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ABSTRACT Using the real wireless spectrum occupancy status in 2.4 and 5 GHz bands collected at a
railway station as representative of a heavy wireless LAN (WLAN) traffic environment, this paper studies
the modeling of durations of busy/idle (B/I) status and its predictability based on predictability theory.
We first measure and model the channel status in the heavy traffic environment over almost all of the WLAN
channels at 2.4 GHz and 5 GHz bands in a busy (rush hour) period and non-busy period. Then, using two
selected channels at 2.4 GHz and 5 GHz bands, we analyze the upper bound (UB) and lower bound (LB)
of predictability of the busy/idle durations based on predictability theory. The analysis shows that the LB
predictability of durations can be easily increased by changing their probability distribution. Based on this
property, we introduce the data categorization (DC) method. By categorizing the busy/idle durations into
different streams, the proposed data categorization can improve the prediction performance of some streams
with large LB predictability, even if it employs a simple low-complexity auto-regressive (AR) predictor.

INDEX TERMS Spectrum usage model, heavy WLAN traffic environment, cognitive radio, predictability
theory, auto-regressive predictor, data categorization.

I. INTRODUCTION
Wireless communication technology has become one of
indispensable and integral parts for our society. With
the increase of requirements for high capacity and large
number access to support the coming of beyond 5G and
coming 6G era [1], some efficient techniques have been
proposed to further improve the spectrum efficiency which
are being discussed in the standardizing process of the next
generation wireless LAN [2]. One of the most intensively
researched paradigms in wireless communications is cogni-
tive radio (CR) system which configures dynamically to use
the best wireless channels in its vicinity to avoid congestion
and interference in a smart way [3], [4].

To achieve efficient spectrum usage, two relative research
topics are important for CR systems [5]. Firstly, the channel
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usage status or pattern model of frequency bands needs to be
modeled. An accurate and realistic spectrum occupancy pat-
tern is essential and extremely useful in domain of dynamic
spectrum access (DSA) or CR research. The correct pattern
models can be utilized in design of the DSA system, sys-
tem analysis, the implementation of simulation tools and the
development of more efficient DSA techniques. The other
important but challenging research topic is that the chan-
nel status of spectrum usage at allocated frequency bands
needs to be correctly predicted using efficient prediction
methods [6], [7].

For the model of spectrum usage, there are many investiga-
tions based on measurement campaigns in different real envi-
ronments [8]–[11]. The busy and idle durations of an IEEE
802.11bWLAN operated at 2.4 GHz band has been described
using a continuous-time semi-Markov chain (CTSMC)model
where the data is obtained from measurements using a vector
signal analyzer [12]. Some more realistic traffic sources
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such as File Transfer Protocol (FTP), Voice over Inter-
net Protocol (VoIP) [13] and Hypertext Transfer Protocol
(HTTP) [14] have been researched for the fitting of the
spectrum occupancy model. They found that the idle sojourn
time is fitted to a generalized Pareto distribution [13] or
a hyper-Erlang distribution. However, they just considered
an interference-controlled environment. In [14], the authors
analyzed the distribution of busy and idle durations in a
real indoor office environment with several wireless devices
operated in the 2.4 GHz band. In [15], the wireless envi-
ronments which include one-pair, two-pair, or three-pair
802.11 networks with a prefixed separation distance of 1 m
over 2.4GHz band have been investigated. In [16], the authors
investigated the time-dimension models of spectrum usage
for large systems from amateur systems (144–146 MHz)
to open bands and ISM band (2.4–2.5 GHz). The authors
of [17] researched the space-dimension models of spectrum
usage and provided the closed-form relations between the
average spectrum occupancy in terms of the duty circle
and some simple operation parameters such as noise power,
false-alarm probability. In [18], the authors have researched
the deterministic-stochastic duty circle model for the empir-
ical data captured in one university laboratory over the
2.4 GHz and 834–845 MHz bands. In [19], the authors
characterized the radio frequency spectrum opportunities
available in a common GSM (Global System for Mobile
Communications) channel to support the operation of a
CR network which employed a discrete Generalized
Pareto (dGP) distribution. In [20], the 2.4 GHz spectrum in a
hospital environment in whichmedical devicesmakewireless
access has been characterized and modeled as a generalized
extreme value (GEV) distribution.

These researches consider real environments and provide
profound and significant results and deep understanding of
spectrum access of CR networks. However, some researches
only consider some specific traffic sources such as FTP, VoIP,
HTTP, Video, etc., and cannot be directly used for some
real scenarios where collected channel data includes multi-
ple applications. In addition, most measurement campaigns,
however, consider the wireless traffic involved with a small
number of users or devices which generates amoderate or low
wireless traffic. Until now, there has been seldom research
considering heavy WLAN traffic environments. Compared
with low WLAN traffic environments, for the heavy WLAN
traffic environments, more spectrum resources are required
and cognitive radio technique is extremely important and
difficult to be realized [3]. Therefore, it is very valuable to
research the modeling of wireless spectrum usage over heavy
WLAN traffic environments.

On the other hand, compared with capturing channel sta-
tistical information, the prediction of channel status is more
difficult and sometimes impossible. A tutorial paper [21]
has summarized most of the existing prediction methods for
optimization of wireless resource allocation. These research
results have provided many efficient methods for usage of
the cognitive radio system. However, these researches are,

in the most part, considering the prediction of some key
parameters such as channel occupancy ratio (COR) with a
time resolution unit of either seconds, hours or days. If the
system can correctly predict the start and end of channel busy
or idle duration, the system can more efficiently utilize the
available radio resources and improve spectrum efficiency.
For example, a CR system can be designed to utilize idle
periods scattered in multiple frequency bands by splitting one
transmission packet into small sub-packets [22], [23] then
transmitting on the multiple bands. However, for the channel
status prediction over heavyWLAN traffic environments, it is
more difficult than that of over low WLAN traffic environ-
ments because the channels in unlicensed bands are occupied
by a huge number of different services such as audio, video
or file transfer etc. Such unstable and disordered traffic data
makes the prediction intangible and difficult.

Therefore, for the data captured from the heavy WLAN
traffic environments, some fundamental questions for the pre-
diction of busy or idle durations are that: to what degree is the
time-series data predictable?Whether canwe improve its pre-
dictability using some simple methods? For the predictability
research, the references [24], [25] have investigated such
issues for radio spectrum state over TV bands, ISM bands,
cellular bands, GSM900 and GSM1800 downlink bands.
However, until now, there have been no any researches on
the spectrum status over heavy WLAN traffic environments
and how to improve their lower bound value.

In this paper, we investigate the modeling of durations of
busy/idle (B/I) spectrum status over a heavy WLAN traffic
environment at a major railway station and its predictability
based on predictability theory. The major contributions and
novelties of this paper are as follows.
(1) This paper investigates the spectrum usage status and

modeling analysis of wireless traffic data obtained at a
railway station over almost all of WLAN channels at
2.4 GHz and 5 GHz bands. For each channel, we mea-
sured the spectrum usage status over 30 minutes and
obtain enough data samples for the statistical analysis.
The fitting modeling can provide realistic parameters for
usage considering a scenario over heavy WLAN traffic
environments.

(2) Our measurement utilized a commercially available
wireless LAN frame acquisition and analysis tool. The
tool is capable of capturing radio frames transmitted by
IEEE 802.11 wireless LAN devices, and can measure
received power, frame size, frame type and informa-
tion on the IEEE 802.11 wireless LAN frame etc. The
captured data information can provide more realistic
parameters for modeling the spectrum status of heavy
WLAN traffic environment.

(3) Using spectrum busy/idle duration data of two selected
WLAN channels, we analyze the predictability of spec-
trum status over heavy WLAN traffic environment.
The upper bound and lower bound of predictability are
provided based on predictability theory. Although it
is still unknown how to find a method to realize the
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upper bound (UB) of prediction, the analysis shows
that the lower bound (LB) of partial data can be easily
increased by changing the probability distribution of
busy/idle durations.

(4) Based on predictability analysis, we introduce the data
categorization (DC) on the busy/idle durations. By set-
ting the preceding status durations into different ranges,
the upcoming status durations can be distributed into
different categorization with different range. This cat-
egorization will change the value of the predictability
of partial data. The proposed data categorization can
improve the prediction performance of some streams
which has better predictability than that of without
DC even if the system employs a simple low-complexity
auto-regressive (AR) predictor.

This paper is organized as follows. Section II describes the
methodology utilized to capture and process the empirical
data used for the validation of the mathematical models. The
measurement environment and channel information are also
introduced in this section. Section III examines the probabil-
ity distribution models and the goodness of fit (GOF) metrics
utilized to assess their suitability in fitting the obtained data.
The mathematical models of channel occupancy status for
both 2.4 GHz and 5 GHz bands will be also analyzed and
explained in Section III. Then we analyze the predictability of
the busy/idle durations of two selected channels in Section IV.
The proposed data categorization (DC), which separates the
busy/idle durations into several streams with different dis-
tribution property to improve the predictability of partial
busy/idle data, is explained in Section V. The AR-based
predictor with proposed data categorization method and its
prediction performance are presented in Section VI. The
paper ends with conclusions presented in Section VII.

II. MEASUREMENTS SETUP AND DATA CAPTURE
In this section, we first explain how the busy/idle durations
are collected in a real heavy WLAN traffic environment.

A. MEASUREMENT SETUP
Measurements were carried out at a major railway sta-
tion in Japan during peak hour periods, within both
the 2.4 and 5 GHz bands. We selected 12 channels for mea-
surements each at 2.4 GHz and 5 GHz bands for comparison
as shown in Table 1.Measurements were conducted at the end
of January 2017.

TABLE 1. Selected channels (CHs) for measurement.

The experiments were performed using commercially
available wireless LAN frame acquisition and analysis soft-
ware. The capture software is able to record radio frames

transmitted by IEEE 802.11 wireless LAN devices in real-
time, and canmeasure received power, frame-size, andmodu-
lation scheme. In order to simultaneously capture the data on
all channels, we employed 5 PCs, each equipped with 3 wire-
less LAN systems with the interfaces, devices and modules.
Information on the IEEE 802.11 wireless LAN frame, such as
MAC information, can also be obtained. The measurement
equipment was positioned in an aisle near the ticket-gate
of a mainline railway station. When busy (around 18:30)
there were several hundred people and streams of passengers
constantly arriving and departing.

B. FRAME ESTIMATION PROCEDURE
The MAC addresses were first anonymized to an integer
number in order to remove the identity of each STA. Frame
duration is determined by the PHY preamble, MAC header
and Data sections. Frame duration is the estimated over-
the-air channel time which includes the PHY preamble,
MAC header and Data sections. The Data section duration is
estimated from the Length field (Bytes), data-rate, protocol
type (IEEE 802.11a/b/n/ac), bandwidth, number of spatial-
streams, and modulation and code scheme (MCS) data. The
Length field is used to determine the number of OFDM
symbols in the frame. In some corrupted frames the Data
rate is not available and it is assumed that the Type is the
same as the previous frame. The PHY header of 20µs was
appended for IEEE 802.11a/g frames and 32+(nss×4)µs
for IEEE 802.11n frames where nss is the number of spa-
tial streams. A MAC header of 30Bytes and 34Bytes
was appended for IEEE 802.11a/g and IEEE 802.11n frames
respectively.

When two or more uncoordinated STA attempt to trans-
mit to different APs at the same time and same band
with sufficient power, a frame collision will occur. If the
interfering transmissions originate from enough distance
the interference may be sufficiently low to not result in a
frame check sequence (FCS) error. However, some trans-
missions will be corrupted, and these are reported by
an FCS error when the cyclic redundancy check (CRC)
fails.

In normal operation with most network interface con-
trollers (NICs), a packet received with an FCS error will not
be passed on to the operating system. However, the capture
software and wireless adapter in monitoring mode allowed
this data to be captured and processed. It should also be noted
that as the wireless adapter is in a different physical location
to the AP, it is possible that the particular packet was not
actually corrupted at the AP.

As the wireless adapters can only capture one frame
at a time, when two transmissions occur, only one is
able to be captured. Therefore, in that respect the num-
ber of transmissions is under-reported. However, the STA
that was unable to complete its transmission will retry
a transmission later, and this should eventually be cap-
tured by the wireless adapter and therefore included in the
statistics.
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C. NON-IEEE 802.11 FRAMES AND VERIFICATION
Radio signals other than the IEEE 802.11 wireless LAN
frame such as generated by a microwave oven, a weather
radar, a Bluetooth device or such like cannot be captured
with the software. For this reason, radio data of the same fre-
quency bandwas captured using a radiomeasuring equipment
(I/Q data recorder) that has a maximum reception bandwidth
up to 200 MHz. An RF circuit corresponding to 2.4 GHz,
or 5 GHz band is connected to the measuring equipment so
as to receive and record all the radio signals in the band.
In addition, we visualized the radio resource usage status
by converting the recorded radio signal data into a spectro-
gram. The configuration of the measuring device is depicted
in Fig. 1 and a photograph of the measurement system on
location is shown in Fig. 2.

FIGURE 1. The configuration of the RF power measuring device.

FIGURE 2. Measurement system set-up on location.

The captured signal was also used to validate the results
obtained by the capture software. The channel occupancy
ratio was computed in 1 minute intervals and compared with
the results from the frame capture. It was confirmed that
there was a high correlation between the occupancy results
obtained using the two methods.

D. SPECTROGRAMS OF THE MEASURED DATA
The spectrograms of the measured data over the 2.4 GHz and
5 GHz bands are shown in Fig. 3 and Fig. 4, respectively.

FIGURE 3. Spectrogram of the measured data at a railway station
over 2.4 GHz band.

FIGURE 4. Spectrogram of the measured data at a railway station
over 5 GHz band.

As shown in both figures, there are more wireless traffic over
the 2.4 GHz bands than over the 5 GHz bands. On the other
hand, even for the channels over the busy 2.4 GHz band, some
channels have more traffic than others. The results reflect that
the existing channel allocation methods are not fully efficient
and a new method need to be found to mitigate the usage
imbalance.

III. MATHEMATICAL MODELS OF CHANNEL OCCUPANCY
STATUS FOR 2.4 GHz AND 5 GHz BANDS
After capturing the empirical channel occupancy data,
we converted all data into binary patterns and then calcu-
lated the length of the continuous busy and idle durations
with a small resolution of 9µs which accords with IEEE
WLAN Standard [26]. It should be noted that the durations
of busy and idle are continuous which cannot be an integral
multiplication of 9µs because of wireless channel multipath
fading and reflection or other factors. The empirical cumu-
lative distribution function (CDF) and probability density
function (PDF) of busy or idle durations are calculated for the
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TABLE 2. Probability distribution models for fitting.

fitting of the mathematical distribution models. In this paper,
we will show the fitting results using some major simple
distribution models listed in Table 2.

A. PROBABILITY MODELS AND GOODNESS OF FIT (GOF)
METRICS
Themajor simple distributionmodels considered in this paper
are exponential (EX), generalized Pareto (GP), Log-normal
(LN), Logistic (LG), generalized extreme value (GEV),
gamma (GM) andWeibull (WB) distribution. EX distribution
is largely utilized to obtain the validity of the widely used
Markov chain model for traffic analysis and system design.
However, many researchers reported that EX model is not
accurate in many real environments because the wireless
traffic appears to have some self-similarity with heavy-tailed
trend [27]. Therefore, GP distribution is largely employed
for traffic analysis. Similar to GP distribution, LN, GM and
WB distributions can be used for fitting wireless traffic with
heavy-tailed trend.

Pareto distribution, GP, GM and WB distributions have
been used for modeling wireless traffic. In addition, extreme
value theory (EVT) has been used as a rational framework
for the problem of burst prediction which needs only a subset
of the data to work on. In the burst prediction based on
EVT, GEV distribution is used for modeling different types
of traffic and throughput [28], [29]. Therefore, we also select
GEV distribution as one of candidates for model fitting. The
significance of parameters in each distribution can be found
in [30].

We utilize a technique based on maximum likelihood
estimation (MLE), which is widely adopted as an efficient
inference technique to calculate the distribution parameters
from empirical data. In Ref. [16], the authors have considered
methods of moment (MOM) inference scheme for estimat-
ing the distribution parameters and compared with that of
MLE-based method. The results showed that the MLE-based
method generally outperforms that of MOM scheme.

Therefore, in this paper, we choose MLE-based method for
calculating the distribution parameters.

To show the suitability of the fitting, we use three
GOF metrics as Kolmogorov-Smirnov (KS) distance,
Kullback-Leibler (KL) divergence [31] and Bhattacharyya
distance [32]. These GOF metrics can provide some numeri-
cal values to show the matched level for a certain probability
model fitting for the whole range of busy or idle durations.
The superscript of sym is to be B or I. That corresponds to
busy or idle duration data, respectively.

The KS distance DsymKS between the CDF model of busy
or idle duration F symfit (L) and empirical CDF of busy or idle
duration F symemp(L) with duration length L (L > 0) [point] can
be denoted as

DsymKS (F
sym
fit (L),F symemp(L))=max

L
{|F symfit (L)−F symemp(L)|}. (1)

KS distance is typically used in the context of a
non-parametric test which performs a hypothesis test to check
the test distribution is the same as the reference. KS distance
has a symmetric property that the distance from one distri-
bution to another is equal to the distance from the latter to
the former. In addition, if DA, DB and DC are distributions,
KS distance has a property of triangle inequality as

DKS (DB,DC ) ≤ DKS (DB,DA)+ DKS (DA,DC ). (2)

Those properties make the KS distance powerful and conve-
nient for the fitting of distribution model.

Kullback-Leibler (KL) divergence can be given as

DsymKL =
P∑
k=1

f symemp (Lk ) ln

(
f symemp (Lk )

f symfit (Lk )

)

+

P∑
k=1

f symfit (Lk ) ln

(
f symfit (Lk )

f symemp (Lk )

)
. (3)

f symemp (Lk ) and f symfit (Lk ) are empirical PDF and evaluated
PDF model of busy or idle duration data. P is the number
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FIGURE 5. GOFs results for the fitting of channel occupancy status using data over all channels
of 2.4 GHz and 5 GHz bands.

of different data. The KL divergence is typically used in
information-theoretic settings, hypothesis testing, or even
Bayesian settings, to measure the information cross entropy
change between distributions before and after applying some
inference. KL divergence provides the information entropy
loss level when the wrong fitting model is selected. This
metric is often utilized for machine learning and wireless
system capacity optimization.

The Bhattacharyya distance DsymB as the GOF metric for
PDF model f symsit (Lk ) and empirical PDF f symemp (Lk ) can be
represented as

DsymB = − ln

(
P∑
k=1

√
f symfit (Lk )f

sym
emp (Lk )

)
. (4)

Different with the KS distance, Bhattacharyya distance is
usually used to measure the similarity of two probability dis-
tributions. Different with KS distance, it grows depending on
the difference between the standard deviations. Using Eq. (3)
and Eq. (4), it is easy to deduce the relationship between the
KL divergence and Bhattacharyya distance as

DsymKL ≥ 2DsymB . (5)

Due to this property, compared with KL divergence, Bhat-
tacharyya distances of several fitting distribution functions
have small difference among them.

From Eqs. (1), (3) and (4), we can find that a small value of
these GOF metrics means that the probability distributions of
mathematical models are well-fitted to that of the empirical
data. When the values are zero, both mathematical models
and distribution of empirical data are totally identical.

B. MODELS FITTING USING GOF METRICS FOR ALL
CHANNELS OVER 2.4 GHz AND 5 GHz BANDS
In this section, we discuss suitable probability models for
fitting the busy and idle durations. The major process was
handled as follows. First, each CDF/PDF model in Table 2 is
fitted to the empirical CDF/PDF of busy and idle durations
captured at each channel based on MLE. Then the resulting
GOF metrics, i.e. KS distance, KL divergence and Bhat-
tacharyya distance, are evaluated between each empirical
CDF or PDF model of busy and idle durations and all listed
CDF or PDF models. Finally, the best fitting model with the
smallest GOFs are selected as the probability models of the
busy or idle durations.

Since a user can select any channels over 2.4 GHz band
or 5 GHz band, to get the correctness of our fitting mod-
els for channel busy or idle durations, we utilize all used
data of channels over 2.4 GHz band and over 5 GHz band
to find general models. The results of three GOF metrics
are shown in Fig. 5. For KS value, the largest values are
smaller than 0.08 which show good fitting results for data.
On the other hand, the data obtained at busy period has sim-
ilar well-fitted results. That is, both busy and idle durations
appear a Weibull distribution over 2.4 GHz and generalized
extreme value distribution over 5 GHz band. On the other
hand, over 5 GHz band, all results show that generalized
extreme value distribution is a generally well-fitted distribu-
tion model for all busy and idle duration data. This is due
to the fact that compared with that of 2.4 GHz, the wireless
traffic over 5 GHz is low regardless of the busy or non-busy
period.

Table 3 concludes the fitting distribution models and the
parameters of the distribution models using data from all
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TABLE 3. Parameters values of fitting results [point].

FIGURE 6. Fitting results of channel status using data over all channels of 2.4 GHz and 5 GHz bands.

channels at 2.4 GHz band and 5 GHz band. Based on the
results of Table 3, we use Fig. 6 to show the fitting results
of channel status over 2.4 GHz and 5 GHz bands. As shown
in Fig. 6, the selected distribution models are well-fitted to
that of empirical busy and idle durations, especially for the
data of idle durations which supports our proposed fitting
models in Table 3.

IV. PREDICTABILITY ANALYSIS FOR TIME-SERIES BUSY
AND IDLE DATA
After we obtain the statistics of busy or idle durations,
a fundamental question for the prediction of time-series data
is that: to what degree is the time-series data predictable?
Regarding to this question, a methodology of using sta-
tistical entropy measures and Fano inequality have been
proposed to quantify the degree of predictability for the
real-world time-series data [24], [25]. In the following sec-
tions, we selected the busy and idle durations of Channel 1
over 2.4 GHz band and Channel 36 over 5 GHz band for
analyzing their predictability and showing how to improve
their predictability.

First, we give a simple explanation for the concept of
predictability which can decide the fundamental limitations
such as the performance bounds of the prediction method.

Let us suppose there is a random variate X with M kind of
values. Therefore, its entropy S(X ) can be represented as

S(X ) = −
M∑
i=1

f (xi) log(f (xi)), (6)

where f (x) is the probability density function (PDF)
of X . In addition, for an n-length time-series data X as
[x1, x2, . . . , xn], its average entropy can be represented as

S(X) = lim
n→∞

1
n
S(x1, x2, . . . , xn). (7)

Let us also define a conditional entropy as S(X′) with equa-
tion as

S(X′) = lim
n→∞

S(xn|xn−1, xn−2, . . . , x1). (8)

When n → ∞, the average entropy S(X) is usually equal to
conditional entropy S(X′) which is represented as

S(X) = lim
n→∞

1
n
S(x1, x2, . . . , xn)

= lim
n→∞

S(xn|xn−1, xn−2, . . . , x1)

= lim
n→∞

1
n

n∑
i=1

S(xi|hi−1) = lim
n→∞

1
n

n∑
i=1

S(i). (9)
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Here hi−1 and S(i) are given as hi−1=[xi−1, xi−2, . . . , x1] and
S(i) = S(xi|hi−1), respectively.
The n-length average entropy S(X) is difficult to

be obtained because it is determined by the value of
[x1, x2, . . . , xn] and their joint PDF. Usually, such entropy can
be approximately calculated as SReal(X) using an iterative
method called as Lempel-Ziv algorithm [33]. On the other
hand, when the correlation property between the time-series
data is not considered, the n-length average entropy can
be simply calculated as SUnc(X) only using the PDF of
time-series data as

SUnc(X) = −
∞∑
i=1

f (xi) log(f (xi)). (10)

The SReal(X) and SUnc(X) are two different metrics of data
entropy. The value of SReal(X) considers the interrelation-
ships on the timeline of time-series data which is shown as
the definition of hi−1. In other words, the entropy difference
as (SUnc(X) − SReal(X)) can be regarded as the additional
information certainty obtained from analyzing the correla-
tion properties of time-series data. If data has no correlation
among the data, the value of SReal(X) will be the same to the
value of SUnc(X).
For the predictability of time-series data, we define Pr as

the accuracy probability of one prediction method which is
represented as

Pr = Prob{x̂n = xn|hn−1}. (11)

We suppose that there exists all predictionmethods which can
achieve different prediction accuracy Pr . Therefore, the pre-
dictability of one time-series data is the maximum value
among all prediction methods as

5(hn−1) = sup{Prob[x̂n = xn|hn−1]}. (12)

For n-length time-series data, the average predictability prob-
ability 5 is represented as

5 = lim
n→∞

1
n

n∑
i=1

5(i), (13)

with 5(i) , f (hi−1)5(hi−1).
Finally, we can build the relationship between the pre-

dictability probability and the entropy of time-series data
using Fano inequality. From the information theory, the rela-
tionship between the conditional entropy and the prediction
error probability Pe = Prob{x 6= x̂} can be represented using
Fano inequality as

S(xn|hn−1) ≤ S(Pe)+ Pe log2(M − 1), (14)

and S(Pe) can be represented as

S(Pe) = −Pe log2(Pe)− (1− Pe) log2(1− Pe). (15)

Let p as the value of 5(hn−1) (Eq. (12)) to represent the
prediction accuracy of the best one among all prediction
methods. For the best prediction method, we can let Pe

as (1− p). Therefore, using Eq. (14), the following equation
can be obtained.

S(xn|hn−1) ≤ −[p log2 p+ (1− p) log2(1− p)]

+ (1− p) log2(M − 1)

, SF (p) = SF (5(hn−1)), (16)

whereM is the number of different value of x. SF (p) function
is concave and monotonically decreases with p. Using this
relationship, the lower bound and upper bound of predictabil-
ity probability for time-series data can be represented as

SReal ≤ SF (5Real)

= −[5Real log25
Real
+ (1−5Real) log2(1−5

Real)]

+ (1−5Real) log2(M − 1), (17)

SUnc ≤ SF (5Unc)

= −[5Unc log25
Unc
+ (1−5Unc) log2(1−5

Unc)]

+ (1−5Unc) log2(M − 1). (18)

Using Eqs.(17) and (18), it is easy to find the lower bound
5Unc and upper bound 5Real of predictability probability
when their entropy SUnc and SReal can be calculated. For the
detail process, readers can find further information in [24]
and [25]. However, it should be noted that 5Unc and 5Real

just provide the level or degree of difficulty of predictability
probability but not the actual prediction method. For some
time-series data, it is perhaps impossible to find an efficient
method to achieve the value as5Real .

In this paper, we use a low-complexity Lempel-Ziv (LZ)
algorithm [33] to find the relation between the busy and idle
durations and then calculate the value of SReal . LZ algorithm
is based on the Lempel-Ziv compression algorithm. For a time
series of length n, the entropy can be estimated as

S =

(
1
n

∑
i

Li

)−1
ln(n) (19)

where Li is the longness of the shortest substring starting at
position iwhich does not previously appear from position 1 to
i − 1. The estimated entropy converges to the real entropy
of the time series when n approaches to infinity. It should
be noted, that due to limited memory and huge size of data,
the Lempel-Ziv algorithm just utilizes partial data for the
SReal calculation. For SUnc, we just use the PDF of the busy
and idle durations and Eq. (10) to calculate the value.

Table 4 shows the values of SReal , SUnc, 5Real , 5Unc and
M of busy and idle durations for Channel 1 and Channel 36,
respectively. 5Real and 5Unc show that the predictability

TABLE 4. The entropy and predictability probability.
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probability for Channel 36 over 5 GHz has larger value
than that of Channel 1 over 2.4 GHz band. In addition, for
both idle and busy durations at Channel 1, the LB of pre-
dictability for methods only using PDF information can reach
about 29%–35%.When using the relation information among
the data, the predictability can be improved to 47%–53% as
UB values. On the other hand, for busy and idle duration
data captured over 5 GHz band, both LB and UB values
of predictability are larger than that of over 2.4 GHz band.
From Fig. 4 and Fig. 5, it is easy to know that the spectrum
usage over 5 GHz band is rarer than that of 2.4 GHz band
which makes the distribution properties of both idle and
busy durations at 5 GHz band more concentrated than that
of 2.4 GHz band. Therefore, the predictability is higher than
that of over 2.4 GHz band.

V. PREDICTABILITY IMPROVEMENT WITH DATA
CATEGORIZATION
From the previous section, we can find that the correlation
property highly decides the predictability of time-series data.
If there is no correlation among the succeeding data, such
as time-series data of additive white Gaussian noise, it is
not possible to find a larger predictability than that of 5Unc.
In other words, the predictability difference as (5Real-5Unc)
is from the correlation property among the succeeding data.
Therefore, how to exploit the correlation property becomes
a challenging and difficult target which involves in the data
volume, dimensions and length of time-series data.

It is difficult to find the correlation property of data in any
dimensions. However, it is possible to derive the relationship
among data with limited length. In this section, we first
show such relationship of the busy/idle duration data of the
previous section. Then amethod named as data categorization
is explained to improve the predictability of the partial busy
and idle duration data.

A. ADAPTIVE KERNEL DENSITY ESTIMATION
To find the relationship among succeeding status durations,
here we use adaptive kernel density estimation (AKDE) tech-
nique to estimate the joint probability distribution of suc-
ceeding status durations. AKDE is an adaptive method to
approximate the joint distribution by adjusting its sampling
resolution in order to reduce the approximation error. Here,
we just give a brief introduction of AKDE. The reader can
find its tutorial introduction in reference [34]. In addition,
more research results on the relation of joint distribution of
succeeding busy/idle durations has been reported in our paper
as [35].

For density estimation, usually a histogram graph can pro-
vide its density result but with many discontinuous points.
Therefore, some smooth symmetric functions are employed
to interpolate the adjacent density points to make the curve
more smooth. These smooth symmetric functions are termed
as kernel function. There are many types of kernel function
such as fisher kernel, polynomial kernel etc. These functions
provide different approximate capability by adjusting the

smallest interpolation resolution which is termed as band-
width H.

Let us consider the analysis of a L-variate data (x1, . . . , xL)
from an unknown density function, f (x), where x ∈ <L .
Usually, a normal kernel with Gaussian distribution is utilized
for density estimate. For AKDE, it adaptively adjusts the
smooth bandwidth h to achieve the smallest distance between
the estimated density f̂ (x) and the true density f (x). Usually,
the mean integrated square error (MISE) is used for this
likelihood criterion as

MISE(f̂ ) = E
{∫ [

(f (x,H)− f̂ (x))2
]
dx
}

(20)

where matrix H is a smooth bandwidth matrix for adaptive
adjustment, and E{.} is the mean function over all x.
For multivariate density estimation with a normal ker-

nel, K ∼ N (0, 6), the AKDE with n samples xi ∈ <L

(i = 1, . . . , n) is given by

f̂ (x) =
1

n(2π )L/2|6|1/2

n∑
i=1

e[−
1
2 (x−xi)

′6(x−xi)]. (21)

It should be noted that AKDE can find an approximate
density function for the data but neglects some small values
in a joint distribution to minimize the scale value of MISE.
In addition, due to adjusting bandwidth H and interpolation,
some parts of the density function may be out of the original
data range.

Figures 7 and 8 show the 2-D probability distribution
obtained by AKDE for estimating the joint density of the
busy and idle duration data captured on a railway station over
Channel 1 at the 2.4 GHz band and over Channel 36 at the
5 GHz band. To find the relationship between the busy and
idle durations, we generate two distributions. The first one
(xTypei = Busy, xTypei+1 = Idle) means that the first data is busy
duration and the second data is idle duration following the
previous busy one. The other one (xTypei = Idle, xTypei+1 =Busy)
is the similar process but the first data is idle duration and
the second data is the following busy duration. It should be
noted that two types have different meanings. The first type
reflects how long the channel will be idle after transmitting a
signal with a specific busy duration, and the second one shows
the signal duration after a specific idle duration. Therefore,
it is expected that there is some difference between the two
distributions.

From both figures, we can find that over Channel 1 at the
2.4 GHz band, the joint density has more separated areas than
that of over Channel 36 at the 5 GHz band. The reason is
mainly due to that more wireless traffic and types of services
utilize the channel over the 2.4 GHz band than that of the
5GHz band. Different type of service diversifies the busy-idle
or idle-busy durations and creates more patterns.

Another interesting result is that data categorization as
{xi+1|xi} has different range. For example with Fig. 7(a),
when busy duration is below 50 points, the idle duration
is mainly below 240 points. On the other hand, when busy
duration is between 150 points to 250 points, the idle duration
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FIGURE 7. Probability distribution of 2-D succeeding B/I duration
obtained by AKDE (railway station @ Channel 1, 2.4 GHz band).

is mainly below 450 points which has a larger range on data
duration.

To further show the relationship of recent status durations
and the next status duration, we show the probability distri-
bution of 3-D succeeding status duration obtained by AKDE
in Fig. 9 for Channel 1 in the 2.4 GHz band and Fig. 10
in Channel 36 in the 5 GHz band. We also generate two
distributions for each channel. The first one as (xTypei =Busy,
xTypei+1 = Idle, xTypei+2 = Busy) is for two continuous channel
statuses (xi, xi+1) and the upcoming status (xi+2) is busy. The

other one is with (xTypei = Idle, xTypei+1 = Busy, xTypei+2 = Idle)
for two continuous channel durations (xi, xi+1) with the next
one (xi+2) as idle. Both figures show the data categorization
as {xi+2|xi+1, xi} will have different range especially for the
data from Channel 1 in the 2.4 GHz band. For example with
Fig. 9(a), when busy duration (xi) is below 50 points and idle
duration (xi+1) is below 100 points, the busy duration (xi+2)
is mainly below 100 points. When increasing the range of xi
and xi+1, the value of busy duration (xi+2) is distributed in
a larger range. In addition, the value of idle duration (xi+2)
in Fig. 9(b) mainly distributes a larger range in each data

FIGURE 8. Probability distribution of 2-D succeeding B/I duration
obtained by AKDE (railway station @ Channel 36, 5 GHz band).

category than that of busy duration in Fig. 9(a). It should be
noted that each categorized distribution in the 5 GHz band
usually has a smaller range compared with that of data in the
2.4 GHz band.

From the relationships of 2-D and 3-D succeeding status
durations, by setting the previous status durations into differ-
ent ranges, the upcoming status durations can be distributed
into different categorization with different range. This data
categorization can be used for improving the prediction accu-
racy for some categorizations where durations are distributed
with a smaller range.

B. DATA CATEGORIZATION
Although the predictability just provides ameasurement scale
to show whether data is easy to be predicted or not, it cannot
provide how to realize its upper bound or even lower bound
with a specific prediction method. For some data, it is not
possible to find one best prediction method to achieve its
upper bound. Usually, the lower bound of predictability only
depends on the PDF of data, the higher LB means that data is
seldom changed with large range. In this case, the data is easy
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FIGURE 9. Probability distribution of 3-D succeeding status duration
obtained by AKDE (railway station @ Channel 1, 2.4 GHz band).

for prediction. Therefore, if the lower bound of predictability
of time-series data is enlarged, the prediction accuracy of
some prediction methods might be improved. However, for
some prediction methods which explore the time relationship
among the time-series data, it is hard to further improve their
prediction accuracy.

From the previous sections, by setting the preceding status
durations into different ranges, the upcoming status durations
can be distributed into different categorization with differ-
ent range. This categorization will change the value of the
predictability of partial data. Based on this idea, we propose
data categorization to separate time-series data into different
streams. The major idea is shown in Fig. 11 using busy/idle
duration data as one example. The captured time-series busy
or idle duration data xi can be divided into four streams
according to the sets (S1, S2) that the previous values xi−2
and xi−1 belong to. As the example shown in Fig. 11, both
busy and idle durations have two sets as (B_set1, B_set2)
and (I_set1, I_set2) with different non-overlap ranges,

FIGURE 10. Probability distribution of 3-D succeeding status duration
obtained by AKDE (railway station @ Channel 36, 5 GHz band).

FIGURE 11. Data categorization for busy and idle durations.

respectively. The busy duration Xi will be separated to the
busy stream # 4 if previous busy duration Xi−2 and idle
duration Xi−1 belong to B_set2 and I_set2, respectively.
The idea can be extended to K layers. The captured busy

and idle durations are firstly processed by a B/I duration cate-
gorization with K layers and each layer has Si (i = 1, . . . ,K )
sets. Therefore, there are Sall (Sall =

∏i=K
i=1 Si) different

streams. By setting the ranges of sets and number of layers
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and sets, the data categorization can separate all time-series
data into different streams with different statistical properties
and predictability.

Figure 12 shows how the proposed method works for the
prediction of partial time-series data (stream #1). When the
condition that (xi−1, xi) ∈ (Bset1, Iset1) is met, the prediction
method is activated for the predicted busy duration xi+1. The
previous n-length busy data ([xB#1k−n+1, x

B#1
k−n+2, . . . , x

B#1
k ])

which belongs to stream #1 has been saved for prediction in
advance. The prediction process includes two steps:

FIGURE 12. Example using data categorization for partial data prediction
(stream # 1).

(1) update the n-length busy data as [xB#1k−n+2, x
B#1
k−n+3, . . . ,

xB#1k , xB#1k+1] with x
B#1
k+1 = xi−1.

(2) predict the next busy duration x̂i+1 using one specific
prediction algorithm.

It should be noted that data categorization is not limited to
the continuous succeeding data such as using n-length dataXn
([xi−n+1, xi−n+2, . . . , xi]) for estimating the data xi+1. It can
be upgraded to utilize Xn for predicting the l-th coming data
xi+l if the correlation between Xn and xi+l exists and the
correlation property is clarified.

C. PREDICTABILITY IMPROVEMENT USING DATA
CATEGORIZATION
To show the effectiveness of data categorization, we set the
layer number K as 2. Both busy and idle durations are cat-
egorized with two sets which is similar to that of Fig. 11.
We also consider two configurations of set ranges which
are shown in Table 5, and they are named as CASE I and
CASE II, respectively. CASE II has the larger range than
that of CASE I to show the impact on predictability from
the different statistical property of each stream. After data
categorization, each busy/idle stream is calculated with the
values of SReal , SUnc,5Real ,5Unc andM using LZ algorithm
and their PDFs, respectively. In addition, to show how the DC
changes the values of SUnc and 5Unc, the PDF of each busy
or idle stream after DC process is also provided.
Figures 13 and 14 show the PDF of busy and idle dura-

tion captured from Channel 1 of 2.4 GHz band with DC
for CASE I and CASE II, respectively. For comparison,
the PDF results of all busy or idle duration data with-
out DC are also provided in each figure. From all figures,
it can be found that DC diversifies the PDF of each stream.

TABLE 5. Set range settings [point].

FIGURE 13. PDF of busy / idle duration with and without DC (railway
station @ Channel 1, 2.4 GHz band, CASE I).

From the Eq. (6), the concentrated PDF which distributed
with large values over a concentrated range usually has the
smaller entropy than that of non-concentrated one. Using
Fig. 13(a) as an example, compared with that of busy duration
without DC, the stream #1, which occupies about 17% of all
busy durations, shows a concentrated PDF property. There-
fore, it should have a smaller SUnc and then a larger lower
bound 5Unc than that of busy durations without DC. With
the same reason, it also can be found that DC deteriorates the
lower bound5Unc of other three streams. On the other hand,
when the range of each set is changed, the PDF of each stream
is also adjusted as shown in both Figs. 13 and 14 whichmakes
different 5Unc for each stream.

Table 6 and Table 7 show the entropy and predictabil-
ity probability of busy/idle duration data obtained from
Channel 1 after data categorization with CASE I and
CASE II, respectively. As a comparison, the entropy and
predictability of busy and idle data without DC are listed
in both tables. From both tables, which are in accord with
the previous figures and analysis, it can be found that the
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FIGURE 14. PDF of busy / idle duration with and without DC (railway
station @ Channel 1, 2.4 GHz band, CASE II).

TABLE 6. The entropy and predictability probability with data
categorization (Channel 1, CASE I).

TABLE 7. The entropy and predictability probability with data
categorization (Channel 1, CASE II).

proposed method can increase lower bound 5Unc of the first
stream, especially for busy data.

However, although DC can increase the lower bound5Unc

of some streams by adjusting their PDF properties, it is
hard to improve their UB values 5Real . The major reason is
that the value of 5Real is mainly decided by the correlation
properties among the time-series data, and DC is difficult to
deepen these correlation properties in each stream by setting
different layer number or set ranges. On the contrary, inap-
propriate ranges of sets sometimes make the predictability of
time-series data decrease becauseDCweakens the correlation
properties among data in such case.

Figures 15 and 16 show the PDF of busy and idle duration
captured fromChannel 36 of 5GHz bandwith DC for CASE I
and CASE II, respectively. These figures show the similar
results to that of Figs. 13 and 14. Table 8 and Table 9 show
the entropy and predictability probability of busy/idle dura-
tion data obtained from Channel 36 after DC with CASE I
and CASE II, respectively. Compared with the busy data of
Channel 1 over 2.4 GHz band, busy durations are short which
are also shown in Figs. 13 and 14. The probability distribution
of busy duration will be more concentrated than that of over
2.4 GHz band. Therefore, both SReal and SUnc of busy data
is smaller than that of data obtained over 2.4 GHz band.
In addition, using data categorization, the similar results to
that of Table 6 and Table 7 are obtained.

FIGURE 15. PDF of busy / idle duration with and without DC (railway
station @ Channel 36, 5 GHz band, CASE I).

From the results of all tables, we can find that the proposed
DC can change the 5Real and 5Unc, especially for 5Unc,
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FIGURE 16. PDF of busy / idle duration with and without DC (railway
station @ Channel 36, 5 GHz band, CASE II).

TABLE 8. The entropy and predictability probability with data
categorization (Channel 36, CASE I).

of selected partial data from all time-series data. Therefore,
the proposed method improves the prediction accuracy of
these partial data using some simple prediction methods.

VI. BUSY/IDLE DURATION PREDICTION USING
AUTO-REGRESSIVE PREDICTOR WITH DATA
CATEGORIZATION
In this section, we will use a simple auto-regressive (AR)
predictor to compare the prediction accuracy of time-series
data with and without the proposed data categorization.

A. AUTO-REGRESSIVE (AR) PREDICTOR
Auto-regressive (AR) model is a representation of a type
of random process [36]. The AR model specifies that the

TABLE 9. The entropy and predictability probability with data
categorization (Channel 36, CASE II).

FIGURE 17. Busy/idle duration prediction using the proposed method
(railway station @ Channel 1, 2.4 GHz band, CASE I).

current value is only related to its own previous values and a
stochastic term; thus the model is in the form of a stochastic
difference equation.

The AR-based predictor with order p can be represented as

X̂i+1 = a1Xi + a2Xi−1 + . . . apXi−p+1. (22)

Here we use Xi to represent the duration of busy or idle status.
The parameters [a1, . . . , ap] are calculated using training data
so that they give the solution as the least squares for linear
regression. The reader can find more details of AR model
in [36].
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FIGURE 18. Busy / idle duration prediction using the proposed method
(railway station @ Channel 1, 2.4 GHz band, CASE II).

TheAR predictor for the busy/idle duration prediction with
data categorization is almost identical structure as shown
in Fig. 12. Here AR predictor is operated in each stream,
independently. During the training process, k-th data stream
utilizes its previous M durations to calculate the parameters
[ak1, . . . , a

k
p]. Then the following N durations are predicted

using the similar equation as Eq. (22) for each data stream.
For comparison, we also provide the prediction performance
of busy or idle durations without data categorization, which
means only one data stream with all busy or idle durations are
used for training and prediction process.

B. PREDICTION PERFORMANCE OF AR USING DATA
CATEGORIZATION
We assume that the AR predictor uses the durations of the
previous 200 busy/idle durations to calculate a1 to ap once
for predicting the durations of the upcoming 200 busy/idle
statues (M = 200,N = 200). In preliminary simulations,
we have set the AR order p with different value and found
that AR predictor with p = 2 can get the best prediction
performance. In this paper, we just provide the results of
AR predictor with p = 2. For data categorization, we uti-
lize the same configurations of set ranges, which are shown
in Table 5, as CASE I and CASE II. For the results of each
stream, we also provide the ratio of the data in this stream
to all data to show the percentage of data with different
prediction performance.

FIGURE 19. Busy / idle duration prediction using the proposed method
(railway station @ Channel 36, 5 GHz band, CASE I).

The evaluated prediction performances are shown
in Fig. 17 for busy /idle duration prediction for CASE I and
in Fig. 18 for CASE II on Channel 1 over the 2.4 GHz band.
The x-axis shows the prediction error (Err) and y-axis shows
the complementary cumulative distribution function (CCDF)
of prediction error which shows that the prediction error is
not smaller than Err.

Both figures show that the proposed method can differen-
tiate the prediction performance of each stream, especially
for busy duration prediction. The proposed data catego-
rization shows better prediction performance for the stream
#1 with 17% and 26% total data for CASE I and CASE II
than that of without categorization process, respectively. For
one example, the proposed DC of stream #1 can improve
about 37% and 32% prediction accuracy when Err is ranged
among [−15, 15] points. On the other hand, for idle duration
prediction, two range settings cannot improve the prediction
performance. However, from Table 6 and Table 7, we can
find the prediction results match highlywith the predictability
results, especially with 5Unc. The proposed data categoriza-
tion can improve the prediction accuracy of partial data even
if system employs a simple AR predictor.

The prediction performances are shown in Fig. 19 for
busy/idle duration prediction for CASE I and in Fig. 20
for CASE II on Channel 36 over the 5 GHz band.
For data captured from Channel 36 in 5 GHz band, generally,
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FIGURE 20. Idle duration prediction using the proposed method (railway
station @ Channel 36, 5 GHz band, CASE II).

busy duration prediction performs reasonably well and our
proposed method can further improve its accuracy for the
stream #1. The major reason is that the busy duration on
Channel 36 distributes within a small range and data cate-
gorization will further reduce its range. For idle duration pre-
diction, the stream #1 of both CASE I and CASE II evidently
shows better prediction performance than that of without DC.
From the occurrence ratio of each stream, all figures show
that our proposed method can improve the prediction per-
formance for over about 20% of the total idle data and over
about 12% of the total busy data. From Table 8 and Table 9,
we can also find the prediction results match highly with the
predictability results. The proposed data categorization can
improve the prediction accuracy of a part of data.

It should be noted that it is still a challenge to find the
suitable parametersK , Si at the i-th layer and the range of each
set to optimize the predictability and prediction performance
because the real-environment traffic data includes many ser-
vice combinations and mixed traffic pattern. In addition, how
to find the optimal prediction method to achieve the upper
bound of predictability is still open issue. These issues are
our ongoing research topics.

VII. CONCLUSION
This paper first investigated the spectrum occupancy sta-
tus and its modeling analysis for a heavy WLAN traffic
environment at a major railway station. Our measurements

can provide more realistic parameters for considering sce-
narios over heavy WLAN traffic environments. The fitting
models of busy and idle duration can be used as a com-
plement for building useful models such as interference
model, simple multi-band CR spectrum occupancy model for
CR system research. We then analyzed the predictability
analysis on busy/idle durations of two selected channels at the
2.4 GHz and 5 GHz bands. From the predictability analysis,
we proposed a method called data categorization to separate
all busy/idle durations into several streams with different
distribution property. This separation facilitates some streams
to be more easily predicted. The results show that, even
using a simple AR based predictor, data categorization can
improve the prediction accuracy of some streams with a high
predictability.
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