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a b s t r a c t 

Haptic object perception begins with continuous exploratory contact, and the human brain needs to accumulate 

sensory information continuously over time. However, it is still unclear how the primary sensorimotor cortex 

(PSC) interacts with these higher-level regions during haptic exploration over time. This functional magnetic res- 

onance imaging (fMRI) study investigates time-dependent haptic object processing by examining brain activity 

during haptic 3D curve and roughness estimations. For this experiment, we designed sixteen haptic stimuli (4 

kinds of curves × 4 varieties of roughness) for the haptic curve and roughness estimation tasks. Twenty partic- 

ipants were asked to move their right index and middle fingers along the surface twice and to estimate one of 

the two features —roughness or curvature —depending on the task instruction. We found that the brain activity 

in several higher-level regions (e.g., the bilateral posterior parietal cortex) linearly increased as the number of 

curves increased during the haptic exploration phase. Surprisingly, we found that the contralateral PSC was para- 

metrically modulated by the number of curves only during the late exploration phase but not during the early 

exploration phase. In contrast, we found no similar parametric modulation activity patterns during the haptic 

roughness estimation task in either the contralateral PSC or in higher-level regions. Thus, our findings suggest 

that haptic 3D object perception is processed across the cortical hierarchy, whereas the contralateral PSC interacts 

with other higher-level regions across time in a manner that is dependent upon the features of the object. 
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. Introduction 

In the somatosensory system, haptic perception originates through

ontinuous exploratory contact with objects, and the human brain has

o accumulate sensory information continuously across time to under-

tand an object through touch ( Klatzky and Lederman, 2011 ). Dur-

ng haptic exploration, both cutaneous and proprioceptive informa-

ion are known to first arrive at the contralateral primary sensorimo-

or cortex (PSC) in the cerebral cortex ( Pleger and Villringer, 2013 ;

athian, 2016 ). Both nonhuman primate (NHP) ( Arce-McShane et al.,

016 ; Umeda et al., 2019 ) and human neuroimaging ( Huber et al., 2017 )

tudies have demonstrated that the primary somatosensory cortex (S1)

nd the primary motor cortex (M1) interact with each other to shape

aptic information in the early stage. After such initial sensorimotor

rocessing in the PSC, the integrated representation of the object lo-
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al (e.g., surface roughness) and global (e.g., three-dimensional (3D)

hape) features are sent to other higher-level regions for further pro-

essing ( Ackerley and Kavounoudias, 2015 ). However, how haptic in-

ormation is updated across time through the cortical hierarchy remain

oorly understood. 

The S1 is known to comprise four cytoarchitectonic areas (ar-

as 3a, 3b, 1, and 2), which together are responsible for the signals

rom different peripheral receptors. According to the classical model

f somatosensory processing from NHP studies ( Delhaye et al., 2018 ;

ountcastle, 2005 ), local features such as roughness are processed by

utaneous receptors, which are conveyed to area 3b, whereas global

eatures such as shape are handled by proprioceptive receptors, which

roject to area 3a. Then, neural signals from areas 3a and 3b project

o areas 1 and 2, where the cutaneous information and proprioceptive

nformation are integrated. Evidence from a recent study ( Kim et al.,
y 2021 
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015 ), however, challenges this prevalent model by demonstrating that

rea 3b also responds to both cutaneous and proprioceptive inputs.

hese findings imply that the haptic assessment of 3D objects requires

he integration of cutaneous and proprioceptive inputs at all four subre-

ions of the S1, and these initial processing steps are thought to shape

he basic features of the object. Compared to the S1, the M1 (area

) is more likely accountable for kinesthetic information processing,

uch as hand motion and finger positions during haptic exploration

 Gurtubay-Antolin et al., 2018 ; Kassuba et al., 2013 ; Masson et al., 2016 ;

athian et al., 2011 ). 

Apart from PSCs, recent human neuroimaging studies using a vari-

ty of tasks have observed somatosensory responses in multiple higher-

evel regions ( Sathian, 2016 ). Specifically, the parietal opercular cor-

ex has been defined as the secondary somatosensory cortex (S2)

 Burton, 1986 ), which responds to all types of sensorimotor inputs, such

s object shape, size, and roughness. Furthermore, the S2 is known to

idirectionally connect to the posterior parietal cortex (PPC), to the pre-

rontal cortex (PFC) and to the premotor cortex (PMC) during both hap-

ic and tactile object processing ( Eickhoff et al., 2010 , 2008 ; Rajaei et al.,

018 ; Sathian et al., 2011 ; Yang et al., 2017 , 2014 , 2012 ; Yu et al.,

018b ). Although the precise contributions of each area have not yet

een established, the subregions, including the anterior part of the su-

erior parietal lobule (SPL; areas 5 and 7) and inferior parietal lobule

IPL; area 40) of the PPC, have long been associated with object local

nd global feature processing ( Sathian, 2016 ). In contrast, the intra-

arietal sulcus (IPS) is strongly connected to the bilateral PFC and PMC,

oth of which have been implicated in planning complex cognitive be-

avior, attention, decision making, etc. ( Finn et al., 2019 ; Hunt et al.,

018 ; Nee and D’Esposito, 2016 ; Styrkowiec et al., 2019 ; Tremel and

heeler, 2015 ). However, it remains unclear how the PSC interacts with

hese higher-level regions to allow haptic information to be processed

cross the cortical hierarchy. 

The aim of the present functional magnetic resonance imaging

fMRI) study is to investigate the cortical processing underlying hap-

ic 3D object perception. To manipulate the local and global properties

f objects, we designed a series of unique haptic stimuli sets combining

ocal object features (roughness) and global features (3D curve), which

ere changed in a parametric manner. During the fMRI scan, partici-

ants explored one of sixteen curved surfaces having different rough-

ess values (4 curve types × 4 roughness types) in 5s and were told to

stimate one of the two features depending on the task instruction (i.e.,

ow many curves were present or how rough the surface was). This ex-

erimental design combined with the stimuli set allowed us (1) to isolate

nd compare regions across the whole brain relative to the surface curve

nd/or roughness estimation, (2) to test whether the brain regions show

arametric variation based on each surface feature, and (3) to observe

he brain activity across the exploration phase and to reveal the inter-

ction between the PSC and other higher-level regions as a function of

ime for each surface feature. 

. Materials and methods 

.1. Participants 

Twenty healthy right-handed volunteers (10 males and 10 nonpreg-

ant females; age range 20–30 years, with a mean age of 22 ± 0.63

ears) participated in the fMRI experiments. None of the participants

eported a loss of tactile sensation; a history of major medical or neu-

ological illness, such as epilepsy; significant head trauma; or a his-

ory of alcohol dependence. All of the participants gave written in-

ormed consent under the National Institutes of Health (NIH) Com-

ined Neuroscience Institutional Review Board-approved protocol (93-

-0170, ClinicalTrials.gov identifier: NCT00001360) in accordance

ith the Belmont Report and US Federal Regulations that protect human

articipants. 
2 
.2. Finger somatotopic mapping 

One of our research goals was to investigate how haptic object es-

imation modulates activity in the contralateral PSC. Thus, to select

recise finger regions in the contralateral PSC, we first performed so-

atotopic mapping for the right four fingers (index, middle, ring and

inky) using an on-off block design. The participant’s right hand was

xtended to her/his side and comfortably supported by cushions. The

xperimenter stood at the entrance of the scanner bore and manually

oked the participant’s fingers using a plastic stick (round tip, 10 mm

n diameter). The experimenter was trained, and a 4 Hz rhythmic sound

rain was presented to the experimenter via headphones during the on

hase to control the poking frequency. During the on phase, one of the

our fingers was randomly and independently poked. The participants

ere instructed to keep their attention on the poked finger during the

n phase. The duration of each on phase (stimulation) was 17.5 s, fol-

owed by a 10.5 s or 14 s duration off phase (with the duration of the

ff phase randomly chosen). This on/off-phase cycle was repeated five

imes for each finger (a total of twenty cycles). 

.3. Haptic roughness and curve estimation task 

.3.1. Haptic stimuli 

A total of 17 kinds of 3D printed haptic stimuli were used in the

resent study. Fig. 1 a-d show the detailed parameters of the haptic

timuli. Specifically, Fig. 1 a shows four kinds of global curved surfaces,

hich have 1, 2, 3, or 4 curves. Fig. 1 b shows four kinds of local tex-

ured surfaces, consisting of tetragonal arrays of hemispheroidal raised

ots with an identical distance center-to-center between adjacent dots

n each row; the distances were 2, 3, 4, or 5 mm. The hemispheroidal

ots had a 1 mm diameter and were raised 1.5 mm from the surface

 Fig. 1 c). All four types of dot patterns were printed on four different

urved surfaces with a 40 × 100 mm 

2 rectangular base ( Fig. 1 d). Fig. 1 e

hows an example of four stimuli with dot spacing equal to 5 mm. In

otal, there were sixteen haptic stimuli (4 kinds of curves × 4 varieties of

oughness) for the curve and roughness estimation tasks ( Fig. 1 f). Fur-

hermore, to control the basic somatosensory input by the finger-surface

ontacts and hand motion, one flat surface without dots was used in the

and motion and visual control (HMVC) task ( Fig. 1 g). Three custom-

esigned, metal-free stimuli containers were used to present all stimuli

n a pseudorandom order to the participants during the fMRI experi-

ent. All stimuli shifts occurred during the pretrial interval, which was

anually controlled by the experimenter standing by the MRI bore. 

.3.2. Procedures 

Each participant was asked to perform four fMRI task runs that fo-

used on roughness estimation (RE) and curve estimation (CE). Due to

ime limitations, three out of twenty participants performed only three

ask runs. First, to ensure that the participants moved their fingers at

 constant speed, they performed 10–20 trials outside of the scanner.

he experimenter conducted this training until he could confirm that

he participant exhibited uniform motion. Each fMRI task run consisted

f 48 trials (16 trials × 3 tasks), which were pseudorandomly presented.

articipants were informed that a series of surfaces would be presented.

heir task was to estimate the roughness or curve of each stimulus or

o move their fingers, as directed by instructions on the screen (BOLD-

creen, Cambridge Research). The participants were instructed to choose

 comfortable contact force and to use the same contact force across all

rials during the fMRI experiment. 

Roughness estimation (RE) task . For RE, roughness was not defined

or the participants; instead, they were asked to use their own personal

efinition of haptic roughness. Specifically, the participants’ estimation

cale was established by presenting the smoothest and roughest stimuli

efore the fMRI experiment. Participants were told that these were two

llustrative examples. Participants were asked to assign a whole number
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Fig. 1. Physical characteristics of the haptic stimuli and the experimental procedures. (a) Lateral view of four kinds of curved stimuli. (b) Four kinds of haptic 

surfaces consisting of tetragonal arrays of dots with identical dot spacing. (c) Dot heights are 1.5 mm, and dot diameters are 1 mm. (d) All four kinds of dot patterns 

were printed on four different surfaces with a 40 × 100 mm rectangular base. (e) Examples of stimuli with dot spacing equal to 5 mm. (f) An example trial of the 

roughness and curve estimation task. First, participants were asked to fixate on the visual screen. After a short interval, one of two visual instructions was presented 

on the screen for 5 s. During this exploration phase, participants were asked to move their right index and middle fingers right-to-left then left-to-right along the 

surface twice in 5 s and to perform different tasks based on the instruction. The possible instructions were as follows: “Roughness ”, estimate the roughness, and 

“Curvature ”, estimate the number of curves. Then, the participants were asked to assign a number (1 to 7) to the roughness or curves using the button box in their left 

hand during the response phase. (g) The HMVC task followed the same procedure, but a flat smooth surface was presented. During the exploration phase, “Motion ”

was presented on the screen, and the participants were asked to move their fingers right-to-left then left-to-right along a flat smooth surface twice. The participants 

were asked to move the triangle to the numeric location shown on the center of the screen during the response phase. 
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rom 1 (smoothest) to 7 (roughest) that seemed appropriate to each sur-

ace. Each trial began with a short interval (1.5 s or 4 s). Subsequently,

he word “Roughness ” was presented during the 5s exploration phase

see Fig. 1 f). The participants were asked to move their right index and

iddle fingers in a right-to-left then left-to-right motion along the sur-

ace twice during the exploration phase at a constant speed. The partic-

pants were asked to ignore the curve of the stimuli and to estimate the

oughness of the surface. Then, they were asked to assign a number to

he roughness level using the button box in their left hand during the 6s

esponse phase. 

Curve estimation (CE) task . For CE, the participants did not know the

aximum curve number before the fMRI experiment. They were asked

o estimate the number of curves and assign a whole number from 1

o 7 to each stimulus. The procedure and timing for each phase were

he same as the RE task, whereas the word “Curvature ” was presented

uring the exploration phase. The participants were asked to ignore the

oughness of the surface and to estimate the number of curves. 

Hand motion and visual control (HMVC) task . This task was designed

o control the motor components (i.e., the right-hand exploration for

he roughness/curve estimation and the left-hand rating scale selection)

nd the visual stimuli (i.e., the visual instructions and response scales

resented on the screen). We used the same procedure as that used in

a  

3 
he RE and CE tasks, though a flat smooth surface was presented (see

ig. 1 g). The participants were asked to just move their fingers in a

ight-to-left then left-to-right motion along the flat smooth surface twice.

hen, the participants were asked to move the triangle to the numeric

ocation shown on the center of the screen during the response phase. 

.4. Image acquisition 

MRI scans were performed on each participant using a GE Discovery

R750 3T MRI scanner (GE Healthcare, Chicago, IL). No participant was

n the scanner for longer than 120 min per session. Each scanning session

onsisted of acquiring the following fMRI datasets: an individual finger

omatotopic mapping run that was 10 min (240 volumes) in duration,

ollowed by three or four haptic task runs that were each 11 min in

uration (265 volumes). Standard T2 ∗ -weighted echo planar imaging

EPI) sequence parameters were used to obtain the functional images

nd ten reverse-blip volumes with the following parameters: repetition

ime (TR) = 2500 ms, echo time (TE) = 30 ms, phase encoding = A to

, flip angle = 75°, matrix = 77 × 77, axial slices = 42, in-plane field

f view = 186 × 186 mm 

2 , in-plane resolution = 2.58 × 2.58 mm 

2 ,

nd slice thickness = 3.0 mm (whole-brain coverage). After the fMRI

cquisition, a T1-weighted magnetization prepared rapid gradient echo
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MPRAGE) high-resolution anatomical volume was obtained with the

ollowing parameters: voxel size = 1.0 × 1.0 × 1.0 mm 

3 , TR = 7040 ms,

E = 3480 ms, matrix = 256 × 256 × 172, and duration = 5 min. 

.5. Behavioral data analysis 

The RE and CE estimates (scale values) and response times of each

articipant were collected with open-source application PsychoPy soft-

are v1.85.0 ( Peirce et al., 2019 ). The R programming language ( R Core

eam, 2013 ) was used for additional statistical analyses. 

.6. fMRI data analyses 

FMRI data were analyzed using “afni_proc.py ” with the AFNI/SUMA

version = 18.1.08) software package (http://afni.nimh.nih.gov/)

 Cox, 1996 ; Saad et al., 2006 ). Cortical surfaces for each

articipant were created using FreeSurfer (Version 6.0)

http://surfer.nmr.mgh.harvard.edu/) ( Fischl, 2012 ) by running

he “recon-all ” command for each T1-weighted anatomical image and

onverting the results from the standard NIFTI/GIFTI format to AFNI

@SUMA_Make_Spec_FS ”. 

.6.1. Individual participants: preprocessing and modeling 

The full “afni_proc.py ” command used to generate the processing

tream and quality control is provided in the Supplementary material .

e briefly describe the implemented processing blocks and options used

ere. Before statistical analysis, the first two volumes of each run were

emoved, and slice-timing correction was then performed to adjust for

ifferences in slice-acquisition times. Then, we applied blip up/down

onlinear alignment to all EPI images and then aligned all images to

articipants’ own anatomical image ( Glen et al., 2020 ). Motion correc-

ion with rigid-body (three translation and three rotation) alignment

as performed, and volumes with Euclidean norm (enorm) of the rigid-

ody motion parameters greater than 0.3 mm were censored. EPIs were

apped to the surface domain and blurred to a smoothness of 6 mm full

idth at half maximum (FWHM) on the surface. Finally, each node’s

ime series was scaled to have a mean of 100, so that time series fluc-

uations would correspond to interpretable units of local blood-oxygen

evel dependent (BOLD) percent signal changes ( Chen et al., 2017 ). 

Within the “afni_proc.py ” command, a general linear model (GLM)

as also fitted to the fMRI data for each participant. The BOLD signal

as modeled for the finger somatotopic mapping run, and all haptic RE

nd CE task runs with a block function were convolved with the canon-

cal hemodynamic response function (HRF) using the AFNI “3dDecon-

olve ” command. Assuming a first-order autoregressive model, the se-

ial autocorrelation was estimated from the pooled active nodes with

he restricted maximum likelihood procedure. The motion-related ar-

ifacts were minimized via the incorporation of six parameters (three

ranslations and three rotations) from the rigid-body realignment stage

nto each model. The estimates were evaluated using linear contrasts

f finger data relative to baseline in each participant or in each task.

urthermore, aside from the visual data confirmation, the output of the

FNI “@ss_review_basic ” for each participant’s processing was used for

uality control; this output comprised the max motion, temporal signal-

o-noise ratio (tSNR), smoothing values, counts of outliers, etc. 

Then, we obtained the subbrick images ( section 2.6.2 ) to localize the

ean specific PSC subregions, ( section 2.6.3 ) observe the whole-brain

ctivity pattern during the CE and RE tasks, ( section 2.6.4 ) and observe

he brain regions parametrically modulated by CE and RE tasks. Finally,

e also performed ( section 2.6.5 ) a time series analysis to observe the

ime series data from the contralateral PSC and other higher-level re-

ions. 

.6.2. Group analysis: localize specific PSC subregions for the index and 

iddle fingers 

First, a one-sample t-test was used to confirm the activation of each

nger (index, middle, ring and pinky) from the finger somatotopic map-
4 
ing run. The height threshold was set at p < 0.002 (t 19 > 3.6, two-sided

esting) ( Chen et al., 2019 ; Eklund et al., 2016 ), and the threshold for the

patial extent test was set at p < 0.05. This finger somatotopic mapping

un was designed to select precise finger regions in the contralateral PSC,

hich were used to investigate how haptic object estimation modulates

ctivity in these regions. Since all participants were asked to touch the

timuli using their right index and middle fingers during the CE and RE

asks, we classified activations for only index and middle fingers around

he postcentral gyrus (poCG) into four subregions (areas 3a, 3b, 1, and

) within the S1 and M1 (area 4). 

.6.3. Group analysis: average activity modulation by CE and RE tasks 

First, analysis of variance (ANOVA) was used to confirm the whole-

rain activation of each task (RE, CE, and HMVC). We then evaluated

he contrast of the mean of the RE task with the mean of the HMVC task

RE – HMVC) and the contrast of the mean of the CE task with the mean

f the HMVC task (CE – HMVC). We then evaluated the contrasts of (CE

HMVC) – (RE – HMVC) and (RE – HMVC) – (CE – HMVC) to identify

rain regions affected by the haptic curve and roughness estimations.

he height threshold was set at p < 0.002 (t 19 > 3.6, two-sided testing),

nd the threshold for the spatial extent test was set at p < 0.05. 

.6.4. Group analysis: parametric main effects of CE and RE tasks 

To locate any regions that showed a parametric response to CEs and

Es, we next performed whole-brain group analysis with parametric re-

ressors ( Chen et al., 2014 ). The linearity across the four levels of each

ask (roughness or curve) was assessed through post hoc inferences in

he 2 × 2 within-subject ANOVA model using “3dMVM ” in AFNI. Specif-

cally, a set of weights of -3, -1, 1 and 3 (normalized to have a zero-

ean) were assigned to the four levels of each task to infer the linear-

ty. These four weights corresponded to the first-order orthogonal poly-

omials evaluated at four equally spaced data points. Both the height

hreshold and spatial extent thresholds were set the same as above. 

.6.5. Time series analysis 

To examine the parametric main effects in the contralateral PSC and

igher-level regions across the exploration phase, we further estimated

he activation of these regions at each time point. We defined contralat-

ral areas 4, 3a, 3b, 1, and 2 from the independent somatotopic map-

ing run, and the higher-level regions were defined from the CE of spe-

ific regions (i.e., the surviving regions from the (CE – HMVC) – (RE

HMVC) contrast). Then, we extracted all the functional time series

ignals at these specified regions for all participants from the scaled

PIs in the surface space. Finally, these signals were convolved with

 TENT function of the “3dDeconvolve ” in AFNI to estimate the response

mplitude (% signal change) for each region to each task trial. Linear

ixed-effects model analysis was performed using the “lme4 ” package

n R ( Bates et al., 2015 ) to evaluate the brain activation time series

f each region. Here, we set time factors at two levels, which corre-

ponded to the early and late exploration phases. The stimuli factors

ere set at four levels, corresponding to stimuli curves or roughness. If

here was a significant interaction between the time and stimuli level, a

ost hoc test was conducted for the simple effect of the stimuli; other-

ise, the main effect of the stimuli was examined. These p values were

onferroni-corrected. 

. Results 

.1. Behavioral performance 

Eighteen of twenty participants (for technical reasons, behavioral

ata for two participants were lost) were included in the behavioral

ata analysis. As shown in Fig. 2 , linear regression analysis (blue lines

n Fig. 2 ) revealed that the scale values of both roughness [r 2 = 0.744,

 < 0.001] and curve [r 2 = 0.875, p < 0.001] estimation were signifi-

antly increased depending on the stimuli level. Furthermore, we found
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Fig. 2. Behavioral performance of curve and roughness estimation tasks. Black 

dots represent the average scale or response time of each participant. The blue 

lines represent the linear regression line. The gray background represents the 

95% confidence interval. 
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hat participants evenly assigned RE values from 1 to 7 for RE, whereas

hey mostly assigned CE values from 1 to 5 for CE. This difference re-

ected that the participants were able to scale the stimuli dependent on

ifferent physical features. In addition, we also performed linear regres-
ig. 3. Somatotopic maps and location of sensorimotor subregions. (a) Illustration 

nger maps were observed within the CS, poCG and poCS contralateral to the stim

rganized (from the index finger to the pinky finger) in a somatotopic manner in t

rominent in the poCG. (b) Illustration of the location of the sensorimotor subregion

ccording to the averaged activations of the index and middle fingers. CS, central sul

5 
ion analysis on the mean response times for all tasks (relative to the

ffset of the exploration phase). We found that the response times were

ignificantly increased dependent on the stimuli level in both rough-

ess [r 2 = 0.302, p < 0.001] and curve [r 2 = 0.465, p < 0.001] esti-

ation tasks. Furthermore, a two-way (two tasks × four stimuli levels)

epeated measures ANOVA of the mean response time also revealed sig-

ificant main effects of the stimuli level [F 3, 51 = 43.58; p < 0.001]

nd task [F 1, 17 = 14.38; p = 0.001] without interaction [F 3, 51 = 1.49;

 = 0.228]. On one hand, the response time main effect of the stimuli

evel reflected a larger scale value the more the button was pressed. On

he other hand, the response time main effect of the task revealed that

he participants provided a CE faster than an RE. In the present study,

ince the participants were asked to assign a number to the stimulus

uring the response phase rather than respond as quickly as possible,

he difference in response time had a negligible contribution to brain

ctivation. 

.2. fMRI results 

.2.1. Somatotopic maps 

For all participants, finger activation maps were observed within

he central sulcus (CS), poCG and poCS contralateral to the stimulated

ngers. Fig. 3 a shows the averaged (n = 20) activation maps for the

ight four fingers. Consistent with previous studies ( Besle et al., 2013 ;

artuzzi et al., 2014 ; Stringer et al., 2014 ), we found that the four fin-

ers were sequentially organized in a somatotopic manner in the pos-

erior bank of the CS, whereas this finger response selectivity was less

rominent in the poCG. Then, we defined index and middle finger corre-

ponding sensorimotor subregions relative to the anatomical landmarks

n the CS, poCG, and poCS ( Fig. 3 b). Specifically, areas 3a and 3b are

nown to be located along the posterior bank of the CS, area 1 is on
of the averaged activation maps of the right four fingers. For all participants, 

ulated fingers. Furthermore, we found that the four fingers were sequentially 

he posterior bank of the CS, whereas this finger response selectivity was less 

s. Based on the landmarks, we generated the masks of areas 4, 3a, 3b, 1 and 2 

cus; poCG, postcentral gyrus; poCS, postcentral sulcus. 
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Fig. 4. Mean (n = 20) brain activation of roughness estimation (RE) and curve estimation (CE) rendered on cortical surfaces using SUMA. (a) Brain regions exhibiting 

greater activation during the RE task than during the HMVC task. (b) Brain regions exhibiting greater activation during the CE task than during the HMVC task. 

(c) Brain regions for the (CE - HMVC) - (RE - HMVC) contrast. (d) Brain regions for the (RE - HMVC) - (CE - HMVC) contrast. (e) These bar graphs represent the 

mean % signal changes in each region of interest (ROI) for each task (n = 20). The error bars indicate the standard error of the mean (SEM). CS, central sulcus; 

poCS, postcentral sulcus; IPS, intraparietal sulcus; dPMC, dorsal premotor cortex; SPL, superior parietal lobule; pITG, posterior part of the inferior temporal gyrus; 

aMOG, anterior middle occipital gyrus; pMOG, posterior middle occipital gyrus. Asterisks represent the statistical significance of the one-sample t-test. ∗ : p < 0.05, 
∗ ∗ : p < 0.01, ∗ ∗ ∗ : p < 0.001, n.s.: not significant. 
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he crown of the poCG, and area 2 resides on the posterior bank of the

oCG. Furthermore, hand area 4 is known to be located on the hand

nob of the preCG. 

.2.2. Whole-brain neural activity for roughness and curve estimations 

Initially, we confirmed that both the RE and CE tasks (relative to

he HMVC task) activated a widespread set of brain regions, including

he contralateral preCG, CS and poCG ( Fig. 4 a, b). In addition, we also

ound significant activations in the bilateral ventrolateral prefrontal cor-

ex (vlPFC), dorsal and ventral premotor cortex (dPMC and vPMC, re-

pectively), insular cortex, parietal operculum (PO), dorsomedial pre-

rontal cortex (dmPFC), calcarine sulcus, right poCS, right poCG, right

PS, and right SPL. Moreover, we also found that the CE task, but not the

E task, significantly activated the bilateral posterior part of the inferior

emporal gyrus (pITG), left IPS, and left SPL. 
6 
.2.3. Whole-brain neural activity for curve estimation vs. roughness 

stimation and vice versa 

As shown in Fig. 4 c, the regions including the bilateral poCS, IPS,

PL and pITG, as well as the left dPMC and right anterior middle occip-

tal gyrus (aMOG), were activated more strongly in the CE task than in

he RE task. In contrast, the (RE – HMVC) – (CE – HMVC) result only

howed stronger activation in the right posterior middle occipital gyrus

pMOG) and CS ( Fig. 4 d). Furthermore, to visualize the task-related sig-

al changes in these regions, we extracted the mean activity signal (%

ignal change) of each task relative to the rest intervals ( Fig. 4 e). For

egions that showed greater activation in the CE task than in the RE

ask, we found that the CE task elicited positive signals relative to the

est intervals for nine of ten regions (i.e., except for the right aMOG). In

ontrast, the regions (i.e., the right pMOG and CS) that showed greater

ctivation during the RE task than during the CE task were also acti-
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Fig. 5. Brain regions showing parametric main effects of (a) curve estimation and (b) roughness estimation. These plots represented the mean activation in each 

ROI for each task per stimulus level across participants (n = 20). For the curve estimation task, levels 1 to 4 represent the number of curves. For the RE task, levels 

1 to 4 represent the surface roughness. The error bars indicate the standard error of the mean (SEM). CS, central sulcus; poCG, postcentral gyrus; poCS, postcentral 

sulcus; SPL, superior parietal lobule; dPMC, dorsal premotor cortex; dmPFC, dorsomedial prefrontal cortex. 
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ated by the HMVC task, which may not contribute to the roughness

stimation processing. 

.2.4. Brain regions showing parametric main effects of roughness and 

urve estimation 

Fig. 5 a shows that the activation of these brain regions linearly in-

reased as the number of curves increased. These regions include the bi-

ateral dPMC, poCS, SPL, and left dmPFC. Then, we extracted the mean

ctivity signal of each of these seven clusters for CE and RE tasks to

onfirm the linear relationship between the stimuli level and brain ac-

ivation. As shown in the plots of Fig. 5 a, the brain activations of these

egions showed linear increases relative to the CE level (black squares)

ut not for the RE level (outlined circles). Compared to the results of

he CE task, we uniquely identified that the right CS that extended to

he poCG (CS & poCG) was parametrically modulated by the RE task

 Fig. 5 b). 

.2.5. Time series analysis results for roughness and curve estimations 

The averaged fMRI time series data in five contralateral PSC subre-

ions and seven higher-level regions are shown in Figs. 6 and 7 . Note

hat since three of the ten regions (i.e., left and right pITG, right aMOG)

rom the (CE - HMVC) - (RE - HMVC) contrast did not demonstrate para-

etric effects for all time points, we only illustrated the other seven

egions here. In Figs. 6 and 7 , the zero point of the horizontal axis rep-

esents the onset of stimulus exploration for each experimental trial,

hich continued for 5 s. To reveal the detailed brain activation during

he exploration phase, we estimated the peak time points for the early

nd late phases by convolving the canonical HRF with a 2.5 s boxcar

unction. We noted that the early phase activation peak appeared at ap-

roximately 6.2 s, and the late phase appeared at approximately 8.6 s.

ince the TR interval was 2.5 s, the data points of 7.5 s and 10 s reflected

he peak activation of the early and late parts of the stimuli exploration

hase separately. We found that contralateral PSC subregions showed

ignificantly different activation patterns from those found in higher-

evel regions ( Fig. 6 a, b). Specifically, for contralateral PSC subregions

 Fig. 6 a), we only found parametric modulation during the CE task in
7 
he late phase but not in the early phase. In contrast, in the higher-

evel regions, for example, in the activation of the left SPL ( Fig. 6 b), we

ound a linear increase relative to the CE level in both the early and late

hases. In contrast, as shown in Fig. 7 a, b, we did not find similar time-

ependent activation profiles in either the contralateral PSC subregions

r higher-level regions for the RE task. 

. Discussion 

In the present study, we investigated brain activity during haptic

urve and roughness estimation using a parametric fMRI experiment.

ur results extend beyond the previous findings ( Mueller et al., 2019 ;

athian et al., 2011 ; Stilla and Sathian, 2008 ) by revealing brain regions

hat show parametric variation that is dependent on the curve ratings

 Fig. 5 a). Furthermore, our experimental design enabled us to observe

rain activity across the exploration phase (i.e., early and late phase) in

he contralateral PSCs and other higher-level regions during the haptic

urve and roughness estimation. In particular, we found that only acti-

ation of the higher-level regions showed linear increases relative to the

umber of curves through the exploration phase ( Fig. 6 b), whereas we

ound that the contralateral PSC ( Fig. 6 a) was parametrically modulated

y the number of curves only during the late exploration phase. In con-

rast, these time-dependent brain activity features in the same sort of

egions did not appear during the haptic roughness estimation ( Fig. 7 a,

). Together, our findings suggest that haptic 3D object perception is

rocessed across the cortical hierarchy, whereas the contralateral PSC

nteracts with other higher-level regions across time in a manner that is

ependent upon object features. 

First, we confirmed that both haptic CE and RE tasks produced very

imilar brain activity maps relative to the HMVC task ( Fig. 4 a, b). One

traightforward interpretation of such results is that participants were

sked to use the same approach to explore the same stimuli in both

E and RE tasks while estimating one of each surface feature following

he instruction. This approach has the advantage of keeping the stimuli

onstant across tasks, and both CEs and REs would be determined by
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Fig. 6. Activation profiles at each time point during haptic curve estimation. (a) Averaged activation profiles in the contralateral sensorimotor regions. (b) Averaged 

activation profiles in higher-level regions. The error bars indicate the standard error of the mean (SEM). The darker gray square in each plot represents the activation 

peak for the early exploration phase, and the light gray square represents the activation peak for the late exploration phase. Asterisks represent the statistical 

significance of the post hoc test. ∗ : p < 0.05, ∗ ∗ : p < 0.01, ∗ ∗ ∗ : p < 0.001, n.s.: not significant. 
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imilar amounts of cutaneous and proprioceptive inputs. Furthermore,

ince we found that all participants can scale both curve and roughness

roperly in a few seconds ( Fig. 2 ), we can assume that attentional de-

ands were comparable between CE and RE tasks. Therefore, the direct

omparison between CE and RE tasks can reveal the regions activated

ore strongly for each surface feature. For instance, we confirmed that

aptic CE activated a higher-level region ( Fig. 4 c) compared to that acti-

ated during haptic RE, which has been well discussed in previous stud-

es ( Mueller et al., 2019 ; Sathian et al., 2011 ; Stilla and Sathian, 2008 ).

hese regions were thought to contribute to the extraction of the 3D

eometric information (curves) from objects or other higher-level pro-

essing such as visual imagery ( Deshpande et al., 2010 ; Kassuba et al.,

013 ; Lacey et al., 2010 ). However, the point to note here is that these

egions not only contributed to CE but also contributed to RE. The ev-

dence shown in Fig. 4 e supported this point by observing significant

ctivation in eight of ten regions during the RE task. In contrast, even

hough we found two regions ( Fig. 4 d) in the (RE – HMVC) – (CE -

MVC) contrast, the HMVC task also activated these regions at the same

evel ( Fig. 4 e) rather than specific for roughness and curve estimations.

Interestingly, our results highlighted that haptic CE parametrically

odulated the activations depending on the exploration phase within

he contralateral PSC (i.e., areas 4, 3a, 3b, 1 and 2) and several higher-

evel regions. Specifically, whole-brain parametric analysis revealed that

he activations of several higher-level regions, including the bilateral
8 
oCS, SPL, dPMC, and left dmPFC ( Fig. 5 a), were uniquely and linearly

ncreased with increasing number of curves. Nonetheless, looking be-

ond the fMRI adaptation effects ( Barron et al., 2016 ; Krekelberg et al.,

006 ; Larsson and Smith, 2012 ), time series analysis also revealed signif-

cant curve parametric modulation in all contralateral PSC subregions at

he late exploration phase but not the early exploration phase ( Fig. 6 a).

uch findings suggest the possibility that the contralateral PSC and these

igher-level regions interacted differently across the haptic exploration

hase for CE. 

Human sensory processing is considered to typically occur within

 hierarchical framework, consisting of a series of discrete stages from

he primary sensory cortex to the whole brain. In the somatosensory

ystem, sensorimotor information is projected initially to the contralat-

ral PSC, encoding basic perceptual dimensions, such as edge, roughness

nd hand motion ( Pleger and Villringer, 2013 ; Sathian, 2016 ). Then,

ollowing higher stages beyond the contralateral PSC, the second-order

ensory cortex, such as areas 1 and 2, is known to have bilateral re-

eptive fields ( Iwamura, 1998 ) that are sensitive to hand movement di-

ection and object shape ( Sathian, 2016 ). Aside from these somatosen-

ory areas, the caudal part of the SPL (i.e., area 7) also appears to be

nvolved in the higher-order processing of sensorimotor information.

urthermore, area 7 is known to functionally connect with the bilat-

ral SPL, dPMC, and dmPFC (the putative human supplementary motor

rea), and this network is thought to function in integrative sensory,
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Fig. 7. Activation profiles at each time point during haptic roughness estimation. (a) Averaged activation profiles in contralateral sensorimotor regions. (b) Averaged 

activation profiles in higher-level regions. The error bars indicate the standard error of the mean (SEM). The darker gray square in each plot represents the activation 

peak for the early exploration phase, and the light gray square represents the activation peak for the late exploration phase. The asterisk represents the statistical 

significance of the post hoc test for p < 0.05, and no other time points reached significance. 
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otor and cognitive functions ( Freedman and Ibos, 2018 ; Nelson et al.,

010 ). Therefore, the parametric modulation in these higher-level re-

ions through the exploration phase may represent higher-order func-

ions such as curve reconstruction and finger motion control during

xploration. 

In contrast, this strict bottom-up formation cannot adequately ex-

lain why we only found parametric modulation in the contralateral

SC during the late exploration phase but not during the early explo-

ation phase. One possible interpretation of our finding is related to bidi-

ectional hierarchy models such as predictive coding theoretical frame-

orks ( de Lange et al., 2018 ; Friston, 2010 ), in which the lower sensory

ortex receives not only bottom-up input but also top-down feedback

 Yu et al., 2019b , 2019a , 2018a ). Thus, our findings suggest that prior

xperience with the curved surface may provide top-down feedback to

odulate the contralateral PSC in a parametric manner during the late

xploration phase. In the present study, the participants were asked to

xplore each surface twice during the exploration phase. It is reason-

ble to assume that the participants would detect the number of curves

uring the first exploration (roughly during the early phase), and the

econd exploration (roughly during the late phase) was more likely to

onfirm the answer. Thus, one important insight from these data is that

he physical properties, such as the number of curves, might not be para-

etrically encoded in the contralateral PSC, while top-down feedback

odulation may occur in the contralateral PSC. 
9 
For RE, we did not find parametric modulation in the contralateral

SC and these higher-level regions during either the early or late explo-

ation phase ( Fig. 7 a, b). Even we found that the participants assigned

ifferent scales for the CE and RE tasks, the difference in scales has

 negligible contribution to this result. Because the scales were only

sed to confirm whether the participants could estimate each feature

f the stimuli, and the parametric main effects were examined for each

eature of the stimuli separately. From the behavioral perspective, this

esult may reflect that the participants are more likely to assign a num-

er to the roughness at the end of the exploration since roughness has

n abstractive definition. Thus, they may not easily remember it as a

umber at the early exploration phase, as was the case in the CE task.

rom the brain function perspective, this finding may reflect the dif-

erent coding and processing between roughness and curve in the hu-

an brain. Both the findings, as shown in Fig. 4 c of the present study

nd in previous neuroimaging studies ( Kassuba et al., 2013 ; Stilla and

athian, 2008 ), may support this assumption. For example, we found

hat the activations of the bilateral SPL, IPS, and pITG are significantly

tronger for CE than those of RE, and these regions demonstrated a ten-

ency to be more specialized for visual object processing ( Kassuba et al.,

013 ; Stilla and Sathian, 2008 ). In contrast, regions such as the S2 are

ore sensitive to the haptic perception of surface roughness processing

 Stilla and Sathian, 2008 ). Despite this, we cannot exclude the contri-

ution of other factors, such as the basic properties of the roughness
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timulus. For example, previous behavior studies ( Dépeault et al., 2009 ;

ck et al., 2013 ) have used dot spacings ranging from 1.5 to 8.5 mm,

hereas in the present study, we used dot spacings ranging from 1 to

 mm, which limited us to observing the parametric modulation. Much

ore work is necessary to resolve these issues. 

. Conclusion 

In summary, consistent with previous studies, we found that hap-

ic curve and roughness processing share many cortical regions. Beyond

hese previous findings, we found that CE parametrically modulated ac-

ivation in the contralateral PSC and bilateral poCS, SPL, dPMC, and

eft dmPFC but not RE. Furthermore, we found remarkable differences

n exploration phase-dependent brain activation between the contralat-

ral PSC and higher-level regions related to haptic CE. This finding may

epresent the nature of time-dependent interactions across the sensory

nformation cortical hierarchy that shape our behavior. 
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