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A B S T R A C T   

The separation of a liquid phase from a solid but deformable matrix made of mineral grains is controlled at small scale by surface tension. The role of interfacial 
surface tension is twofold as it explains how a small volume of liquid phase can infiltrate the grain boundaries, be distributed and absorbed in the matrix, but after 
complete wetting of the grains, surface tension favors the self-separation of the liquid and solid phases. Another consequence of surface tension is the existence of 
Marangoni forces, which are related to the gradients of surface tension that are are usually due to temperature variations. In this paper, using a continuous multi- 
phase formalism we clarify the role of these different effects and quantify their importances at the scale of laboratory experiments and in planets. We show that 
Marangoni forces can control the liquid metal-solid silicate phase separation in laboratory experiments. The Marangoni force might help to maintain the presence of 
metal at the surface of asteroids and planetesimals that have undergone significant melting.   

1. Introduction 

Storage and migration of a liquid phase inside a solid but deformable 
matrix occurs in various situations in terrestrial bodies, whether it be in 
their near surface, or in their deep interiors such at the Earth’s core- 
mantle boundary (CMB) or the core-inner core boundary. The equilib
rium geometry of a given fraction of fluid phase dispersed into a matrix 
made of crystal grains is controlled by the ratio of the surface energy 
between grains to that between a solid grain and the liquid (see Rudge, 
2018, for a thorough description of the phase diagram of the possible 
interface topologies). At small porosity, i.e., at small fluid volume 
fraction, the capillary forces control whether the fluid is confined into 
isolated bubbles or forms an interconnected pattern of tubules at grain 
triple junctions (von Bargen and Waff, 1986; Hier-Majumder and 
Kohlstedt, 2006). When a network of fluid tubules is established, a Darcy 
flow of the fluid phase is possible and controlled by the properties of the 
two phases including the strength of the matrix. During this stage, the 
matrix can absorb the fluid if placed in contact with it and the capillary 
forces tend to homogenize the volume fraction of fluid within the ma
trix. At larger fluid content, however, when the grains of the matrix are 
totally wetted, the capillary forces give rise to self separation of the solid 
and liquid phases (Hier-Majumder et al., 2006). For the Earth, gravity 
forces are much larger than capillary forces and it is only at a micro
scopic scale that the influences of the latter are important. 

In planetesimals, which are the building blocks of planets, metal 
silicate separation seems to have occurred very early. From the obser
vation of meteorites, melting occurred when their parent bodies that 
were in the range of 50–200 km radius (Rasmussen et al., 2001). The 
thermal histories of these small bodies are strong functions of their ac
cretion mechanisms. Some authors (e.g., Yoshino et al., 2003; Walter 
and Tronnes, 2004) suggest that radiogenic heating from unstable iso
topes such as 26Al or 60Fe, was intense enough to melt planetesimals of 
only a few 10 km radius. More refined simulations suggest that plane
tesimals needed to be slightly larger (≈100 km) to reach melting tem
peratures (Šrámek et al., 2012; Ricard et al., 2017). However, 
planetesimals were possibly significantly molten when their radii were 
less than two orders of magnitude smaller than that of the Earth. For 
such small bodies, the gravity is two–three orders of magnitude smaller 
than that of the Earth and the relative importance of capillary forces is 
commensurately increased. 

The behavior of metallic melt in contact with silicates has been 
studied experimentally by various researchers (Knittle and Jeanloz, 
1991; Goarant et al., 1992; Terasaki et al., 2008; Yoshino, 2019) and 
interpreted considering a uniform surface tension between phases. 
However, at the very small scale of high pressure laboratory experi
ments, the inhomogeneity of the temperature can create capillary forces 
related to the gradient of surface tension. These forces, called Marangoni 
forces (Marangoni, 1871), are related to surface tension gradients rather 
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than to the effects of interface curvature; the Marangoni effect affected 
the experiments in Henri Bénard’s seminal study of thermal convection 
(Bénard, 1900, 1901). Their omission in the framework of thermal 
convection developed by Lord Rayleigh led to discrepancies between 
observations and theory for many decades (Block, 1956; Bercovici, 
2007). These forces are not necessarily dominant in geological settings 
and are not the forces that are typically associated with homogeneous 
surface tension (such as wetting, infiltration, or self-separation) and 
discussed e.g., in the framework of metal-silicate interaction at the CMB 
(Poirier and Le Mouël, 1992). Here we explore and clarify the role of the 
Marangoni effect in two-phase theory and in experiments on metal melts 
in silicates and discuss its importance particularly in small partially 
molten planetesimals. 

2. Thermocapillary effects 

The existence of thermocapillary forces is related to the classic 
expression of stress balance across interfaces. If we denote by [[]] the 
jump of a quantity across an interface Σ perpendicular to its unit vector 
n, the stress tensor T discontinuity is 
[[

T.n
]]

= σκn − ∇tσ (1)  

where σ is the surface tension, κ = ∇ ⋅ n is the sum of the principal 
curvatures of Σ (κ is thus 2 times the inverse radius for a spherical bubble 
or the inverse radius for a cylindrical tubule), and ∇t is the gradient, 
tangent to Σ. The interface induces a discontinuity of the normal stress, 
σκn (which in steady-state situation is Laplace’s condition: there exists 
an overpressure equal to 2σ/R between the concave and convex sides of 
a spherical bubble of radius R) as well as a discontinuity in the shear 
stress equal to ∇tσ when σ, for example, is a function of a non uniform 
temperature. The shear stress discontinuity induces the Marangoni 
effect. 

2.1. Thermocapillary force on a single bubble or drop 

In the situations we seek to model - a fluid phase percolating through 
a permeable matrix or a suspension of one phase moving through the 
other, in the presence of thermal gradient - we do not want to describe 
precisely the interfaces between the phases which are highly convolved 
at the fluid pore and matrix grain scale. We use a continuous approach 
akin to what has been proposed by McKenzie (1984) or Scott and Ste
venson (1984) based on the work of Drew and Segel (1971). This 
formalism has been generalized to account for the presence of surface 
tension (Bercovici et al., 2001; Bercovici and Ricard, 2003). However, 
when the effects of surface tension have been considered (Ricard et al., 
2001; Hier-Majumder et al., 2006), surface tension was assumed uni
form. Here, we extend this formalism by including the spatial variations 
of interfacial tension. We shall first check that the behavior of the two- 
phase equations is in qualitative agreement with well known physical 
experiments done on simpler systems. 

Gas bubbles in a liquid can be held stationary or even be driven 
downward by imposing a negative temperature gradient opposite 
gravity (Young et al., 1959; Harper et al., 1967; Hardy, 1979). Consider 
a bubble of fluid with density, viscosity and thermal conductivity ρi, μi 
and ki, moving into another fluid of properties ρo, μo and ko (using 
indices referring to “in” and “out”). There is a surface tension σ on the 
interface between the phases, and the fluids are subjected to a vertical 
thermal gradient. Young et al. (1959) demonstrate that the vertical ve
locity of the bubble is 

vi =
2
3

1
2μo + 3μi

[

Δρgr2μo + μi

μo
−

3
2 + ki/ko

r
dσ
dz

]

(2)  

where Δρ = ρo − ρi > 0, gravity is g = − gz, and the unit vector z points 
upward. The surface tension derivative dσ/dT is generally negative and 

a negative thermal gradient dT/dz can therefore oppose gravity. This 
expression can be derived following the Hadamard-Rybczynski 
demonstration (e.g., Batchelor, 2000) in matching the singular solu
tion of the Stokes equation taking into account the discontinuity of shear 
stress at the interface using (1). 

We assume a uniform thermal conductivity, ki = ko, and when μi = 0, 
(2) leads to 

vi =
1

3μo

[

Δρgr2 − r
dσ
dz

]

(3)  

which is the Hadamard-Rybczynski relation for an inviscid bubble with 
a Marangoni surface tension term. The laboratory experiments of Young 
et al. (1959) have confirmed that bubbles can be held still in a liquid 
when a negative temperature gradient verifying the condition Δρgr =
dσ
dT

dT
dz is imposed according to (3). In contrast when μi is infinite, (2) yields 

vi =
2

9μo
Δρgr2 (4)  

which is the Stokes relation for a rigid sphere, but in this case surface 
tension plays no role. 

That a low viscosity sphere should travel (under gravity alone) 50% 
faster that solid spheres (i.e., a factor 1/3 in (3) and 2/9 in (4)) is not 
observed experimentally if bubbles are too small. A transition of the 
rising velocity of an inviscid bubble, from Stokes drag to Hadamard- 
Rybczynski drag, is experimentally observed with bubbles of 
increasing radii (Haberman and Morton, 1953). This is related to 
another and less expected consequence of the Marangoni effect. Due to 
the motion of the low viscosity bubble interface, convection causes 
contaminants to accumulate on the downstream side of the bubble (e.g., 
Clift et al., 1978). This creates a surface tension gradient and an effective 
shear stress acting in a direction opposite to the flow. This Marangoni 
effect related to chemical rather than thermal effects rigidifies the in
terfaces of small inviscid bubbles and bring their velocities close to that 
of rigid spheres. The effect is pronounced for small bubbles since ac
cording to (3), the Marangoni force becomes larger relative to the 
buoyancy force as the bubble size decreases. In this paper, we assume 
that the surface tension is only a function of temperature and this effect 
is not considered. 

2.2. Thermocapillary force in continuous two-phase models 

We next explore whether a continuous two-phase formalism, can 
account for a light phase being driven downward against its own 
buoyancy by imposing a negative temperature gradient in a mixture of 
bubbles and liquid. This formalism does not account for inertia (zero 
Reynolds number approximation) and assume that the two phases are 
incompressible, which is consistent with the assumptions of Stokes flow 
leading to the eq. (2) (see Fig. 1). In these equations we also assume that 
the temperature is in equilibrium between phases and smooth across 
bubbles and all the mixture, which corresponds to the case of homoge
neous thermal conductivities in which ko = ki in (2). 

Using the formalism of Bercovici et al. (2001) and Bercovici and 
Ricard (2003), the momentum equation of the ambient phase (subscript 
o) writes 

− (1 − ϕ)(∇Po + ρogz) + ∇.
[
(1 − ϕ)τo

]
− cΔv + (1 − ω)[ΔP∇ϕ +∇χ]

= 0.
(5) 

This phase contains a minor phase (subscript i) with a volume frac
tion ϕ. The momentum equation of the minor phase is 

− ϕ(∇Pi + ρigz) + cΔv + ω[ΔP∇ϕ +∇χ] = 0. (6) 

In these equations, ΔP = Po − Pi and Δv = vo − vi are the differences 
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of pressure and velocity between the two phases. A viscous stress τo is 
present in the momentum equation of the ambient phase but neglected 
in the momentum equation of the minor phase. The quantity ω is be
tween 0 and 1 and characterizes how much each phase carries the sur
face tension. The coefficient c accounts for the viscous drag between 
phases. It can represent Darcy-type flow of the minor phase percolating 
through the ambient phase (e.g., McKenzie, 1984; Bercovici et al., 2001) 
or Stokes-type flow of a suspension of solid particles in a liquid or gas, or 
bubbles of fluids in a viscous surrounding (e.g., Bercovici and Michaut, 
2010; Michaut et al., 2013). According to Hier-Majumder et al. (2006), 
the surface energy per unit volume χ = σeα is related to an effective 
surface tension σe which here is assumed to be a function of temperature 
only (the averaging of the continuous two-phase formalism causes the 
effective quantity to be of the same order but slightly less than the true 
surface tension σ, see Bercovici et al. (2001)) and the area of interfacial 
surface per unit volume α (in m− 1 as it represents a quantity of inter
facial surface in m2 per unit volume of mixture in m− 3). 

By combining the eqs. (5) and (6), an action-reaction force balance 
can be obtained, 

− ϕ(1 − ϕ)∇ΔP + ϕ∇.
[
(1 − ϕ)τo

]
− cΔv − ϕ(1 − ϕ)Δρgz + (ϕ

− ω)[ΔP∇ϕ +∇χ]
= 0, (7)  

and we show in Bercovici and Ricard (2003) that the pressure difference 
amounts to 

ΔP = − σe
∂α
∂ϕ

−
4μo

3
1

ϕ(1 − ϕ)
[(1 − ω)(1 − ϕ)∇.vo − ωϕ∇.vi ] (8) 

In a static equilibrium, when vo and vi are zero, (8) becomes similar 
to the usual Laplace condition balancing the pressure jump agains sur
face tension times curvature. For example, in the case where there is a 
single stationary bubble of radius r in a volume V0, α = 4πr2/V0, ϕ = (4/ 
3)πr3/V0, and one recovers the Laplace condition ΔP = − 2σe/r. A dif
ference from this equilibrium condition implies compaction or dilation 
and thus a change in the volume fraction of phases. 

The momentum equations, (5) and (6), and the action-reaction bal
ance (7) are supplemented by the conservation of mass that yields two 
alternative equations 

∂ϕ
∂t

= ∇.((1 − ϕ)vo ) = − ∇.(ϕvi), (9)  

from which the continuity of the average velocity is immediately 
deduced 

∇.((1 − ϕ)vo + ϕvi ) = 0. (10) 

In a one dimensional vertical system, in which vi = viz and vo = voz, 
and assuming that the medium is confined between two impermeable 
horizontal surfaces, the continuity eq. (10) leads to 

vi = −
1 − ϕ

ϕ
vo (11)  

in which case (8) gives the jump condition 

ΔP = − σe
∂α
∂ϕ

−
4μo

3ϕ

[

v
′

o −
ωϕ

′

ϕ(1 − ϕ)
vo

]

(12)  

where the prime implies differentiation in z. With these relations, the 
action-reaction (7) becomes 

4μo

3c

[

ϕ2
(

1 − ϕ2

ϕ
v’

o

)

’ − voω
(

ϕ’’ −
2 − 2ϕ − ω
ϕ(1 − ϕ)

ϕ’2
)

− voω’ϕ’
]

− vo = F

(13)  

where 

F =
ϕ2

c

[

(1 − ϕ)Δρg − (1 − ϕ)
d
dz

σe
∂α
∂ϕ

−
ϕ − ω

ϕ

(
dσeα

dz
− σe

∂α
∂ϕ

dϕ
dz

)]

(14) 

Given a sufficiently large domain in z, then far from the top and 
bottom boundaries where compaction occurs, the velocity gradients are 
small, and the velocity of the major phase is given by the balance − Vo =

F, which gives the characteristic velocity Vi of the minor phase. 

Vi = −
1 − ϕ

ϕ
Vo =

1 − ϕ
ϕ

F. (15) 

The phase i will therefore rise or sink according to the sign of F. The 
full velocity vi is the solution to the differential eq. (13) with the con
tinuity eq. (11), but its amplitude is of order Vi in the middle of the 
domain. 

2.3. Stokes motion of the minor phase 

The two-phase formalism is general enough to handle motions of 
bubbles and drops (Stokes flow) and the motion of a fluid inside a porous 
matrix (Darcy flow) (e.g., Michaut et al., 2013). We first assume that the 
minor phase is made of a collection of bubbles or drops and then 
consider the viscous interaction between phases. 

2.3.1. The interaction term 
To develop an expression for the viscous drag coefficient c, one can 

proceed as follows. An isolated sphere of radius r moved by buoyancy in 
a fluid of average density ϕρi + (1 − ϕ)ρo and neglecting surface tension, 
rises according to the Hadamard-Rybczynski equation (e.g. Batchelor, 
1972) 

2πμor
2μo + 3μi

μo + μi
Δv =

4π
3

r3(ρi − ρ)gz = −
4π
3

r3(1 − ϕ)Δρgz (16)  

which multiplied by a bubble density N (number of bubbles per unit 
volume, so that (4/3)πr3N = ϕ) results in 

ϕ(1 − ϕ)Δρgz +
3μo

2r2

2μo + 3μi

μo + μi
ϕΔv = 0 (17)  

assuming that the Hadamard-Rybczynski equation still holds for an 
ensemble of bubbles (i.e., the suspension of bubbles is dilute). 

Fig. 1. The major phase o is in green and the phase i in yellow. The phase i is 
composed of individual bubbles or drops that can be less or more viscous than 
the phase o. The difference of density Δρ = ρo − ρi between the phases is 
assumed positive (e.g., buoyant bubbles). In the model, the two phases are 
incompressible. The top temperature is lower than the bottom temperature. 
(For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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Comparing (17) with (7) suggests that 

c =
3μo

2r2
2μo + 3μi

μo + μi
ϕ. (18) 

With this choice of the drag coefficient c, the velocity of the minor 
phase is 

vi = − (1 − ϕ)Δv =
2

3μo
(1 − ϕ)2 μo + μi

2μo + 3μi
Δρgr2. (19) 

However, this does not account for the interactions between bubbles 
that reduce their velocities with respect to the Stokes velocity of an 
isolated bubble. This hampering term has been discussed theoretically, 
numerically, and experimentally (Batchelor, 1972; Richardson and Zaki, 
1954; Faroughi and Huber, 2015) and the velocity reduction is larger 
than that predicted by the (1 − ϕ)2 term of (19). Richardson and Zaki 
(1954) proposed (1 − ϕ)n with n ≈ 4.5. An interaction term such as 

c =
3μo

2r2
2μo + 3μi

μo + μi

ϕ
(1 − ϕ)p (20)  

with p ≈ 2.5 might, therefore, be more appropriate. 

2.3.2. The surface energy term for bubbles and drops 
The term χ = σeα is related to the energy per unit area of the surfaces, 

σe, times the quantity of surface per unit volume α; their product χ thus 
represents the interfacial energy per unit volume. For a mixture full of 
bubbles or drops of radius r with a number density N (number of 
bubbles/drops per unit volume), α = 4πr2N and ϕ = (4/3)πr3N and 
therefore 

α = 3
ϕ
r
, (21)  

which indicates that α and ϕ are not uniquely related as their ratio de
pends on r. Furthermore the bubble radii may not all be the same. In 
general, in this two-phase formalism, the interface area density must be 
described as α(ϕ,A), a function of the fluid volume fraction and of an 
inverse size A characterizing the topology of the interfaces (referred to 
as fineness in Bercovici and Ricard (2005)). Another equation could then 
be introduced to describe the evolution of A with ϕ, with pressure (if the 
minor phase were compressible) or with time (if bubbles can merge). 
This is indeed proposed and used in various papers (Bercovici and 
Ricard, 2005; Ricard and Bercovici, 2009; Bercovici and Ricard, 2012, 
2014) dealing with evolution of the silicate grains in the Earth mantle. 

2.3.3. Examples of emulsion/foam flows 
In computing the pressure jump between phases (8), one has to 

decide whether ϕ and r (or A ) are independent variables or not. Each 
choice of a relation between r and ϕ must correspond to the specific 
physical situation to be described. For example, one can consider a sit
uation where the bubble sizes are fixed and their volume fraction de
pends only on the number density of bubbles. In this case, α is a function 
of the single variable ϕ and the steady state pressure jump between the 
two phases is, according to (8), 

ΔP = − 3
σe

r
. (22) 

Another example would be the case where the number density N 

and ϕ are independent variables and where the changes in the volume 
fraction of bubbles are due to variations in bubble radius, which thus 
implicitly becomes a function of ϕ. In this case r = (3ϕ/(4πN ) )

1/3 and 
α = 3ϕ(3ϕ/(4πN ) )

− 1/3. The interface density, α is then only a function 
of ϕ, and the steady state pressure jump is 

ΔP = − 2
σe

r
. (23) 

These two expressions are the equivalent in two-phase formalism of 

the usual Laplace condition. Other expressions could have been obtained 
if we had built a more complex micro-mechanical model relating the 
fineness of the minor phase to its volume fraction, to time, or to other 
variables. The averaging procedure that yields the two-phase equations 
is not expected to exactly capture the complete knowledge of the phase 
interface morphology. 

Here we simply consider that bubble radii are fixed and use (22). 
This assumption of an ensemble of bubbles with fixed radii seems 
appropriate for comparing with the single bubble of fixed radius studied 
by Young et al. (1959). The case where the bubble number density and 
the porosity are independent variables is discussed in Appendix A. 

The various derivatives of (13) when α = 3ϕ/r and r is independent of 
ϕ can be easily expressed as 

d
dz

σe
∂α
∂ϕ

=
3
r

dσe

dz
dσeα

dz
− σe

∂α
∂ϕ

dϕ
dz

= 3
ϕ
r

dσe

dz

(24)  

which yields a characteristic velocity for the bubble Vi (see (15)) 

Vi =
2

3μo
(1 − ϕ)p+1 μo + μi

2μo + 3μi

[

(1 − ϕ)Δρgr2 − 3(1 − ω)r
dσe

dz

]

(25) 

This characteristic velocity corresponds to the minor phase velocity 
far from the top and bottom boundary layers of a domain vertically 
bounded. In the expression (25), one recognizes the gravity force ((1 −
ϕ)Δρg is the effective buoyancy of a bubble) and the Marangoni force 
due to the temperature variation of the surface tension. 

In Bercovici and Ricard (2003) we discussed the value of the parti
tioning term ω. We showed that ω → 0 when the viscosity of the minor 
phase becomes negligible compared to that of the ambient phase, μi ≪ 
μo, and ω → 1 in the opposite situation, μo ≪ μi, in such a way that the 
surface tension force is carried by the most competent of the two fluids. 
In agreement with Young et al. (1959), the fact that ω → 1 when μo ≪ μi 
confirms that the Marangoni force has no effect when the minor phase 
has a large viscosity (or is formed of solid drops, see (25)). The 
expression that we obtain is therefore perfectly compatible, at small 
volume fraction ϕ, with either (3), when ω = 0, or (4) when ω = 1, if we 
choose σe = σ/3. Furthermore, if one wishes to exactly match (2) with 
(25) one would require 

ω =
μi

μo + μi
, (26)  

in which case, we will get 

Vi =
2
3
(1 − ϕ)p+1

2μo + 3μi

[

(1 − ϕ)
μo + μi

μo
Δρgr2 − 3r

dσe

dz

]

(27) 

Notice than in Bercovici and Ricard (2003) we suggested that ω 
might have the form μiϕ/(μo(1 − ϕ) + μiϕ) although the dependence on ϕ 
is not required. In any case for all the applications we have considered in 
previous papers either the viscosity ratio between phases was large 
enough that we used ω = 0 (Ricard et al., 2001; Hier-Majumder et al., 
2006), or the viscosities were nearly identical (e.g., in Bercovici and 
Ricard, 2005; Ricard and Bercovici, 2009; Bercovici and Ricard, 2012, 
2014) in which case the phases had similar velocities and the choice of ω 
made no difference. 

The velocity of the ambient phase is the solution to (13), which 
assuming μo ≫ μi, ω = 0, and r is uniform, can be recast as 

δ2ϕ(1 − ϕ)p d
d̃z

(
1 − ϕ2

ϕ
dṽo

d̃z

)

− ṽo = F

F = ϕ(1 − ϕ)p
[

1 − ϕ −
dσ̃
d̃z

]
(28)  

where the quantities with a tilde are now without dimensions. The 
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surface tension σe is divided by its value in the middle of the domain σ0, 
the height z by the compaction length lc = 3σ0/(Δρgr) (the bubbles are 
assumed less dense than the liquid such that Δρ > 0), the velocity vo by 
the Stokes velocity vs = Δρgr2/(3μo) and the normalized compaction 
length is 4μo/(3clc2) (notice that here, in the case where the coefficient c 
accounts for viscous drag occurring in a Stokes-type flow of bubbles, δ =
2r/(3lc) according to (18)). The exact minor phase velocity can then be 
deduced from mass conservation (11). 

To perform a numerical simulation, we choose the parameters of a 
laboratory experiment (Young et al., 1959), corresponding to a dimen
sionless compaction length in (28) δ = 1.8 × 10− 3 (see caption of Fig. 2). 
We choose dσ̃/dz̃ = 0.9, corresponding to a situation where the gravity 
is larger than the Marangoni forces and where a dilute suspension of 
bubbles rises. Eq. (28) with p = 0, is solved numerically in finite dif
ferences using a tridiagonal solver with the boundary conditions ̃vo = 0 
on the top and bottom (Fig. 2). The transport eq. (9), is solved using an 
explicit upwind method. The initial bubble volume fraction is 0.05. The 
bubbles start accumulating in the upper part of the domain where their 
volume fraction ϕ increases (panel a). When their volume fraction be
comes larger than 10%, the Marangoni force cancels their collective 
buoyancy. Then the competition between gravity and Marangoni force, 
leads to compaction oscillations that are slowly decreasing in amplitude 
while the bottom half of the domain becomes devoid of bubbles (Fig. 2, 
b, c, d). Compaction oscillations are commonly found in two-phase 
equations, when the motion of the minor phase is impeded by an 
obstacle (Spiegelman, 1993; Rabinowicz et al., 2002). 

2.4. Darcy motion of the minor phase 

The two-phase formalism is general enough that it can be used for a 

Darcy type flow (see Fig. 3), where the liquid percolates through the 
matrix. Since the continuous two-phase approach captures the behavior 
of non-uniform surface tension, we can apply this formalism to 

Fig. 2. Four snapshots at different times of the volume fraction of the bubbles. The horizontal axis is the volume fraction ϕ, the vertical axis is the height. The minor 
phase (in yellow) is less dense and much less viscous than the ambient phase (in green). Above the dashed line, ϕ = 0.1, the Marangoni force is larger than buoyancy. 
The parameter values are those of an experiment by Young et al. (1959). The ambient fluid is n-hexadecane with density ρo = 770 kg m− 3, viscosity μo = 3.52 × 10− 3 

Pa s and a surface tension of 27.66 × 10− 3 N m− 1 that we identify to 3σe. The gas bubbles have a mean radius of r = 10− 4 m. The capillary length is lc = 3.7 cm, the 
Stokes velocity of a single bubble vs = 7.1 mm s− 1. In their experiment, Young et al. (1959) hold an isolated bubble stationary by imposing a vertical temperature 
gradient of − 75 K cm− 1 as for n-hexadecane, dσ/dT = − 0.1 × 10− 3 N m− 1 K− 1. The height of the experiment is not given in their paper and we assume a height h = 1 
cm = 0.27 lc. The snapshots, a, b, c, and d, correspond to times of 0.8, 2.5, 7.4 and 12.6 s, respectively. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

Fig. 3. The ambient phase (in green) is a porous deformable matrix in which 
the much less viscous fluid (in yellow), percolates. The mixture is submitted to a 
temperature gradient. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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geophysical situations. 

2.4.1. Case of a homogeneous solid 
In this case, we consider a simple ambient matrix crossed by tubules 

of radius r, with 3 orthogonal tubules in each cube of side b made of a 
homogeneous deformable highly viscous phase (Turcotte and Morgan, 
1992). Here we assume that b is a constant and only the section of the 
liquid tubules can change with the porosity. 

In this case, the porosity and surface area are simply ϕ = 3πr2/b2 and 
α = 6πr/b2 so that 

α =
2
̅̅̅̅̅
3π

√

b
̅̅̅̅
ϕ

√
. (29) 

The interaction term c that controls the shear between the two phases 
is related to the permeability of the matrix k = ϕr2/24 = ϕ2b2/(72π) 
(Turcotte and Morgan, 1992) and to the viscosity of the fluid. We show 
in Bercovici et al. (2001) that c = μiϕ2/k and c is therefore a constant in 
this model, c = 72πμi/b2. 

The above tubule model only holds at small porosity. When the tu
bules are in contact, r = b/2, the system crosses a threshold of disag
gregation, above which, instead of a liquid percolating through a solid, 
the mixture is comprised of a slurry of isolated solid grains surrounded 
by liquid (Hier-Majumder et al., 2006). In this case, the relative motion 
of phases is described by the model of Stokes flow discussed earlier, and 
α = 3(1 − ϕ)/(b/2) as in eq. (21) (except that now, the travelling solid is 
in proportion 1 − ϕ and made of drops of size b/2). It is clear that our 
model does not accurately describe the transition in flow when jumping 
from tubules of liquid to grains of solid, nor does it provide a repre
sentation of the interface area that occurs near the disaggregation limit; 
however, disaggregation is not central for this paper. 

With this model, in the case of a Darcy flow, one has (using A for the 
geometrical factor 2

̅̅̅̅̅̅
3π

√
) 

d
dz

σe
∂α
∂ϕ

=
A
b

(
1

2
̅̅̅̅
ϕ

√
dσe

dz
−

σe

4ϕ3/2
dϕ
dz

)

,

dσeα
dz

− σe
∂α
∂ϕ

dϕ
dz

=
A
b

̅̅̅̅
ϕ

√ dσe

dz
,

(30)  

and the characteristic velocity of the liquid phase, Vi = (1 − ϕ)F/ϕ (see 
(15)), is proportional to the forcing term F with 

F =
ϕ2

72πμi

[

(1 − ϕ)Δρgb2 − Ab
1 + ϕ
2
̅̅̅̅
ϕ

√
dσe

dz
+Abσe

1 − ϕ
4ϕ3/2

dϕ
dz

]

(31) 

The driving term shows a major difference with the case of a foam 
behavior expressed in (25). This time there is a third term related to the 
gradient of porosity which always leads to phase separation (Ricard 
et al., 2001): it has the form ξ ∇ ϕ with ξ > 0, which introduced into the 
phase evolution eq. (9), leads to an anti-diffusive term − ∇. (ξ ∇ ϕ). This 
is the expected self-separation behavior of surface tension in, for 
example, oil-water mixtures. This self-separation did not occur in our 
previous examples of Stokes drag in emulsions or foams, for which we 
have assumed that the bubble radii are fixed and therefore there was no 
decrease of surface energy (except in the Marangoni term) in separating 
the phases (see also Appendix A). 

The Marangoni term (second term inside the square parenthesis) is 
also present and particularly active at small porosity. Like in the case of a 
Stokes flow, it drives the liquid in the direction of the thermal gradient, 
since A is positive and therefore against gravity when the top boundary 
is colder than the bottom one. 

2.4.2. Case of a solid made of grains 
In geological applications, the solid in which a liquid can percolate is 

typically made of grains. As the crystal lattice in each grain has a 
different orientation, the interface between grains has also a solid-solid 
surface tension which can be larger than the solid-liquid surface tension. 

We must therefore consider both the surface energy of liquid-solid in
terfaces, increasing when the liquid wets the grain boundary and the 
surface energy of solid-solid interfaces decreasing by absorption of 
liquid. The two surface tensions are assumed to be only functions of 
temperature and their ratio is assumed constant. 

As in Hier-Majumder et al. (2006), we express the surface energy as 
the sum of what is carried by the liquid-solid interfaces (with surface 
tension σoi and interface area density αoi) and by the solid-solid in
terfaces (with surface tension σoo and interface area density αoo). 

χ = σoiαoi + σooαoo (32) 

For analytical simplicity we do not consider a solid made of complex 
3D grains (Wimert and Hier-Majumder, 2012; Rudge, 2018) but made of 
2D hexagonal columns where the liquid can percolate through the triple 
junction tubules. Following Hier-Majumder et al. (2006) and using θ for 
half the wetting (or semi-dihedral) angle (see Fig. 4), we obtain 

χ =
σoo

b

(
σoi

σoo
coi

̅̅̅̅
ϕ

√
+
(

1 − coo
̅̅̅̅
ϕ

√ ))

= σoob
(

1+A
̅̅̅̅
ϕ

√ )
(33)  

with 

coi = 2
̅̅̅
3

√
ψ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2sinψcos(θ/2) −
̅̅̅
3

√
ψ

√ ,

coo = 2
sinψ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2sinψcos(θ/2) −
̅̅̅
3

√
ψ

√ ,

A = coi
σoi

σoo
− coo

(34)  

where ψ = π/6 − θ/2. These expressions are valid for θ ≤ π/6; for larger 
dihedral angles, the melt is trapped within disconnected bubbles (see 
von Bargen and Waff, 1986). 

An equilibrium situation of the grain-grain and grain-liquid capillary 
forces at triple junctions is possible when the semi-dihedral angle can 
verify σoo/σoi = 2 cos θ. This equilibrium exists from to θ = π/6 (or σoo =
̅̅̅
3

√
σoi) to θ = 0 (or σoo = 2σoi). High temperature experiments have 

Fig. 4. A model of a mixture of fluid and grains is made of hexagonal columns 
(green) and the fluid resides in triple junctions, displayed in yellow around the 
point A. The tubules’ cross-sections are limited by three portions of circles 
having a radius r and forming angles of 2θ at their intersections. In this figure, 
the center of one of the circles defining the tubule is in Q. The surface of a 
hexagon is 2b2

̅̅̅
3

√
, its center is at O and the angle ÂQP is ψ = π/6 − θ/2. The 

curvature r of the circle limiting the tubule is related to the porosity by 
ϕ = (r/b)2( 2sinψcos(θ/2) − ψ

̅̅̅
3

√ )
(see details in Hier-Majumder et al. (2006)). 

(For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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documented the infiltration of liquid metal into silicates (Knittle and 
Jeanloz, 1991; Goarant et al., 1992; Terasaki et al., 2008; Yoshino, 
2019). These experiments indicate therefore that σoo/σoi ≥

̅̅̅
3

√
at CMB 

conditions, but no precise measurement of this ratio is available and 
much larger values are possible. The equilibrium in this case, assuming 
that the only forces under consideration are uniform surface tensions, 
corresponds to complete grain wetting. However, metal penetration is 
subject to other forces such as gravity, Darcy friction or Marangoni force 
that may not allow this equilibrium. We therefore consider that 
̅̅̅
3

√
≤ σoo/σoi <+∞ and we use θ = 0 when σoo ≥ 2σoi. The term A in the 

third expression of (34) that appears in the total surface energy term, 
(33) is plotted in Fig. 5. It is negative in the whole range of wetting 
angles that allow percolation. 

This model is valid until there is no solid-solid interfaces anymore, 
which occurs at the disaggregation limit 1 − coo

̅̅̅̅
ϕ

√
= 0 (see the first 

equality of eq. (33)); the minimum fluid fraction at the disaggregation 
limit is ϕ = 9.3% when θ = 0. As in our previous discussion with the 
homogeneous solid, a more complex micromechanical model would be 
needed to account for the transition from a connected matrix to a crystal 
slurry. 

Again we express the different derivatives assuming that the semi- 
dihedral angle does not change with the temperature and we get 

d
dz

∂χ
∂ϕ

=
A
b

(
1

2
̅̅̅̅
ϕ

√
dσoo

dz
−

σoo

4ϕ3/2
dϕ
dz

)

dχ
dz

−
∂χ
∂ϕ

dϕ
dz

=
1
b

(
1 + A

̅̅̅̅
ϕ

√ ) dσoo

dz

(35)  

and the forcing term F 

F =
ϕ2

cb2

[

(1 − ϕ)Δρgb2 − b

(

1 + A
1 + ϕ
2
̅̅̅̅
ϕ

√

)
dσoo

dz
+ Abσoo

1 − ϕ
4ϕ3/2

dϕ
dz

]

(36) 

This equation is similar to (31) except that A is now negative instead 
of positive and therefore, the Marangoni term (∣A∣/

̅̅̅̅
ϕ

√
≫1 at small 

porosity) and the term proportional to the gradient of ϕ have both 
changed signs. As dσoi/dT < 0, the Marangoni term drives now the minor 

phase (metal) toward the cold boundary, in the direction opposite to the 
temperature gradient. If we consider the situation where liquid metal 
percolates through the matrix, Δρ is negative but the Marangoni force 
tends to soak metal from the core into the overlying colder silicates. The 
term associated with the gradient of porosity appears like a diffusive 
term in transport eq. (9) and tends to homogenize the liquid phase into 
the matrix and therefore to favor the infiltration of the metal into the 
silicates (Poirier and Le Mouël, 1992; King et al., 2011; Hier-Majumder 
et al., 2006). 

We have not discussed the Darcy drag factor c in detail for this case of 
polygonal grains. This factor can be expressed as μiϕ2/k (see section 
2.4.1) where the permeability k is controlled by ϕ times the typical 
cross-sectional area of the liquid tubules. The shape of a tubule, at the 
intersection of three cylinders, does not permit a simple analytical so
lution but the equivalent cross-section of the tubule is a fraction of ϕb2 

and therefore c should be a constant. The Darcy flow experiences less 
drag when ϕ is large as the radius of a pore is not b but rather a fraction 
of b

̅̅̅̅
ϕ

√
. 

3. Orders of magnitude and general comments 

The force balance relation is given by (13) with F given by (36); we 
then normalize the velocities by a Darcy velocity ∣Δρ ∣ g/c, surface 
tension σoo by a reference σ0, the height z by the capillary length lc = σ0/ 
(|Δρ|gb) and introduce the compaction length δ2 = 4μo/(3clc2) (assuming 
c constant), in which case, (13) becomes 

δ2ϕ2 d
d̃z

(
1 − ϕ2

ϕ
dṽo

d̃z

)

− ṽo = F, (37)  

with 

F = ϕ2

[

ϵ(1 − ϕ)+Aσ̃1 − ϕ
4ϕ3/2

dϕ
d̃z

−

(

1+A
1 + ϕ
2
̅̅̅̅
ϕ

√

)
dσ̃
d̃z

]

, (38)  

the variables with a tilde have no dimensions and ϵ is − 1 for a dense 
liquid metal in a silicate matrix. 

In the next subsections, we summarize the implications of (37) and 
(38) in the context of metal-silicate separation in laboratory experi
ments, at the core-mantle boundary and in planetesimals. In these three 
situations, the relevant model entails Darcy flow of a dense liquid phase 
(metal) within a silicate matrix but the ratios of capillary forces and 
gravity are very different. 

3.1. Laboratory conditions 

We first consider laboratory conditions at uniform temperature and 
an experiment of metal-silicate separation in a millimetric volume 
containing a mixture of metallic alloy and silicates with a typical grain 
size of b = 10 μm. The metallic alloy used in Terasaki et al. (2012), has 
the eutectic composition Fe60S40 and a density of 4500 kg m− 3 (we use 
Δρ = 1200 kg m− 3). The capillary length is lc = 8.33 m and the exper
iments are performed in a cell of height h = 3 mm (from z = − h/2 to z =
h/2). As the liquid-solid surface tension of the metallic alloy decreases 
with the sulphur content, we assume perfect wetting and take θ = 0. 
According to the eq. (34), A is a negative number between − 3.27 and 
− 0.6 (see Fig. 5) and we choose A = − 2 for numerical applications. In 
the absence of the Marangoni force, and assuming an experiment of 
infinite size, the equilibrium between gravity and surface tension in 
(38), implies that 

− (1 − ϕ)+Aσ̃1 − ϕ
4ϕ3/2

dϕ
d̃z

= 0, (39)  

in which case the porosity obeys 

Fig. 5. Semi-dihedral angle θ (top) and parameter A (bottom) of our mixture 
model as a function of the surface tension ratio σoo/σoi. At small liquid fraction, 
percolation is only possible when σoo/σoi ≥

̅̅̅
3

√
, in which case A is negative and 

reaches asymptotically the value coo = − 3.27 when σoo ≫ σoi (see (34)). On the 
left of the zone in grey σoo/σoi ≤

̅̅̅
3

√
, the semi-dihedral angle is larger than 30∘ 

and a minimum value of the fluid volume fraction must be exceeded before a 
network of connected pores can exist. In the grey zone a stable network of 
tubules is possible. On the right of the zone in grey σoo/σoi ≥ 2, the liquid phase 
tends to totally wet the grains. 
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ϕ =
ϕ0

(1 + z/H)
2 (40)  

with H = ∣A∣lc/
(

2
̅̅̅̅̅̅
ϕ0

√ )
and where ϕ0 is the metal content at z =

0 (experimentally, the total metal proportion in the cell, ϕm is imposed 
and ϕ0 = ϕm/(1 + ϕmh2/|A|2lc2)). In metal-silicate separation experi
ments performed at uniform temperature, i.e., in the absence of Mar
angoni forces, the capillary length is much larger than the sample size 
(h/lc = 3.6 × 10− 4 with the chosen parameters) and the dominant force 
is the surface tension which homogenizes the metal content. According 
to (40), in a metal-silicate laboratory experiment performed with a h = 3 
mm high sample containing 50% of liquid metal, the dense metal con
tent would only decrease with height from 50.02% to 49.98%. 

We consider now a laboratory experiments done in the presence of a 
temperature gradient according to the conditions described in Labrosse 
et al. (2010). The set-up of these experiments is purposely chosen to 
allow large temperature gradients and minimize the chemical reactions 
between phases (contrary to the situations described in Yoshino (2019)). 
The temperature drops linearly with z, T = T − (z/h)ΔT (with ΔT = 350 
K, h = 3 mm, and T = 1750 K). The metal-silicate surface tension de

creases exponentially with temperature as σ0exp
(
−
(

T − T
)/

T0

)
with 

T0 ≈ 1400 K. The normalized gradient of surface tension varies therefore 
like 

dσ̃
d̃z

=
ΔT
T0

1
h̃

exp
(

z̃
h̃

ΔT
T0

)

(41) 

Having shown gravity to be negligible, the equilibrium between the 
Marangoni and homogeneous surface tension forces in (38),implies 

Aσ̃1 − ϕ
4ϕ3/2

dϕ
d̃z

−

(

1+A
1 + ϕ
2
̅̅̅̅
ϕ

√

)
dσ̃
d̃z

= 0 (42)  

which yields, assuming ϕ ≪ 1 and with ΔT ≪ 2T0, 

ϕ ≈ ϕ0exp
(

2
ΔT
T0

z
h

)

(43) 

This result implies that the dense metal will move toward the cold 
side of the experiment, irrespectively of gravity. With the chosen nu
merical factors, the metal volume fraction will go from ϕ0 at the hot side 
to 1.65 ϕ0 near the cold side. Therefore, the Marangoni force will control 
the metal migration and final distribution. 

This is confirmed by the full numerical simulation (see Fig. 6) where 
the eqs. (37)–(38) are solved using a tridiagonal solver with zero ve
locities on the top and bottom boundaries and the advection (9) by an 
explicit upwind scheme. To reach the equilibrium in a time comparable 
to that necessary in a laboratory experiment (a few mm in a day), we 
choose c = 3.0 × 1013 Pa s m− 2. As c is related to the fluid phase viscosity 
divided by the tubule cross-sections (see e.g., Bercovici et al., 2001) μi 
would be of order 30 Pa s for tubules of diameters 1 μm. We take δ = 0.01 
which implies a viscosity μo for the solid phase of only a X 1.56 X 109 Pa 
s. The high temperature of the experiment with the presence of liquid 
alloy and a silicate probably not far from its own melting temperature 
withouts this low value. The choice of these parameters is largely arbi
trary but the compaction length, and therefore the matrix viscosity, 
cannot be too large otherwise the phase separation becomes very slow. 
The numerical simulation depicted in Fig. 6 leads to a moderate varia
tion of the metal fraction with height. As the surface tension appears in 
both the Marangoni force and in the term that tends to homogenize the 
metal content, the final equilibrium does not depend on its absolute 
value. The dependence of the equilibrium depends only weakly on the 

Fig. 6. Four snapshots at different times of the volume fraction of the phases. The horizontal axis is the metal volume fraction ϕ, the vertical axis is the height. The 
initial metal volume fraction is 0.05. The gravity is negligible compared to the surface tension forces and cannot separate the dense metal phase from the silicates. 
The surface tension tends to homogenize the metal fraction while the Marangoni force pushes the metal in the direction of the upper colder boundary. The snapshots 
of Fig. 6, a, b, c, and d are taken at times 0.6 h, 1.44 h, 4.42 h and 24 h, respectively. The panel d is very close to the final equilibrium (c = 3.0 × 1013 Pa s m− 1, μ0 = a 
X 1.56 X 109 Pa s, A = − 2, Δρ = 1200 kg m− 3). 
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negative value of A which does not appear in the approximate eq. (43). 

3.2. CMB conditions 

If we wish to apply our model to the core-mantle boundary with Δρ 
= 3500 kg m− 3, we must consider grain sizes around 1 mm implying b =
0.5 mm, in which case the capillary length is 5.7 cm and we choose A =
− 2. In the case of a homogeneous surface tension, the equilibrium be
tween gravity and surface tension given by (39) implies a metal content 
still given by (40) where z is now the unbounded height above the CMB 
and ϕ0 = 1 is the metal content at the contact with the core. In our 
model, the capillary forces increase with decreasing tubule cross- 
sectional area, which is proportional to ϕ (Fig. 4); since ϕ decreases 
with z, the capillary forces only get stronger with height, which explains 
why the elevation at which the metal can rise is effectively unbounded 
(although the metal volume fraction becomes vanishingly small for z ≫ 
∣ A ∣ lc/2). The metal would only be lifted by a few meters as the metal 
content would decrease from 100% to 0.01% in 5.7 m) in keeping with 
previous findings (see e.g., Poirier and Le Mouël, 1992). 

According to (37), the balance between the Marangoni force and 
gravity occurs when 

(1 − ϕ)+

(

1+A
1 + ϕ
2
̅̅̅̅
ϕ

√

)
dσ̃
d̃z

= 0. (44) 

This relation indicates that the Marangoni suction is larger when the 
metal melt fraction is small. It becomes comparable to gravity when the 
negative thermal gradient is 
⃒
⃒
⃒
⃒
dT
dz

⃒
⃒
⃒
⃒ =

2
̅̅̅̅
ϕ

√

|A|
T0

lc
. (45) 

Even considering a very small metal content, ϕ = 10− 6, eq. (45) 
corresponds to a thermal gradient of 1000 K over a few meters that does 
not seem plausible and hence the Marangoni force is negligible at CMB 
conditions. If metal is trapped in the deep mantle above the CMB, it is 
likely due to other processes such as sedimentation from the core side 
(Buffett et al., 2000) or infiltration due to the fact that the core-mantle 
boundary is not an equipotential (Kanda and Stevenson, 2006). 

3.3. Asteroid conditions 

We next consider the application of our model to metal-silicate 
segregation in asteroids. Asteroid densities are usually very low, 
around 1.5 kg m− 3 (Carry, 2012) as their porosity is large and their 
gravitational force too weak to induce compaction. For a planetesimal of 
radius 10 km (assuming such a small body has a spherical form), the 
gravity should be only of order 4×10− 4 that of the Earth which, for 

similar 1 mm grains, would increase the capillary length to 142 m. Ac
cording to (40), surface tension would be able to hold a liquid metal 
against gravity, with 0.02% of liquid metal at the surface and pure metal 
at the planetesimal center (assuming liquid metal can reside at the 
surface without crystallizing). 

To estimate the importance of Marangoni forces in small asteroids, 
one can consider an internally molten asteroid of radius R with a cold 
near surface layer of thickness d = R/10. The temperature difference 
across this layer, between liquid silicates and the outer space is com
parable to the melting temperature of silicates which is of order T0. In 
the bottom part of this lithosphere, the temperature allows the metal to 
be liquid while the silicates remain solid. According to (45), the Mar
angoni suction was larger than gravity when the metal melt fraction was 
small and until its fraction was 2%. Such a liquid metal fraction is rather 
low, implying that the Marangoni force does not play a major role in 
planetesimal differentiation; although asteroidal gravities are very small 
compared of that on Earth, their potential thermal gradients are likely 
much smaller than what occurs in laboratory experiments. Nevertheless, 
the metal content (2%) below which the Marangoni forces should suck 
the metal to the surface suggests that the Marangoni effect might drive 
melt ejection from the most compacted mush, inside the planetesimal, 
toward a shallow freezing front, and therefore deposit a significant 
metal fraction at the surface. This effect might help explain the presence 
of a significant metal percentage at the surface of M-type asteroids 
(Shepard et al., 2015) including Psyche (Elkins-Tanton et al., 2020). 

The complete discussion of the role of surface forces in the phase 
segregation inside planetesimals remains to be done particularly to 
quantify the interactions between the time-scales of their size evolution, 
of their temperature evolution, and of the metal transport. The very low 
gravity of these body makes the importance of the capillary forces not 
entirely negligible with respect to compositional buoyancy in the zone 
beneath their cold boundary layer where the thermal gradients are large 
and the metal liquid. A realistic model of growing and convecting 
planetesimals undergoing differentiation is however beyond the goal of 
this paper. 
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Appendix A. Constant number density of bubbles 

The linear or non-linear relation between the density of interfacial area, α and the volume fraction of the minor phase, controls whether the mixture 
ultimately undergoes a self-separation of the two phases. In the model of a foamy medium where the number density and the volume fraction of 
bubbles are independent variables, then, α = 3ϕ/r = 32/3(4πN )

1/3ϕ2/3 = α0ϕ2/3, i.e., α is a non-linear function of ϕ. In this case, the interface 
curvature is ∂α/∂ϕ = 2/r as expected for spheres, and one has 

d
dz

σ̃∂α
∂ϕ

=
2
3
α0ϕ− 1/3dσ̃

dz
−

2
9
α0σ̃ϕ− 4/3dϕ

dz
=

2
r

dσ̃
dz

−
2

3rϕ
σ̃dϕ

dz
,

dσ̃α
dz

− σ̃∂α
∂ϕ

dϕ
dz

= α0ϕ2/3dσ̃
dz

=
3
r

ϕ
dσ̃
dz
.

(46) 

This leads (with ω = 0) to 

Vi =
(1 − ϕ)p+1

3μo

[

(1 − ϕ)Δρgr2 − (2+ϕ)r
dσ̃
dz

+
2
3
(1 − ϕ)

ϕ
rσ̃dϕ

dz

]

(47) 

In this case, the Marangoni term is still present although slightly reduced (compare with (27)) and a new term appears, related to dϕ/dz. This term 
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will force the self-separation of the two phases, as in all cases where the dependence of α with ϕ is non-linear. 
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