Steep medial tibial slope and prolonged delay to surgery are associated with bilateral medial meniscus posterior root tear

Takaaki Hiranaka¹, Takayuki Furumatsu¹, Yuki Okazaki¹, Tadashi Yamawaki², Yoshiki Okazaki¹, Yuya Kodama¹, Yusuke Kamatsuki¹, Toshifumi Ozaki¹

¹Department of Orthopaedic Surgery, Okayama University Hospital, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan

²Department of Orthopaedic Surgery, Kousei Hospital, 3-8-35 Kouseicho, Kitaku, Okayama 700-0985, Japan

Corresponding author

Takayuki Furumatsu

Department of Orthopaedic Surgery, Okayama University Hospital, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan E-mail: matino@md.okayama-u.ac.jp

Declarations

Ethical approval

This study was approved by the Institutional Review Board in Okayama University (Ethical approval No. 1857). All procedures involving human participants were in accordance with the 1964 Helsinki declaration and its later amendments.

Informed consent

Written informed consent was obtained from all study participants.

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

The authors received no specific funding for this work.

Acknowledgements

We would like to thank Editage (http://www.edita ge.jp) for English language editing.

1	Steep medial tibial slope and prolonged delay to surgery are associated with bilateral medial meniscus posterior
2	root tear
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	

20	Abstract

21	Purpose: Contralateral medial meniscus posterior root tear (MMPRT) can sometimes occur after primary surgeries for
22	MMPRT and lead to unsatisfactory outcomes. The incidence rate and risk factors for contralateral MMPRT have not
23	been well investigated, despite of its clinical importance. Therefore, we aimed to evaluate the incidence and predictors of
24	bilateral MMPRT.
25	Methods: Fourteen patients with bilateral MMPRT (group B) and 169 patients with unilateral MMPRT (group U) were
26	enrolled in this study. Sex, age, body mass index, time between injury and surgery, and medial tibial slope angle (MTSA)
27	were compared between the groups. MTSA was measured using lateral radiographs.
28	Results: The incidence rate of bilateral MMPRT was 6.2% among all patients with MMPRTs. Multivariate logistic
29	regression analysis showed that a prolonged time between injury and surgery (odds ratio [OR], 1.0; 95% confidence interval
30	[CI], 1.00-1.01; $P \le 0.05$) and steeper MTSA (OR, 1.85; 95% CI, 1.21-2.64; $P \le 0.01$) were significantly associated with
31	the development of bilateral MMPRT. Receiver operating characteristic curve analysis showed that MTSA >10.0° was
32	associated with bilateral MMPRT, with a sensitivity of 93% and specificity of 69%.
33	Conclusion: A longer time between injury and surgery and steeper MTSA were risk factors for the development of bilateral
34	MMPRT. Surgeons need to pay close attention to the contralateral knee in addition to the primary injured knees when
35	treating knees with steep MTSA. Besides, early meniscal repair of primary MMPRT would be important to prevent the
36	events of contralateral MMPRT.
37	

Level of Evidence: Level III

40 Keywords: Medial meniscus. Posterior root tear. Bilateral injury. Predictor. Medial tibial slope. Sensitivity and specificity

42 Introduction

43	The posterior root of the medial meniscus (MM) can function as an anchor for regulating the meniscal shift
44	during knee movement and load bearing. Pathologically, an MM posterior root tear (MMPRT) can accelerate degeneration
45	of the articular cartilage in the knee joint by disrupting meniscal functions [3]. An increasing number of studies have been
46	examining its biomechanical and clinical importance. Recent studies have demonstrated that MMPRT comprises 10-30%
47	of meniscal injuries [4, 25]. MMPRT might occur mainly in middle-aged women with a painful popping during light
48	activity, such as descending stairs or walking [1, 14, 16].
49	Despite the increased number of studies on MMPRT, there have been very few reports of the risks associated
50	with MMPRT injuries [17, 24]. Variables including age, sex, body mass index (BMI), increased Kellgren-Lawrence (KL)
51	grade, and knee alignment have all been reported to be associated with MMPRT [17]. Recently, increased medial tibial
52	slope angle (MTSA) has been reported to be a risk factor for MMPRT and the average MTSA in patients with MMPRT
53	was reported as 7.2° measured using magnetic resonance imaging (MRI) [24]. Biomechanical studies have shown that a
54	steep MTSA leads to increased anterior tibial translation and anteroposterior instability that result in secondary stabilizer
55	insufficiency (Anterior cruciate ligament [ACL] or medial meniscus posterior horn [MMPH]) [15, 21, 28].
56	Regardless of a good postoperative course following primary MMPRT repair, we have diagnosed contralateral MMPRT.
57	The study was performed to evaluate the incidence and predictors of bilateral MMPRT, as there were no such studies to
58	date. It was hypothesized that patients with increased MTSA and longer time between injury and surgery would be at
59	increased risk for developing bilateral MMPRT.

61 Material and Methods

78

62	This study was approved by the University's Institutional Review Board (approval no. 1857). All participants
63	provided a written informed consent. The presence of MMPRT was defined in patients admitted to our institution from
64	2013 to 2019. We retrospectively collected the patients' recorded data. This study included 227 patients who were
65	diagnosed with MMPRT by two orthopedic surgeons according to the patients' MRI findings after having painful popping
66	events (Fig. 1) [6, 12]. Patients with MMPRT without a memory of painful popping ($n = 32$), those with previous meniscal
67	injury and/or knee surgery ($n = 5$), and lack of radiographic data ($n = 7$) were excluded. Overall, 183 patients were enrolled
68	in the study and retrospectively divided into two groups: patients with bilateral MMPRT (group B, n=14) and unilateral
69	MMPRT (group U, n=169). The primary injured knee was evaluated using MRI analysis after a painful popping episode
70	and at 20.8 days on average. Contralateral MRI was examined when the patients had painful popping event of the
71	contralateral knee after primary surgery and no patients had undergone bilateral MRI during the same period. The diagnosis
72	of MMPRT was confirmed during an arthroscopic evaluation or unicompartmental knee arthroplasty. The patients'
73	demographic information is shown in Table 1. The time of injury was set at the time of the painful popping episode.
74	
75	MTSA measurement
76	A goniometric measurement of the MTSA was performed on lateral radiographs by drawing two lines, as
77	described by Brandon et al. [5], defined by the longitudinal axis of the tibia and the medial tibial plateau (MTP), respectively

the slope of the MTP. The MTSA value was rounded off to one decimal place. The longitudinal axis of the tibia was defined

The MTSA was defined as 90° minus the angle made by the intersection of the line of the longitudinal axis of the tibia and

84 *Statistical analysis*

85 Statistical analysis was performed using EZR (Saitama Medical Center Jichi Medical University, Saitama, Japan). 86 The Mann-Whitney U test or one-way analysis of variance with the post hoc Tukey HSD test was used to compare the 87 MTSA between the two groups. The statistical significance level was set at P < 0.05. A multivariate logistic regression 88 analysis was applied to the values as risk factors for contralateral MMPRT (Table 2). The MTSA cut-off associated with 89 increased possibility to develop the contralateral MMPRT was determined by using receiver operating characteristic (ROC) 90 analysis and calculating the Youden index (J) (Fig. 3). The inter-observer and intra-observer reliabilities were assessed with 91 the intra-class correlation coefficient (ICC). An ICC > 0.83 was considered as a reliable measurement. To determine the 92 inter-observer reproducibility, all radiographs were reviewed by two experienced orthopedic surgeons, and the values of 93 the MTSA were investigated for calculating inter-observer reproducibility. One of the researchers reviewed the radiographs 94 twice on two different occasions to calculate the intra-observer repeatability. The inter-observer reproducibility and intra-95 observer repeatability of the measurements and diagnosis of MMPRT using the MRI findings were satisfactory when the 96 respective mean ICC values were 0.85, 0.87, 0.94, and 0.95, respectively. To determine the number of test samples, the 97 outcome MTSA was used in the sample size calculation under a significance level of 0.05 and a power of 0.80. As a result, 98 the required sample size was 13 patients in each group.

101	Fourteen patients (6.2%) developed bilateral MMPRT (Table 1). There was no significant difference between
102	the two groups in terms of age, BMI, and femorotibial angle. The time between injury and surgery (median, group $B = 109$
103	days; group U = 75 days; $P < 0.001$) and the MTSA (average, group B = 10.9°; group U = 8.3°; $P < 0.001$) were significantly
104	different between the two groups. The median period from the primary MMPRT to secondary MMPRT was 330 days (196-
105	826 days).
106	The multivariate logistic regression model indicated that the odds of bilateral MMPRT increased with the time
107	between injury and surgery (odds ratio [OR], 1.0; 95% confidence interval [CI], 1.00–1.01; $P = 0.030$) and with MTSA
108	(OR, 1.85; 95% CI, 1.21–2.64; $P \le 0.001$). Sex, age, and BMI were not associated with increased risk of bilateral MMPRT
109	development (Table 2).
110	The MTSA was compared between the primary and contralateral sides in groups B and U. The MTSA of the
111	primary side (10.9°) and that of the contralateral side (10.4°) were significantly steeper in group B than in group U (8.3°)
112	(P = 0.001, P < 0.001, respectively). There was no significant difference in MTSA between primary and contralateral sides
113	in group B (Fig. 3).
114	According to the ROC analysis, the MTSA cut-off value associated with contralateral MMPRT was 10.0°, with
115	a sensitivity of 93% and specificity of 69% (Fig. 4).
116	

117 Discussion

119	MMPRT. A relationship was demonstrated between two predictive factors (steeper MTSA and longer time between injury
120	and surgery) and bilateral MMPRT development.
121	Several studies have shown that MTSA plays a role in knee laxity and biomechanics [19]. Many researchers
122	have evaluated the association between a steep MTSA and ACL insufficiency [11, 29, 31]. Previous biomechanical studies
123	have shown that anteroposterior instability or anterior translation increases result in proportional increase in MTSA [7, 15].
124	However, few studies have investigated the association between MTSA and the development of MMPRT [18, 24]. Okazaki
125	et al. concluded that patients with MMPRT had significantly steeper MTSA (7.2°) than those with normal MTSA (3.5°), or
126	ACL-injured knees (4.0°) [24]. They concluded that posterior rollback of the femur due to a steeper MTSA caused
127	impingement of the MMPH resulting in MMPRT. In our study, MTSA over 10° was found to be a risk factor for bilateral
128	MMPRT development. This value of MTSA was steeper than the corresponding in knees without MMPRT [5, 20, 22].
129	Steeper MTSA causes an increased anterior tibial translation, and a larger load stress on the MMPH, which plays a
130	secondary, yet important, role in the knee joint stabilization [32, 33]. In patients with bilateral MMPRT, MTSA of the
131	contralateral side was also significantly steeper than in knees of patients with unilateral MMPRT (Fig. 3). Therefore, steep
132	MTSA and primarily injured knee increase the risk of injury in the contralateral knee. In all cases in group B, each primarily
133	injured knee had a steeper or equal MTSA than the contralateral knee. This suggests that the MMPH with a steeper MTSA
134	has a tendency to be injured first, which also suggests that MTSA has an influence on MMPRT.
135	In addition to MTSA, the amount of time between injury and surgery had a significant association with

The most important finding of this study was that the incidence rate of bilateral MMPRT at 6.2% in patients with

118

136 contralateral MMPRT injuries. Biomechanical studies have shown altered loading and compensatory movement patterns

137	after ACL reconstruction, which may result in increased loads on the contralateral limb during dynamic movement patterns
138	[10, 23, 27]. In patients with MMPRT, the longer time between injury and surgery increased the load on the patients'
139	contralateral knees preoperatively [26]. The majority of patients with bilateral MMPRT were not properly diagnosed prior
140	to hospital admission, which resulted in a delayed surgery. Missed diagnoses and delayed treatment cause a rapid
141	deterioration of the articular cartilage and subchondral bone, and relate to contralateral MMPRT [13]. An accurate and
142	timely diagnosis of the primary MMPRT may reduce the risk of contralateral knee injury.
143	In general, MMPRT is more commonly observed in women than in men, which was confirmed in this study.
144	Moreover, the proportion of female patients with bilateral MMPRT was significantly steeper than the corresponding
145	fraction of those with unilateral MMPRT, though the results were not significant (OR, 5.79; 95% CI, 0.6–52.7; n.s.). Women
146	have a steeper MTSA than men, resulting in an increased risk of MMPRT. Moreover, women tend to have a lower muscle
147	mass than men, and would, therefore, be more affected by an increased load on the contralateral knee joint [30]. The weak
148	quadriceps muscles may lead to increased stress on the articular cartilage or meniscus [8, 9, 30]. Thus, early rehabilitation
149	preoperatively might reduce the risk of contralateral MMPRT.
150	This study had several limitations. First, the retrospective nature of this very limited cohort study (only 14
151	patients with bilateral MMPRT) is an inherent limitation. Second, a sample size of 14 patients with bilateral MMPRT was
152	extremely small for conducting a multivariate logistic regression analysis, and, therefore, the validity of these findings is
153	limited. Additional study with larger sample size with bilateral MMPRTs will be required to confirm the risk factor for
154	bilateral MMPRTs. Third, the evaluation of the time between injury and surgery was unclear in some cases, and a control
155	group was not provided for this variable. Fourth, other factors that increase the risk for MMPRT, such as KL grade, knee

156	aliment, or medial and lateral tibial plateau concavity, were not examined in this study [2, 17, 24]. Fifth, this study only
157	included patients with a clear onset of injury; thus, patients with non-symptomatic MMPRT without painful popping
158	episodes might have been missed. Finally, biomechanical examinations in patients with bilateral MMPRT were not
159	performed. Such investigations may help to confirm our findings. Surgeons need to pay close attention to not only the
160	primary injured knee but also the contralateral knee when treating knees with steep MTSA, especially > 10.0°. Immediate
161	radiographic examinations including MRI would be useful when suspecting contralateral MMPRT. Besides, early pullout
162	repair of MMPRT would be important to prevent the event of contralateral MMPRT.
163	
164	Conclusion
165	It was demonstrated that the incidence of bilateral MMPRT was 6.2% in patients with MMPRT. Surgeons need to pay
166	attention to the contralateral knee in addition to the primary injured knees when treating knees with steep MTSA. Besides,
167	early meniscal repair after primary MMPRT would be important to prevent the event of contralateral MMPRT.
168	
169	

171 References

- 1721.Bae JH, Paik NH, Park GW, Yoon JR, Chae DJ, Kwon JH, et al. (2013) Predictive value of painful popping for a173posterior root tear of the medial meniscus in middle-aged to older Asian patients. Arthroscopy 29:545-549
- Barber FA, Getelman MH, Berry KL (2017) Complex Medial Meniscus Tears Are Associated With a Biconcave
 Medial Tibial Plateau. Arthroscopy 33:783-789
- Bhatia S, LaPrade CM, Ellman MB, LaPrade RF (2014) Meniscal root tears: significance, diagnosis, and treatment.
 Am J Sports Med 42:3016-3030
- Bin SI, Kim JM, Shin SJ (2004) Radial tears of the posterior horn of the medial meniscus. Arthroscopy 20:373 378
- 180 5. Brandon ML, Haynes PT, Bonamo JR, Flynn MI, Barrett GR, Sherman MF (2006) The association between
 181 posterior-inferior tibial slope and anterior cruciate ligament insufficiency. Arthroscopy 22:894-899
- Choi SH, Bae S, Ji SK, Chang MJ (2012) The MRI findings of meniscal root tear of the medial meniscus: emphasis
 on coronal, sagittal and axial images. Knee Surg Sports Traumatol Arthrosc 20:2098-2103
- Dejour H, Bonnin M (1994) Tibial translation after anterior cruciate ligament rupture. Two radiological tests
 compared. J Bone Joint Surg Br 76:745-749
- Eitzen I, Grindem H, Nilstad A, Moksnes H, Risberg MA (2016) Quantifying Quadriceps Muscle Strength in
 Patients With ACL Injury, Focal Cartilage Lesions, and Degenerative Meniscus Tears: Differences and Clinical
 Implications. Orthop J Sports Med 4:2325967116667717
- Ericsson YB, Roos EM, Owman H, Dahlberg LE (2019) Association between thigh muscle strength four years
 after partial meniscectomy and radiographic features of osteoarthritis 11 years later. BMC Musculoskelet Disord
 20:512
- Ernst GP, Saliba E, Diduch DR, Hurwitz SR, Ball DW (2000) Lower extremity compensations following anterior
 cruciate ligament reconstruction. Phys Ther 80:251-260
- 19411.Fening SD, Kovacic J, Kambic H, McLean S, Scott J, Miniaci A (2008) The effects of modified posterior tibial195slope on anterior cruciate ligament strain and knee kinematics: a human cadaveric study. J Knee Surg 21:205-211
- 196 12. Furumatsu T, Fujii M, Kodama Y, Ozaki T (2017) A giraffe neck sign of the medial meniscus: A characteristic
 197 finding of the medial meniscus posterior root tear on magnetic resonance imaging. J Orthop Sci 22:731-736
- 13. Furumatsu T, Kamatsuki Y, Fujii M, Kodama Y, Okazaki Y, Masuda S, et al. (2017) Medial meniscus extrusion
 correlates with disease duration of the sudden symptomatic medial meniscus posterior root tear. Orthop Traumatol
 Surg Res 103:1179-1182
- 14. Furumatsu T, Okazaki Y, Okazaki Y, Hino T, Kamatsuki Y, Masuda S, et al. (2018) Injury patterns of medial
 meniscus posterior root tears. Orthop Traumatol Surg Res;10.1016/j.otsr.2018.10.001
- 203 15. Giffin JR, Vogrin TM, Zantop T, Woo SL, Harner CD (2004) Effects of increasing tibial slope on the biomechanics
 204 of the knee. Am J Sports Med 32:376-382
- Hiranaka T, Furumatsu T, Masuda S, Okazaki Y, Okazaki Y, Kodama Y, et al. (2020) A repair technique using two
 simple stitches reduces the short-term postoperative medial meniscus extrusion after pullout repair for medial
 meniscus posterior root tear. Eur J Orthop Surg Traumatol;10.1007/s00590-020-02647-w

- 17. Hwang BY, Kim SJ, Lee SW, Lee HE, Lee CK, Hunter DJ, et al. (2012) Risk factors for medial meniscus posterior
 root tear. Am J Sports Med 40:1606-1610
- 18. Khan N, McMahon P, Obaid H (2014) Bony morphology of the knee and non-traumatic meniscal tears: is there a
 role for meniscal impingement? Skeletal Radiol 43:955-962
- Liu W, Maitland ME (2003) Influence of anthropometric and mechanical variations on functional instability in
 the ACL-deficient knee. Ann Biomed Eng 31:1153-1161
- 214 20. Mansori AE, Lording T, Schneider A, Dumas R, Servien E, Lustig S (2018) Incidence and patterns of meniscal
 215 tears accompanying the anterior cruciate ligament injury: possible local and generalized risk factors. Int Orthop
 216 42:2113-2121
- 217 21. Marouane H, Shirazi-Adl A, Hashemi J (2015) Quantification of the role of tibial posterior slope in knee joint
 218 mechanics and ACL force in simulated gait. J Biomech 48:1899-1905
- 219 22. Napier RJ, Garcia E, Devitt BM, Feller JA, Webster KE (2019) Increased Radiographic Posterior Tibial Slope Is
 220 Associated With Subsequent Injury Following Revision Anterior Cruciate Ligament Reconstruction. Orthop J
 221 Sports Med 7:2325967119879373
- 222 23. Neitzel JA, Kernozek TW, Davies GJ (2002) Loading response following anterior cruciate ligament reconstruction
 223 during the parallel squat exercise. Clin Biomech (Bristol, Avon) 17:551-554
- 224 24. Okazaki Y, Furumatsu T, Kodama Y, Kamatsuki Y, Okazaki Y, Hiranaka T, et al. (2019) Steep posterior slope and
 225 shallow concave shape of the medial tibial plateau are risk factors for medial meniscus posterior root tears. Knee
 226 Surg Sports Traumatol Arthrosc;10.1007/s00167-019-05590-4
- 227 25. Ozkoc G, Circi E, Gonc U, Irgit K, Pourbagher A, Tandogan RN (2008) Radial tears in the root of the posterior
 horn of the medial meniscus. Knee Surg Sports Traumatol Arthrosc 16:849-854
- 229 26. Paterno MV, Rauh MJ, Schmitt LC, Ford KR, Hewett TE (2012) Incidence of contralateral and ipsilateral anterior
 230 cruciate ligament (ACL) injury after primary ACL reconstruction and return to sport. Clin J Sport Med 22:116231 121
- 232 27. Salem GJ, Salinas R, Harding FV (2003) Bilateral kinematic and kinetic analysis of the squat exercise after
 233 anterior cruciate ligament reconstruction. Arch Phys Med Rehabil 84:1211-1216
- 234 28. Shelburne KB, Kim HJ, Sterett WI, Pandy MG (2011) Effect of posterior tibial slope on knee biomechanics during
 235 functional activity. J Orthop Res 29:223-231
- 236 29. Stijak L, Herzog RF, Schai P (2008) Is there an influence of the tibial slope of the lateral condyle on the ACL
 237 lesion? A case-control study. Knee Surg Sports Traumatol Arthrosc 16:112-117
- Thorlund JB, Felson DT, Segal NA, Nevitt MC, Niu J, Neogi T, et al. (2016) Effect of Knee Extensor Strength on
 Incident Radiographic and Symptomatic Knee Osteoarthritis in Individuals With Meniscal Pathology: Data From
 the Multicenter Osteoarthritis Study. Arthritis Care Res (Hoboken) 68:1640-1646
- 31. Todd MS, Lalliss S, Garcia E, DeBerardino TM, Cameron KL (2010) The relationship between posterior tibial
 slope and anterior cruciate ligament injuries. Am J Sports Med 38:63-67
- 243 32. Toman CV, Dunn WR, Spindler KP, Amendola A, Andrish JT, Bergfeld JA, et al. (2009) Success of meniscal
 244 repair at anterior cruciate ligament reconstruction. Am J Sports Med 37:1111-1115

33. Westermann RW, Wright RW, Spindler KP, Huston LJ, Group MK, Wolf BR (2014) Meniscal repair with
concurrent anterior cruciate ligament reconstruction: operative success and patient outcomes at 6-year follow-up.
Am J Sports Med 42:2184-2192

249	Figure	legends

- 251 Fig. 1 The magnetic resonance images show characteristic signs of the MM posterior root tear in a 64-year-old woman (her
- 252 left knee)
- 253 (a) Coronal image. Giraffe neck sign of the MM posterior part (dotted area). The vertical linear defect called cleft sign
- 254 (black arrowhead). (b) Sagittal image. A disappearance of the MM posterior root/horn called ghost sign (dotted area).
- 255 MM, medial meniscus
- 256
- 257 Fig. 2 MTSA measurement

258 The MTSA is defined as 90° minus the angle made by the intersection of the line along the longitudinal axis of the tibia

- and the medial tibial slope [5]. The black circle marks the MTSA. Lines 1 and 2 represent the anteroposterior diameters of
- the tibia just inferior to the tibial tubercle, and the tibial shaft no less than 5 cm distal to line 1, respectively. The line of the
- 261 longitudinal axis of the tibia is made by connecting the midpoints of lines 1 and 2.
- 262 MTSA, medial tibial slope angle
- 263
- 264 Fig. 3 MTSA of the knees with unilateral and bilateral MMPRT
- 265 MTSA of the primary and contralateral knees with bilateral MMPRT were significantly steeper than that of knees with
- 266 unilateral MMPRT.
- 267 MTSA, medial tibial slope angle; MMPRT, medial meniscus posterior root tear

268 (*) statistically significant (P < 0.01)

269

- 270 Fig. 4 Threshold for MTSA of primary injured knees for developing the contralateral MMPRT
- The calculated cut-off value (10.0°) had a sensitivity of 93% and specificity of 69%.
- 272 AUC, area under curve; MTSA, medial tibial slope angle; MMPRT, medial meniscus posterior root tear

273