroiodic acid (HI) to isolate the ROM com-
ponent. Raman spectroscopy has enabled a detailed investigation 
of heterogeneity between different fractions of the same meteorite 
and between complementary fractions of different meteorites. We 
discuss the potential processes that could yield the relationships 
observed and present these in the wider context of extraterrestrial 
organic matter.

2. Methodology

The Murchison and Mighei meteorites (CM2) were selected 
because they represent a class of carbonaceous chondrites that 
have experienced aqueous alteration and contain the primitive or-
ganic matter of interest to the current study. Interior samples 
of the Murchison (171.5 mg) and Mighei (187.6 mg) meteorites 
were ground using an agate pestle and mortar and extracted with 
deionised water for 22 hours at 100 ◦C. Subsequently, the super-
natant was removed, the residue left to dry overnight and the 
meteorite samples subjected to chemical degradation. The samples 
were first treated with KOH in water for 1 hour at 65 ◦C and then, 
after supernatant removal and drying overnight, to HI for 2 hours 
at 130 ◦C. After chemical treatment the mineral matrix of the sam-
ples was still visible, indicating that the majority of the inorganic 
material was not removed by the procedure. Additional raw sam-
ples of Murchison and Mighei were only ground and not extracted 
or degraded.

Raman spectroscopy was undertaken using a Thermo Fisher 
DXR microscope at the SMIS beamline, SOLEIL Synchrotron, France. 
The Raman microscope was fitted with a 532 nm laser, a 100x ob-
jective and a 0.8 numerical aperture with a spot size of 0.8 μm, a 
resolution of 4 cm−1 and a 25 μm slit. The 2D maps were taken as 
grids with 0.5 μm spacing, each point consisting of 2 acquisitions 
recorded over 30 s. A low laser power of 0.2 mW was used to en-
sure that laser induced heating did not alter the meteoritic organic 
matter. The chemically degraded and undegraded meteorite sam-
ples were placed onto separate glass slides and grains with flat 
surfaces and spectra that displayed a good signal to noise ratio 
were selected.

Three spectra were selected for each sample, Fityk version 0.9.8 
(Wojdyr, 2010) was used to baseline correct, normalise and fit the 
peaks for all samples. Two Lorentzian peaks were chosen after 
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Table 1
A comparison of the Lorentzian and Gaussian standard deviations for the peak parameters of 
the Murchison grain 1 spectra.

Peak Centre FWHM
Peak Fit D G D G

Lorentzian 1356.48 ± 2.19 1591.23 ± 0.46 178.42 ± 2.48 76.26 ± 3.46
Gaussian 1362.18 ± 4.35 1592.05 ± 0.08 238.09 ± 4.45 88.98 ± 4.59

Fig. 1. Lorentzian and Gaussian peak fits for a Raman spectrum from the Murchison 
grain 1 sample. The data is shown in grey, the peak fits in red and the convolu-
tion of the fitted peaks is shown in blue. (For interpretation of the colours in the 
figure(s), the reader is referred to the web version of this article.)

fitting of the spectra with Gaussian functions gave no consistent 
improvement in the standard deviations of the peak parameters 
(Table 1). Lorentzian peaks were used by Busemann et al. (2007), 
who also employed a 532 nm laser. The Gaussian peaks gave a 
visibly better fit for the lower areas of the peaks, but the main 
parameters studied here are reliant on the middle (FWHM) and 
upper (peak height) portions of the peaks, which were fitted bet-
ter by the Lorentzian peaks (Fig. 1). P-values were obtained via the 
GraphPad online unpaired T-test calculator (Motulsky, 2017), the 
current study defines a statistically significant difference as one 
where the P-value calculated is <0.05.

3. Results

Prior to Raman spectroscopic analysis, chemical degradation 
was used to remove ester and ether functionalities through treat-
ment with KOH and HI. Raman spectroscopy was then used to 
probe and compare the signature of the bulk organic matter to 
that of the ROM fraction, left behind after chemical degrada-
tion. Further comparisons were then possible between these frac-
tions within the two CM2 carbonaceous chondrites studied here, 
Murchison and Mighei.

3.1. Peak parameters

Organic matter can be described by the amount of disorganised, 
or amorphous, carbon versus ordered, or crystalline, carbon it con-
tains. In perfectly crystalline organic matter, the G band is the only 
peak found within the first order region and arises from stretching 
vibrations found within layers of graphite-like material (contain-
ing mostly sp2 orbitals) and is present at ∼1580 cm−1 (Beyssac et 
al., 2003; Tuinstra and Koenig, 1970). The D band represents de-
fects in the crystal lattice of aromatic organic matter, introduced 
by amorphisation (incorporation of sp3 orbitals) and is found at 
∼1350 cm−1 (Busemann et al., 2007; Ferrari and Robertson, 2000). 
The FWHM of the D band (Table 2) is also linked to the level of 

disorder in organic matter and has been used as an indicator of 
meteoritic organic matter maturity by numerous studies (Bonal et 
al., 2007, 2006; Busemann et al., 2007; Matrajt et al., 2004; Quirico 
et al., 2009, 2003). Studies have linked lower peak centres of G 
bands and the presence of further D bands, in the first order re-
gion, to high levels of disorder, which can arise from irradiation 
(Baratta et al., 1996; Ferini et al., 2004; Strazzulla et al., 2001), 
although these were not observed in the current study. D and G 
bands were detected in all the samples reported here as shown 
in Fig. 2 and Table 2. Busemann et al. (2007) found the G band 
parameters to be associated with a higher spread of values than 
those of the D band and suggested the G band is less useful for in-
dicating the maturity of organic matter, although this was not the 
case with the data presented here.

The results from the current study show very few variations in 
peak centres. Most samples contained organic matter which dis-
played peak centres that were statistically indistinguishable (T-test 
results given in Table 3). Only Murchison grain 1 displayed iden-
tifiable mineral bands; peaks centred at 247 and 317 cm−1 were 
present, which are consistent with the iron oxyhydroxide goethite 
(Bouchard and Smith, 2003; de Faria et al., 1997).

3.2. Peak ratios

Two commonly used ratios to measure the degree of disorder 
present in organic matter are: i) R1 (intensity [peak height] of D/G) 
and ii) R2 (area of D/[G+D]) (Beyssac et al., 2003). R2 is useful for 
more organised organic matter, becoming more or less constant at 
a value above 0.6. At this point the R1 ratio becomes more useful 
(Beyssac et al., 2003), although it is often associated with higher 
uncertainties than the R2 ratio (Beyssac et al., 2002a; Beyssac et 
al., 2002b). The higher uncertainties likely originate from the diffi-
culty in fitting a baseline for such poorly organised organic matter 
(Beyssac et al., 2003; O. Beyssac et al., 2002b). In cases where 
organic matter is very poorly organised the R1 ratio can become 
almost zero (Ferrari and Robertson, 2000); however, this was not 
observed in the current study.

The R2 values reported here for both the chemically degraded 
and undegraded samples of Murchison and Mighei are >0.60 (Ta-
ble 4), indicating that this ratio is not a useful parameter for 
the organic matter found in these CM2 meteorites. The R1 val-
ues ranged between 0.69 for chemically degraded Mighei grain 1 
and 0.77 for chemically degraded Murchison grain 1 and 2, with 
P-values that indicated no statistically significant differences be-
tween the organic matter measured (Table 5).

3.3. 2D spectroscopic maps

The spatial relationships present in the 2D Raman spectroscopic 
maps (Fig. 3) indicate that the D and G and bands were common 
responses from organic material found within the grains analysed 
by the current study. The organic material displaying a Raman 
response was also distributed heterogeneously within the grains, 
giving a more intense Raman response in certain localities within 
a given grain.
3
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Table 2
Numerical values for the peak centres and FWHM of 
in Fig. 2. The assignments relate to organic matter p
meteorite samples.

Peak Centre
Sample D

Murchison Gr 1 1356.48 ± 2.19
Murchison Gr 3 1351.37 ± 2.12
Mighei Gr 4 1350.15 ± 3.81
Murchison (Degraded) Gr 1 1352.21 ± 1.43
Murchison (Degraded) Gr 2 1344.76 ± 2.70
Mighei (Degraded) Gr 1 1341.68 ± 1.25
Mighei (Degraded) Gr 2 1346.47 ± 2.37

Fig. 2. Raman spectra of undegraded and chemically degraded Murchison and Mighei
region. Three spectra were included to highlight the similarity of the Raman spectra 
4

Raman shift bands (� cm−1) assigned to the spectra 
nt in both the chemically degraded and undegraded 

FWHM
D G

1.23 ± 0.46 178.42 ± 2.48 76.26 ± 3.46
3.39 ± 0.69 167.96 ± 5.58 67.30 ± 2.74
2.32 ± 0.95 151.80 ± 18.76 69.92 ± 3.49
0.81 ± 2.04 159.00 ± 3.87 73.30 ± 2.87
5.94 ± 0.90 143.57 ± 5.46 60.62 ± 3.49
5.80 ± 0.32 148.47 ± 14.45 57.17 ± 0.92
5.71 ± 1.05 150.27 ± 14.21 61.33 ± 3.65

teorite material. All the spectra show the D and G bands found within the first order 
ined for each grain.
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Table 3
The P-values relating to the peak centres and FWHM of the D and G band in Table 2. 
Values with an asterisk are statistically significant (P-value <0.05), indicating that 
there are differences in the bands and thus the organic matter of the meteorite 
grains being compared. Murch. = Murchison, Mig. = Mighei, Gr. = Grain, Deg. =
Chemically Degraded.

Peak Centre FWHM
Sample D G D G

Murch. Gr. 1 vs. Gr. 3 0.169 0.060 0.159 0.420
Murch. Gr. 1 vs. Murch. Deg. Gr. 1 0.178 0.851 0.013* 0.674
Murch. Gr. 1 vs. Murch. Deg. Gr. 2 0.028* 0.010* 0.004* 0.096
Murch. Gr. 3 vs. Murch. Deg. Gr. 1 0.759 0.297 0.258 0.205
Murch. Gr. 3 vs. Murch. Deg. Gr. 2 0.127 0.088 0.035* 0.207
Murch. Deg. Gr. 1 vs. Murch. Deg. Gr. 2 0.071 0.083 0.082 0.049*
Mig. Gr. 4 vs. Mig. Deg. Gr. 1 0.102 0.026* 0.726 0.017*
Mig. Gr. 4 vs. Mig. Deg. Gr. 2 0.458 0.075 0.695 0.147
Mig. Deg. Gr. 1 vs. Mig. Deg. Gr. 2 0.148 0.939 0.934 0.331
Murch. Deg. Gr. 1 vs. Mig. Gr. 4 0.223 0.360 0.232 0.787
Murch. Deg. Gr. 3 vs. Mig. Gr. 4 0.794 0.414 0.455 0.560
Murch. Deg. Gr. 1 vs. Mig. Deg. Gr. 1 0.005* 0.073 0.520 0.006*
Murch. Deg. Gr. 1 vs. Mig. Deg. Gr. 2 0.107 0.100 0.585 0.062
Murch. Deg. Gr. 2 vs. Mig. Deg. Gr. 1 0.359 0.891 0.767 0.393
Murch. Deg. Gr. 2 vs. Mig. Deg. Gr. 2 0.659 0.230 0.683 0.895

Table 4
Band ratios calculated for the assignments in Table 2. The R1 ratio is an intensity 
ratio (peak height) of the D1 and G bands, whilst the R2 ratio is an area ratio of the 
D band over the sum of the G and D bands.

Sample R1 R2

Murchison Gr 1 0.76 ± 0.01 0.65 ± 0.01
Murchison Gr 3 0.74 ± 0.01 0.65 ± 0.01
Mighei Gr 4 0.73 ± 0.03 0.61 ± 0.02
Murchison (Degraded) Gr 1 0.77 ± 0.02 0.65 ± 0.00
Murchison (Degraded) Gr 2 0.77 ± 0.01 0.63 ± 0.01
Mighei (Degraded) Gr 1 0.69 ± 0.05 0.64 ± 0.04
Mighei (Degraded) Gr 2 0.73 ± 0.06 0.64 ± 0.04

Table 5
The P-values relating to the ratios R1 and R2 in Table 4. All calculated values are 
statistically indistinguishable (P-value >0.05). Murch. = Murchison, Mig. = Mighei, 
Gr. = Grain, Deg. = Chemically Degraded.

Sample R1 R2

Murch. Gr. 1 vs. Gr. 3 0.230 1.000
Murch. Gr. 1 vs. Murch. Deg. Gr. 1 0.519 0.230
Murch. Gr. 1 vs. Murch. Deg. Gr. 2 0.678 1.000
Murch. Gr. 3 vs. Murch. Deg. Gr. 1 0.101 0.230
Murch. Gr. 3 vs. Murch. Deg. Gr. 2 0.251 1.000
Murch. Deg. Gr. 1 vs. Murch. Deg. Gr. 2 1.000 0.137
Mig. Gr. 4 vs. Mig. Deg. Gr. 1 0.530 0.539
Mig. Gr. 4 vs. Mig. Deg. Gr. 2 1.000 0.539
Mig. Deg. Gr. 1 vs. Mig. Deg. Gr. 2 0.636 1.000
Murch. Deg. Gr. 1 vs. Mig. Gr. 4 0.397 0.148
Murch. Deg. Gr. 3 vs. Mig. Gr. 4 0.768 0.148
Murch. Deg. Gr. 1 vs. Mig. Deg. Gr. 1 0.192 0.820
Murch. Deg. Gr. 1 vs. Mig. Deg. Gr. 2 0.547 0.820
Murch. Deg. Gr. 2 vs. Mig. Deg. Gr. 1 0.212 0.816
Murch. Deg. Gr. 2 vs. Mig. Deg. Gr. 2 0.516 0.816

4. Discussion

4.1. Chemical degradation

Treatment of terrestrial kerogen-like material with KOH and HI 
releases ester and ether bound units (Höld et al., 1998). Therefore, 
a similar chemical degradation of Murchison and Mighei should 
lead to the removal of LOM via the cleavage of ester functionalities, 
which are known to be present within MOM (Cody et al., 2002; 
Watson et al., 2010).

The ROM component consists of mostly aromatic material 
(Sephton et al., 2003). Raman spectroscopy of meteorite organic 
matter probes the aromatic component as the D band can only 
5

Fig. 3. 2D Raman spectroscopic maps of chemically degraded and undegraded mete-
orite samples. Colour indicates the intensity of the Raman shift recorded for a given 
material. The colours are, in the order from highest to lowest intensity: red, orange, 
yellow, green and blue. The maps are separated into columns depending on the Ra-
man band analysed (refer to Fig. 2): D (defect band) and G (graphite band). The 
x and y axes represent the distance over which the maps were taken, the scale is 
in μm. Note that the R1 and R2 ratios were plotted as maps, because the R1 and 
R2 values from the current study are all statistically indistinguishable and that this 
means the maps would not show any meaningful information.

arise from aromatic ring-containing compounds and the G band 
is the response of the stretching vibrations of graphite-like lay-
ers. Thus, the ROM fraction is likely to contribute the bulk of 
the Raman response of the meteorite organic matter. Both the 
undegraded and chemically degraded samples demonstrate peak 
positions for the D and G band and record FWHM values that are 
nearly all statistically indistinguishable, as demonstrated by the P-
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values (Table 3). Furthermore, the significant values (except in the 
case of Murch. Gr. 1 vs. Murch. Deg. Gr. 2, Table 3) do not appear 
to show obvious relationships, such as being consistently present 
in either meteorite or pre- or post-chemically degraded samples. 
Nevertheless, the significant p-values, for Murchison grain 1 vs. 
chemically degraded Murchison grain 2, could arise if the LOM 
fraction of Murchison grain 1 was sufficiently aromatic in nature 
that its liberation could affect the Raman response of the degraded 
sample. In such a scenario, the loss of aromatic material, with het-
eroatoms and a greater quantity of in-plane defects, could lead to 
an increase in the order of the remaining organic matter. In turn 
this could lead to an increase in the G band position and an al-
tered Raman response. Indeed, studies that have induced disorder 
in organic matter have demonstrated decreases in the peak centres 
of their G bands (Baratta et al., 1996; Beyssac et al., 2003; Ferini 
et al., 2004).

However, an alternate explanation is that these values may be 
recording either heterogeneity or errors introduced by peak fitting 
or background removal. If the significant values are indeed anoma-
lous then the Raman parameters would all be statistically indis-
tinguishable. Such a finding would be in agreement with Buse-
mann et al. (2007), who cited the similarity of the G and D bands 
of CI, CM and CR chondrites as evidence that aqueous alteration 
had little effect on the organic matter which yields a Raman re-
sponse. Nevertheless, in the case of Murchison grain 1 compared 
to Murchison degraded grain 2, a significant p-value is recorded 
for both the G and D band peak centres. Therefore, in some cases 
aqueous alteration may affect the Raman response of meteorite or-
ganic matter, although this appears to be limited in effect.

4.2. Heterogeneity in Refractory Organic Matter (ROM)

Both the current study and that of Busemann et al. (2007) used 
a 532 nm laser and fitted the D and G bands with Lorentzian 
curves, which allows for direct comparison of the peak parameters. 
The data presented here show D and G band FWHM values that 
are all statistically significant (Table 6) when compared to those 
of Busemann et al. (2007), with the D band FWHM values of the 
current study being smaller by roughly 50%. However, the D and 
G peak centre positions of Busemann et al. (2007) and the cur-
rent study are statistically indistinguishable (Table 6). Plots of the 
D and G peak centres against D and G FWHM demonstrate this re-
lationship (Fig. 4). The standard deviations recorded by Busemann 
et al. (2007), for their D and G band peak centres, are large and 
overlap with the peak centre values of the current study, but their 
FWHM values are smaller and do not. Starkey et al. (2013) also 
analysed Murchison, but they used a 514 nm laser and a Gaussian-
Lorentzian fitting procedure. When compared to the current study, 
the FWHM values are statistically significant, but the D and G peak 
centres show a more complex relationship. The D peak centre for 
Murchison grain 1 and the G peak centre for Murchison grain 3 are 
statistically indistinguishable from the values reported for Murchi-
son by Starkey et al. (2013), but the other peak centres reported 
here are statistically significant when compared to the data of this 
previous study.

Meteorite organic matter has been indicated as heterogeneous 
below the μm scale (Carter and Sephton, 2013; Changela et al., 
2018; Le Guillou et al., 2014; Vollmer et al., 2014) and this char-
acteristic should be evident in the Raman response, reflecting dif-
ferences in the primary constituents available at the time of ac-
cretion or formation, or the alteration of the meteorite organic 
matter. Such heterogeneity might account for the differences ob-
served between the Raman parameters of the current study and 
those of the previous studies mentioned above. Indeed, Starkey et 

Table 6
The P-values relating to the peak centres and FWHM of the D and G bands of the 
data from the current study and that of Busemann et al. (2007) and Starkey et 
al. (2013). Values with an asterisk are statistically significant (P-value <0.05), indi-
cating that there are differences in the bands, and thus the organic matter of the 
meteorite grains being compared. Murch. = Murchison, Mig. = Mighei, Gr. = Grain, 
Deg. = Chemically Degraded and Mur II and III and Mig are samples of Murchison 
and Mighei, respectively, from the study of Busemann et al. (2007). Mur 514 nm is 
from the study of Starkey et al. (2013).

Peak Centre FWHM
Sample D G D G

Murch. Gr. 1 vs. Mur II 0.122 0.599 0.000* 0.000*
Murch. Gr. 1 vs. Mur III 0.650 0.974 0.000* 0.000*
Murch. Gr. 3 vs. Mur II 0.877 0.265 0.000* 0.000*
Murch. Gr. 3 vs. Mur III 0.889 0.869 0.000* 0.000*
Mig. Gr. 4 vs. Mig 0.985 0.419 0.000* 0.000*
Murch. Gr. 1 vs. Mur 514 nm 0.193 0.002* 0.000* 0.000*
Murch. Gr. 3 vs. Mur 514 nm 0.000* 0.493 0.000* 0.000*

Alternatively, there might be a contribution to the Raman response 
of meteorite organic matter by non-organic graphitic components, 
which can be present as μm sized grains in meteorites, including 
Murchison (Anders and Zinner, 1993; El Amri et al., 2005; Le Guil-
lou et al., 2012).

Nevertheless, neither μm scale heterogeneity or μm sized 
graphitic grains can explain the consistency in ROM observed 
within this study, which was the case even between different car-
bonaceous chondrites. The data presented in Fig. 4 demonstrates 
the variation in the Raman parameters for Murchison and Mighei 
from different studies (Busemann et al., 2007; Quirico et al., 2018, 
2014; Starkey et al., 2013), with the data for particular authors 
tending to plot together, suggesting that some component of ei-
ther the experimental setup or data treatment may be influencing 
the overall distribution of the data.

The removal of backgrounds, which can be very different de-
pending on the level of fluorescence experienced (Quirico et al., 
2005), could introduce errors in the peak shapes that might ex-
plain the difference in FWHM values recorded by Busemann et al. 
(2007), Starkey et al. (2013) and the current study. Furthermore, 
the presence or lack of minerals during analysis could potentially 
change the level or expression of fluorescence and thus effect the 
values reported by the current study and those of Busemann et 
al. (2007) and Starkey et al. (2013), both of which demineralised 
their samples. It may be that the minerals present in the cur-
rent study influenced the fluorescence and thus induced a different 
background to the aforementioned studies. Accordingly, a different 
background may yield different peak shapes that can influence the 
peak fitting process and thus the FWHM and peak centre values. 
Interestingly there was almost no statistically significant variation 
between the peak centre values of the current study and those of 
Busemann et al. (2007) and Starkey et al. (2013), which suggests 
that any differences in the background are likely to only affect the 
FWHM values and not the peak centre values. Another difference 
to consider is the large standard deviations of Busemann et al. 
(2007). The large standard deviations are likely due to the large 
number of spectra used (>1000 in many cases), which prohibits 
the checking of individual spectra and thus likely leads to the in-
clusion of data with a low intensity compared to the fluorescence 
background (Quirico et al., 2018). However, further assessment of 
the heterogeneity of meteorite organic matter and the distribution 
of graphitic grains over μm scales, within different carbonaceous 
chondrites, would allow for the determination of which factors are 
most important.

Whilst some significant p-values were observed for the D and 
G band peak centres and FWHM values from the current study, the 
R1 values are statistically indistinguishable (Table 5). Such a finding 
131

132
al. (2013) reported that the Raman response of type 1 and 2 chon-
drites is heterogeneous in comparison to those of type 3 or higher. 

further suggests that ROM is the organic fraction responsible for 
the Raman response in meteoritic organic matter and indicates an 

6
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Fig. 4. The D and G band peak centre positions plotted against D and G FWHM value
Starkey et al. (2013), Quirico et al. (2014) and Quirico et al. (2018). Error bars are 1σ
7

r Murchison and Mighei from the current study and that of Busemann et al. (2007), 
ndard deviations of the mean.
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inherent similarity among the ROM fractions within the same me-
teorite sample and between different CM2 chondrites. Therefore, it 
may be the case that Murchison and Mighei had the same parent 
body or that the ROM fraction represents a common organic pro-
genitor accreted by at least the CM2 chondrites. Indeed, Alexander 
et al. (1998) states that the near constant ratio of organic carbon to 
presolar nanodiamonds is indicative of the accretion of a common 
organic progenitor by all carbonaceous chondrites. Furthermore, it 
was suggested that the current day variation observed between the 
IOM of different carbonaceous chondrites relates to the oxidation 
and/or thermal alteration of a common organic progenitor (Alexan-
der et al., 2007).

Although the Raman response of the organic matter in Murchi-
son and Mighei appears to be relatively homogeneous, organic het-
erogeneity below the μm scale has been suggested by a previous 
statistically based study (Carter and Sephton, 2013). Importantly 
the response from the D and G bands reported here overlap and 
do not deviate very much from each other in their spatial distri-
bution. This observation would seem to contradict the findings of
El Amri et al. (2005), who report variation in the R1 ratio across 
their maps. The 2D maps reported here seem to show a variation 
in overall Raman intensity rather than the intensity of any specific 
band, as indicated by the near identical spatial distributions of the 
D and G peak responses shown in Fig. 3. This may be reflected in 
the use of peak centres for assigning Raman bands to maps for the 
current study versus the use of frequency ranges in El Amri et al. 
(2005). The ranges used by El Amri et al. (2005) are large, spanning 
the range of the bands found across a variety of distinct carbona-
ceous organic matter types, including organic matter which shows 
a Raman response similar to crystalline graphite (G peak centre 
∼1580 cm−1) and between nano-graphitic and amorphous carbon 
(G peak 1540 cm−1) (Ferrari and Robertson, 2000). The current 
study has assigned D and G bands for each sample from the more 
intense areas of our spectrum and has used these to assess vari-
ation in those bands throughout our maps. Therefore, the results 
of the current study are more specific to the samples analysed and 
less likely to include other spectroscopic features or bands.

The homogeneity of the ROM fraction between chemically de-
graded and undegraded fractions reported here, supports the no-
tion that aqueous alteration has had little effect on the ROM com-
ponent of meteoritic organic matter. Previous studies indicate that 
IOM/MOM is converted to soluble components (FOM/SOM) during 
aqueous alteration and that in the case of Murchison this conver-
sion has not reached completion (Sephton et al., 2003, 1998). The 
effects of the chemical degradation reported here simulate to some 
extent the process of aqueous alteration. Furthermore, the lack of 
a difference in the Raman response, between chemically degraded 
and undegraded Murchison and Mighei, suggests that the ROM is 
unaffected by the degradation process and most likely aqueous 
alteration. Such an interpretation is consistent with studies that 
suggested ROM is a common refractory component relatively unal-
tered by parent body processing (Sephton et al., 2003).

5. Conclusions

The labile organic matter (LOM) fraction of Murchison and 
Mighei CM2 chondrites was removed through treatment with KOH 
and HI. The p-values calculated for the Raman spectral parameters 
reported here (the G and D peak centres and FWHM values) in-
dicate that the Raman response for the samples from the current 
study are nearly all indistinguishable. Furthermore, all the calcu-
lated p-values for the R1 and R2 ratios indicate that the Raman 
responses of Murchison and Mighei (both before and after chemi-
cal degradation) are statistically indistinguishable. The statistically 
indistinguishable nature of the Raman parameters, obtained for the 
pre- and post-chemically degraded samples, indicate that the ROM 
8

fraction is the main contributor to the Raman response of these 
meteorites. As such, Raman studies which investigate MOM/IOM 
should acknowledge that the data generated primarily represent 
only one component of this organic matter fraction. Addition-
ally, there is minimal heterogeneity in the refractory organic mat-
ter (ROM) component, both within and between Murchison and 
Mighei.

The indistinguishable nature of the Raman responses, for pre-
and post-chemically degraded Murchison and Mighei, also indi-
cates that aqueous alteration has had little effect on the ROM 
of these two meteorites. The liberation of LOM through chemical 
degradation simulates the effects of aqueous alteration and thus, 
if this process affected the ROM, it should alter the Raman re-
sponse. Therefore, the lack of significant changes to the Raman 
parameters between the pre- and post-chemically degraded sam-
ples supports the notion that aqueous alteration does not signifi-
cantly affect the ROM fraction. Consequently, Raman spectroscopy 
will not give information concerning the effects of aqueous alter-
ation on MOM/IOM. More targeted studies of FOM and LOM would 
be more suitable for investigating the chemical effects of aqueous 
alteration.

The apparent similarity of the ROM fractions in Murchison and 
Mighei suggests that these CM2 chondrites sampled the same or-
ganic reservoir, at least for ROM. Such an observation may indicate 
that the meteorites originate from the same parent body and/or 
that at least these CM2 chondrites and possibly all CM2 carbona-
ceous chondrites accreted a chemically-similar or even a common 
ROM progenitor.
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Highlights

• The refractory organic matter Raman response is indistinct from bulk meteorite.
• Meteorite refractory organic matter is not affected by aqueous alteration.
• Raman spectroscopy does not record aqueous alteration in meteoritic organic matter.
• CM2 chondrites have Raman responses indistinguishable from each other.
• Refractory organic matter in CM2 chondrites is likely from the same reservoir.
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