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Abstract: Climate resilience of crops is critical for global food security. Understanding the genetic ba-
sis of plant responses to ambient environmental changes is key to developing resilient crops. To detect
genetic factors that set flowering time according to seasonal temperature conditions, we evaluated
differences of flowering time over years by using chromosome segment substitution lines (CSSLs)
derived from japonica rice cultivars “Koshihikari” × “Khao Nam Jen”, each with different robustness
of flowering time to environmental fluctuations. The difference of flowering times in 9 years’ field
tests was large in “Khao Nam Jen” (36.7 days) but small in “Koshihikari” (9.9 days). Part of this
difference was explained by two QTLs. A CSSL with a “Khao Nam Jen” segment on chromosome 11
showed 28.0 days’ difference; this QTL would encode a novel flowering-time gene. Another CSSL
with a segment from “Khao Nam Jen” in the region around Hd16 on chromosome 3 showed 23.4 days”
difference. A near-isogenic line (NIL) for Hd16 showed 21.6 days’ difference, suggesting Hd16 as a
candidate for this QTL. RNA-seq analysis showed differential expression of several flowering-time
genes between early and late flowering seasons. Low-temperature treatment at panicle initiation
stage significantly delayed flowering in the CSSL and NIL compared with “Koshihikari”. Our results
unravel the molecular control of flowering time under ambient temperature fluctuations.

Keywords: rice; flowering time; ambient temperature fluctuation; chromosome segment substitution
line (CSSL); quantitative trait locus (QTL)

1. Introduction

Global warming is likely to reach 1.5 ◦C between 2030 and 2052 if it continues at
the current rate [1]. Cultivated rice (Oryza sativa L.) originated from a wild rice species
(Oryza rufipogon Griff.), which grows mainly in the tropics [2,3]. Rice is inherently adaptable
to hot environments. However, novel rice cultivars with resistance to very hot environ-
ments are required for regions where extreme warming is expected [1]. Climate change is
causing large fluctuations in temperature, solar irradiation, precipitation and soil moisture,
especially in the tropics [4]. At the high-latitude limits of rice cultivation; however, low
temperatures at the seedling, panicle initiation and maturation stages severely decrease
grain yield [5,6]. There is now an increasing demand for new cultivars that are adaptable to
both effects of climate change. Therefore, to develop climate-change resilient crops, it is nec-
essary to elucidate the genetic basis of plant response to ambient environmental changes.
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Daylength is a primary environmental factor that determines maturation (harvest)
time through induction or suppression of flowering and consequently adaptability to
each growing area in plant species [7,8]. Rice is a short-day plant: flowering is pro-
moted under short daylength. Most genes for flowering cloned so far are involved in
response to daylength and photoperiod sensitivity in rice [9–13]. They are assigned to
two major independent gene regulatory pathways, the OsGI–Hd1–Hd3a pathway and
the Ghd7–Ehd1–Hd3a/RFT1 pathway. Both pathways are regulated by light perception,
daylength and the circadian clock. These previous molecular genetic studies show the
importance of response to daylength in the determination of rice flowering time.

Temperature is another important ambient environmental factor that determines flow-
ering time. Vernalization (low-temperature) treatment promotes flowering in several cereal
and horticultural species such as wheat, barley and Brassica vegetables [14,15]. In Ara-
bidopsis, higher temperature accelerates plant growth and development through signaling
from PhyB, PIFs, DELLA and the evening complex, which includes ELF3 [16–20]. Previous
studies revealed that rice cultivars adapted to higher latitudes showed photoperiod insen-
sitivity and high-temperature response [21–23]. Four flowering-time QTLs responsive to
temperature were detected in a mapping population derived from crosses between indica
and japonica cultivars [24]. In addition, other previous studies investigated relationships
between rice flowering times under different temperature conditions and expression levels
of previously isolated genes in rice mutant lines [25,26]. They showed that expression of
Ehd1, Hd3a and RFT1 was repressed under long daylength and low temperatures. The data
suggest that temperature response is a decisive factor in determining flowering time in
rice. However, despite their importance in relation to breeding programs, the molecular
mechanisms involved in temperature response remain largely unknown. It is necessary
to elucidate the genetic mechanisms underlying the determination of flowering time in
response to ambient temperature in rice.

Here, we evaluated differences of flowering time over 9 years (2011 to 2019) in Asian
rice cultivars and chromosome segment substitution lines (CSSLs) derived from crosses
between japonica rice cultivars “Koshihikari” and “Khao Nam Jen”. “Khao Nam Jen” had
a large difference. Among the 40 CSSLs, two lines with a “Khao Nam Jen” segment on
chromosomes (Chrs.) 11 and 3 (the latter including the Hd16 region) had over 15 days’
difference. The QTL on Chr. 11 would be a novel flowering-time gene, because no allelic
differences have been found in genes previously isolated in this region. Low-temperature
treatment at the panicle initiation stage delayed flowering time in both lines. RNA-seq
analysis revealed that expression of the flowering-time genes Ehd1, Hd3a and RFT1 was
shifted later in the flowering season in the CSSL than in “Koshihikari”. Through these
analyses, we detected novel genetic factors involved in the control of flowering time under
different ambient temperatures during the rice-growing season.

2. Results
2.1. Natural Variations in Flowering Time Among Years

We found wide variations in flowering time (days-to-heading, DTH) of 18 Asian rice
cultivars during 2011 to 2019 (Figure 1A, Supplementary Table S1). For example, DTH
varied from 87.6 ± 1.1 (extremely early) in “Qui Zhao Zong” to 201.4 ± 2.3 (extremely late)
in “Khao Nam Jen” in 2011 and from 88.4 ± 2.3 (extremely early) in “Qui Zhao Zong” to
215.0 ± 0.5 (extremely late) in “Nona Bokra” in 2019. Among the 18 cultivars, “Khao Nam
Jen” and “Bei Khe” had a large difference of flowering time: 36.7 and 23.2 days, respectively.
We calculated coefficients of variations (CVs) to evaluate dispersions of flowering time
in the 18 cultivars for nine years. “Khao Nam Jen”, “Bei Khe”, “Muha” and “Tupa 121-3”
had large CVs: 5.6, 5.4, 5.7 and 5.2. On the other hand, “Bleiyo” had a small difference
of flowering time: 3.2 days. “Bleiyo”, “LAC23” and “Basilanon” had small CVs: 1.5, 2.7
and 2.8, respectively. Daylength is strictly stable, while ambient temperature fluctuates
widely among years (Figure 1B,C). Flowering time in “Bleiyo”, “LAC23′ and “Basilanon”
was strongly controlled by daylength, while that in “Khao Nam Jen”, “Bei Khe”, “Muha”
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and “Tupa 121-3” was easily affected by ambient temperature during the cropping period.
Therefore, we selected “Khao Nam Jen”, with the largest flowering time difference, to
genetically dissect the molecular basis for flowering time fluctuations among years through
analysis of progeny derived through backcrossing to “Koshihikari”, which had a moderate
difference of flowering time (9.9 days; CV = 3.0).
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Figure 1. (A) Days-to-heading (DTH) of 18 Asian rice cultivars under natural field conditions from 2011 to 2019. Values are
means ± SDs. Differences of DTH and coefficient of variation were based on the earliest and latest flowering times among
years. (B) Daylength during rice-growing season from 2011 to 2019. (C) Maximum temperature during rice-growing season
from 2011 to 2019.

2.2. Flowering Time Fluctuation in CSSLs of “Koshihikari” and “Khao Nam Jen”

To identify genetic factors related to the flowering time fluctuation, we evaluated
flowering time in a set of CSSLs derived from crosses between “Koshihikari” and “Khao
Nam Jen” from 2011 to 2019. The CSSLs, developed in a previous study, comprise 40 lines
at the BC4F6 generation (SL2801–SL2840; Supplementary Figure S1; [27]). Each CSSL
has a substituted segment of a target chromosomal region from “Khao Nam Jen” in the
genetic background of “Koshihikari”. Flowering times of most CSSLs were similar to those
of “Koshihikari” in each year (Figure 2). However, several CSSLs had large differences
in flowering time from “Koshihikari”. Line SL2833, with a “Khao Nam Jen” segment
on the short arm of Chr. 11, had a flowering time difference of 28.0 days and CV = 9.6
(Figures 2 and 3; Supplementary Table S1). SL2812, with a “Khao Nam Jen” segment on
the long arm of Chr. 3, had a flowering time difference of 23.4 days and CV = 6.5. Most
other CSSLs had a flowering time difference of ~15 days and CV ≤ 5, similar to those of
“Koshihikari”. Therefore, we assigned two major-effect QTLs for flowering time difference
among years: one on the short arm of Chr. 11 and one on the long arm of Chr. 3. Both
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“Khao Nam Jen” segments increased flowering time difference. QTLs for flowering time in
the corresponding years were found in both regions (Supplementary Figure S2): on the
long arm of Chr. 3 in all 9 years and on the short arm of Chr. 11 in 4 years.
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No genes for flowering time showing DNA sequence variations between “Koshi-
hikari” and “Khao Nam Jen” have been previously identified on the short arm of Chr. 11
(Supplementary Figure S2). Two flowering-time genes—Hd6 and Hd16—have been identi-
fied on the long arm of Chr. 3 and their molecular functions in flowering time regulation
have been elucidated [28,29]. “Koshihikari” has non-functional alleles at these two genes,
while “Khao Nam Jen” has functional alleles [30,31]. Koshihikari Hd16-NIL, with a func-
tional allele in the “Koshihikari” background, had a flowering time difference of 21.6 days
and CV = 5.7 (Figure 3; Supplementary Table S1). Koshihikari Hd6-NIL, with a functional
allele in the “Koshihikari” genetic background, had a flowering time difference of 10.8 days
and CV = 3.4.

2.3. Transcriptome Analysis in Rice Plants from Juvenile to Mature Stages

To compare gene expression patterns between “Koshihikari” and SL2812 (“Khao
Nam Jen” segment on long arm of Chr. 3), we carried out RNA-seq analysis in 2015
(early-flowering year) and 2016 (late-flowering year; Figure 3). “Koshihikari” showed a
transcriptome phase transition from vegetative to reproductive stages at 10 weeks after
transplanting in both 2015 and 2016 (Figure 4A). SL2812 showed it at 10 weeks in 2015 and at
12 weeks in 2016 (Figure 4B). Therefore, we focused on gene expression at 10 weeks. In 2015,
95 genes were up-regulated and 234 genes were down-regulated in “Koshihikari” compared
with SL2812 (Figure 4C). In 2016, 207 were up-regulated and 436 were down-regulated
in “Koshihikari” (Figure 4D). Among expressed genes without significant differences in
2015, 451 genes were differentially expressed (137 up- and 314 down-regulated) in 2016
(Figure 4E). Gene ontology analysis of these 451 genes showed that they included genes
involved in responses to stress stimuli, flower development and embryo development
(Figure 4F,G). Moreover, expression patterns of 88 genes for phytochromes and thermo-
response signaling and 59 flowering-time regulation genes fluctuated much more after
10 weeks in 2016 than in 2015 (Figure 4H,I; Supplementary Table S2). Among these
147 genes, expression of 44 genes differed more than twofold between “Koshihikari” and
SL2812 after 10 weeks in 2015 and expression of 75 genes differed more than twofold in
2016. Quantitative real-time PCR confirmed different expression peaks of Ehd1, Hd3a and
RFT1, which function downstream of Hd16 in the flowering-time gene network, at 8 to
12 weeks in 2016 between “Koshihikari” and SL2812 (Figure 4J).
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Figure 4. (A,B) Changes in transcriptome associated with the transition to reproductive stage in 2015 and 2016 in (A) “Koshi-
hikari” and (B) SL2812. Relative expression patterns of 255 clusters based on 28 229 genes from 2 to 20 weeks after
transplanting in the field. Dark blue lines, low expression at 20 weeks; light blue lines, high expression at 20 weeks.
(C,D) Numbers of genes differentially expressed between “Koshihikari” and SL2812 at 10 weeks in (C) 2015 and (D) 2016.
Increased and decreased genes were higher and lower expressions in “Koshihikari” as compared with SL2812. (E) Numbers
of differentially expressed genes at 10 weeks in 2016 among genes showing ≤2-fold difference between “Koshihikari” and
SL2812 in 2015. (F,G) Gene ontology (GO) analysis of differentially expressed genes in 2016 by (F) GO types and (G) GO
categories. (H,I) Relative expression levels of phytochromes and thermo-response signaling genes and flowering time
regulation genes of “Koshihikari”/SL2812 from 2 to 20 weeks in (H) 2015 and (I) 2016. (J) Confirmation of expression of
three flowering-time genes—Ehd1, Hd3a and RFT1—in “Koshihikari” and SL2812 by quantitative real-time PCR.

2.4. Effect of Weather Factors on Flowering Time in Rice Plants

To reveal weather factors associated with the difference of flowering times, we tested
correlations of flowering time with air temperature, relative humidity, precipitation, wind
speed, wind direction, duration of sunshine, amount of insolation and soil temperature.
Maximum temperatures in July were significantly negatively correlated with flowering
time in “Koshihikari”, SL2812, SL2833, Koshihikari Hd6-NIL and Koshihikari Hd16-NIL
(Table 1; Supplementary Figure S3). Maximum temperatures in June, August and Septem-
ber were significantly negatively correlated with flowering time in “Khao Nam Jen” and
Koshihikari Hd16-NIL.
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Table 1. Correlations between monthly maximum temperature during rice-growing season and days-to-heading in
“Koshihikari”, “Khao Nam Jen”, SL2812, SL2833, Koshihikari Hd6-NIL and Koshihikari Hd16-NIL. *** Significant correlation
with days to heading at p < 0.001 by the Pearsons‘ test.

Days to Heading

‘Koshihikari’ ‘Khao Nam Jen’ SL2812 SL2833 Koshihikari
Hd6-NIL

Koshihikari
Hd16-NIL

Maximum temperature

June −0.07 0.34 *** −0.08 −0.01 0.14 0.48 ***

July −0.26 *** −0.20 −0.35 *** −0.45 *** −0.34 *** −0.44 ***

August −0.16 −0.32 *** −0.18 −0.24 −0.24 −0.42 ***

September 0.03 −0.43 *** 0.20 0.16 −0.02 −0.63 ***

Next, we evaluated the effects of high temperature (30 ◦C daytime / 24 ◦C nighttime)
and low temperature (24/20 ◦C) on flowering in “Koshihikari”, Koshihikari Hd16-NIL
and SL2833. Under long daylength condition, low temperature delayed flowering in
all three genotypes: the effect was 2.0 times that at normal temperature (27/24 ◦C) in
“Koshihikari”, 2.4 times in Koshihikari Hd16-NIL and 2.8 times in SL2833 (Figure 5). Low
temperature delayed flowering significantly in Koshihikari Hd16-NIL and SL2833 relative
to “Koshihikari”. On the other hand, high temperature commonly led to early flowering:
the effect was 0.7 times that at normal temperature in all three genotypes. Under short
daylength condition, there was no significant difference in flowering time among lines,
although low temperature somewhat delayed flowering time of all lines.
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Figure 5. Days-to-heading of “Koshihikari”, Koshihikari Hd16-NIL and SL2833 under high tem-
perature (30 ◦C daytime / 24 ◦C nighttime), normal temperature (27/24 ◦C) and low temperature
(24/20 ◦C), under short daylength (10 h light/14 h dark) and long daylength (14.5 h/9.5 h). Values
are means ± SDs. *** Significant difference from “Koshihikari” at p < 0.001 by the t-test.

3. Discussion
3.1. Detection of QTLs for Response of Flowering Time to Ambient Temperature Fluctuations

Even though classical genetic studies suggest the importance of temperature response
and photoperiod response in determination of flowering time in rice [21–23], few reports on
genetic factors determine the response of flowering time to ambient temperatures. Here, we
show that two major genetic factors—a novel QTL on Chr. 11 and photoperiod sensitivity
gene Hd16—are associated with the response of flowering time to ambient temperatures
during the rice-growing season.
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The QTL for flowering time on the short arm of Chr. 11 was detected in only 4 out of
the 9 years, with inconsistent directions of additive effects. The flowering time of SL2833,
with the “Khao Nam Jen” allele at this QTL, was negatively correlated with maximum
temperature in July in all 9 years; flowering was delayed in 2017 (low maximum tempera-
ture) and promoted in 2018 (high maximum temperature). Flowering time of SL2833 was
significantly delayed under low temperature condition. Therefore, this QTL is associated
with responsiveness to ambient temperature in regulating flowering time in rice. It was
localized to the region containing RCN1 and RBS1 that encode phosphatidylethanolamine-
binding protein and heterogeneous nuclear ribonucleoprotein R-type protein, respectively.
However, the sequences of RCN1 and RBS1 were identical between “Khao Nam Jen” and
“Koshihikari” and expression levels of both did not differ significantly in our RNA-seq
dataset in 2015 and 2016. Therefore, this QTL may be a novel flowering-time gene in rice.
Further genetic studies such as fine-mapping experiments are necessary to isolate the gene
responsible for this QTL.

The QTL on the long arm of Chr. 3 corresponds to Hd16, which was isolated as a
flowering time-gene involved in photoperiod sensitivity in rice [29,32,33]. SL2812 and
Koshihikari-Hd16 NIL had a wide difference of flowering time and a large CV among the
9 years. Additionally, low-temperature treatment delayed flowering time in Koshihikari-
Hd16 NIL. Our results indicate that Hd16 is associated with both photoperiod sensitivity
and response to ambient temperatures. Hd16 encodes casein kinase-I; the “Koshihikari”
allele has one non-synonymous substitution in the conserved kinase domain, which results
in deficient function, causing decreased photoperiod sensitivity [29]. The functional Hd16
allele from “Khao Nam Jen” promoted both strong photoperiod sensitivity and strong
response to ambient temperatures in comparison with the non-functional “Koshihikari”
Hd16 allele. Biochemical characterization indicated that a functional Hd16 recombinant
protein specifically phosphorylated the proteins encoded by rice flowering-time genes Ghd7
and OsPRR37 and the SLR1 protein in the gibberellin signaling pathway in rice [29,32,33].
The combined evidence suggests that Hd16 alters the response of flowering time to ambient
temperatures through both the photoperiod-sensitive flowering-time pathway and the
gibberellin-dependent growth-regulatory pathway.

Several other CSSLs had moderately large flowering time fluctuations among the
9 years (Figure 2). SL2809, SL2821, SL2825 and SL2834 had more than 15 days’ difference of
flowering times or CV > 5 among years. Segments from “Khao Nam Jen” were introgressed
on the long arms of Chr. 2 in SL2809, Chr. 6 in SL2821, Chr. 7 in SL2825 and Chr. 11 in
SL2834. Therefore, multiple genetic factors play a role in controlling flowering time under
ambient temperature fluctuations in rice.

3.2. Integration of Thermal Response into Photoperiod Flowering Pathway

In rice, most flowering-time genes isolated previously are associated with response to
daylength and photoperiod sensitivity [9–13]. They function in two major independent
pathways, the OsGI–Hd1–Hd3a pathway and the Ghd7–Ehd1–Hd3a/RFT1 pathway. Both
pathways promote flowering under short daylength but repress it under long daylength
(Supplementary Figure S4). We found a novel QTL on Chr. 11 and Hd16 on Chr. 3 that
appear to control flowering time under different ambient temperatures. Hd16 partici-
pates in the Ghd7–Ehd1–Hd3a/RFT1 pathway [29,33]. Transcriptome analysis also showed
fluctuations of Ehd1, Hd3a and RFT1 expression between different ambient temperatures.
Therefore, the response of flowering time to ambient temperatures would be controlled
by members of the photoperiod sensitivity pathway of the Ghd7–Ehd1–Hd3a/RFT1 path-
way. The QTL on Chr. 11 also might function in the Ghd7–Ehd1–Hd3a/RFT1 pathway,
because the “Khao Nam Jen” allele did not alter the expression of OsGI, Hd1, or Hd6 in the
other pathway, or the difference of flowering time among years in the plants carrying the
functional Hd6 allele.

Extensive studies in model plant species have elucidated the details of the flowering-
time genetic networks. Six major pathways have been reported in Arabidopsis: the pho-
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toperiod, vernalization, gibberellin, autonomous, age and ambient temperature path-
ways [34,35]. Efforts in wheat, barley, maize, sorghum, Brassica species and fruit trees have
been also reviewed [36]. In Arabidopsis and temperate cereal crops such as wheat and
barley, vernalization is a crucial factor that accelerates flowering time [15,37]. Arabidopsis
has many vernalization-related genes, including FLC, FRI, VRN1, VRN2, VIN2 and VIN3,
but we did not detect rice homologs of these genes as QTLs in this study. Wheat and
barley have three vernalization genes—VRN1, VRN2 and VRN3 (unrelated to the genes
with the same names in Arabidopsis)—in each genome [38,39]. Wheat and barley VRN1,
which encodes an AP1-like MADS-box transcription factor, is orthologous to OsMADS14,
OsMADS15 and OsMADS18 in rice [40]. VRN2, with a zinc-finger motif and a CCT domain,
seems to be homologous to rice Ghd7 [41]. VRN3 is homologous to FT-like genes such as
Hd3a and RFT1. These studies suggest that homologs of rice photoperiod-sensitivity genes
are associated with vernalization response in wheat and barley. Therefore, the genetic
pathway that controls the response of flowering time to ambient temperatures might be
conserved among cereal crop species.

High temperature accelerates plant growth and development in Arabidopsis through
a signaling pathway that includes PhyB, PIF4, YUC8, DELLA and ELF3 [16–20]. PhyB
functions as a thermo-sensor in leaf epidermis and regulates PIF4 activity and the auxin
signaling pathway in response to ambient high temperature, as well as to light signals [17].
In our study, some rice orthologs of these genes showed similar expression patterns in
2015 (higher temperature year) between “Koshihikari” and SL2812, but large fluctuations
in 2016 (lower temperature year) between the two. Therefore, these genes might also
be associated with flowering time regulation in rice in response to ambient temperature
fluctuations. Recently developed techniques in molecular biology can reveal the complex
fundamental mechanisms involved in the control of the agronomically important traits [42].
To reveal the degree of conservation of the flowering-time pathway among rice, Arabidopsis
and temperate cereal crops, it is necessary to identify more participant genes and to
perform further molecular functional studies such as of phosphorylation, methylation and
acetylation status at both gene and protein levels and to integrate those modifications into
the gene pathway for flowering time regulation in rice.

3.3. Application to Development of Climate-Resilient Crops

Global warming is causing climate change with large temperature fluctuations, in
addition to variations in solar irradiation, precipitation and soil moisture, in rice-growing
regions [1,4]. Temperature fluctuations are strongly associated with crop yield losses.
Novel rice cultivars resistant to both high and low temperatures are necessary for cul-
tivation regions that are expected to experience large temperature fluctuations during
the rice-growing season. In this study, we detected genetic factors for plant response to
differences in ambient temperature. The two “Khao Nam Jen” alleles found change flow-
ering time in response to ambient temperatures. If rice cultivars could promote or delay
their growth and flowering time in response to ambient temperatures, we could reduce
yield loss after exposure to temperature extremes at the panicle initiation, pollination and
maturation stages. These “spontaneously flexible” alleles in “Khao Nam Jen” could be
utilized for developing climate-resilient cultivars and thus achieving high productivity
under climate change.

4. Conclusions

We found a wide difference of flowering time fluctuations among 9 years in Asian rice
cultivars. We detected two QTLs in CSSLs with “Khao Nam Jen” chromosome segments
in the “Koshihikari” genetic background. One QTL corresponds to Hd16, on the log
arm of Chr. 3 and the other QTL, on the long arm of Chr. 11, might be a novel gene.
Low temperature treatment at the panicle initiation stage delayed flowering in the two
CSSLs with these QTLs. These results provide insights into thermo-sensitive flowering-
time regulation in rice and will facilitate our understanding of the molecular basis of the
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control of flowering time variation under ambient temperature fluctuations and allow the
development of climate-resilient crops that are adaptable to temperature fluctuations under
climate change.

5. Materials and Methods
5.1. Plant Materials

We selected 18 rice cultivars: “Qui Zhao Zong”, “Davao 1′, “IR64′, “Touboshi”, “Deng
Pao Zhai”, “Naba”, “Bei Khe”, “Bleiyo”, “Tupa 121-3′, “Kasalath”, “Muha”, “Koshihikari”,
“Nipponbare”, “Basilanon”, “Khao Mac Kho”, “LAC 23′, “Khao Nam Jen” and “Nona
Bokra”. These cultivars (8 indica, 3 aus, 7 japonica), mainly from Asia, were selected on
the basis of their geographical origin, cluster analysis of genome-wide genotype data and
variation in DTH from a representative rice core collection [43]. Chromosome segment
substitution lines (CSSLs) with “Khao Nam Jen” chromosome segments in the “Koshihikari”
genetic background were developed in our previous study [27]. The CSSLs comprise a
set of 40 lines at the BC4F6 generation, covering 95.9% of the “Khao Nam Jen” genome.
Two near-isogenic lines (NILs) in the “Koshihikari” genetic background were developed in
previous studies [29,44].

5.2. Evaluation of Flowering Time in Natural Field Conditions

All plants were grown in an experimental field at the Institute of Crop Science, Na-
tional Agriculture and Food Research Organization (NARO), Tsukuba, Japan (36.03◦ N,
140.11◦ E), in 9 years (2011 to 2019). Month-old seedlings were transplanted in mid-May at
one per hill in plots with a double row for each line, with 18 cm between plants and 36 cm
between rows. The mean daylengths were 12.3 h in April, 13.4 h in May, 14.3 h in June,
14.4 h in July, 13.6 h in August and 12.6 h in September. Cultivation management followed
the standard procedures used at the Institute of Crop Science. DTH of individual plants
were scored as the number of days from sowing to the appearance of the first panicle in
each of the 5 or 24 plants and mean values were calculated. The difference of flowering
time of each line was calculated as the difference between the earliest and latest flowering
times among the 9 years. The coefficient of variation (CV) was calculated as standard
deviation ÷ average flowering time in each year.

5.3. QTL Detection in CSSLs and NILs

The difference of flowering time and CV among years in CSSLs and NILs were
compared with those of “Koshihikari” by using Dunnett”s multiple comparison procedure
in JMP v. 11.0.0 software. For QTL detection in the CSSLs, we used a total of 377 SNP and
112 SSR markers showing polymorphisms between “Koshihikari” and “Khao Nam Jen”
reported by the previous studies [27,30]. QTLs were declared present when these scores
were significantly different between a line and “Koshihikari”. The scores were considered
statistically significant if difference of flowering time >15.0 days and CV > 5.0.

5.4. Transcriptome at Panicle Initiation Stage

We extracted mRNA from the highest fully expanded leaf of “Koshihikari” and SL2812
(“Khao Nam Jen” segment on long arm of Chr. 3) at 2 to 20 weeks after transplanting in
2015 and 2016. Sequencing libraries for RNA-seq analysis were constructed by using the
QuantSeq 3′ mRNA-seq Library Prep Kit (Lexogen, Greenland, NH, USA) with barcodes
for Illumina sequencing according to the manufacturer’s instructions. The libraries were
sequenced on a HiSeq 4000 platform (Illumina, San Diego, CA, USA) using the TruSeq
SBS Kit (Illumina, San Diego, CA, USA) and the paired-end sequencing method to obtain
two 100 bp sequences. Individual reads were trimmed by cutting bases from the start and
end of reads if quality ≤20 in Trimmomatic v. 0.36 software and by removing reads with
final read length <50 in FASTQC v. 0.11.9 software. Trimmed reads were mapped on the
IRGSP1.0 rice genome sequence and gene loci in RAP-DB [45]. Each gene locus read was
counted by featureCounts v. 1.6.4 software. Reads per million (RPM) values of all genes
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were calculated from the read count data. Genes with RPM ≥ 1 in all three biological
replicates were defined as expressed. Expressed genes were classified according to gene-
ontology types and categories from the annotations in RAP-DB [45] and RiceNETDB [46].
The RNA-seq data are archived at the DNA Data Bank of Japan under accession number
DRA011161. Quantitative real-time PCR were carried out by the methods of previous
study [29]. Transcription levels of Hd3a, RFT1, Ehd1 and Rice ubiquitin2 (UBQ) were
measured according to a SYBR Green-based method by using gene-specific primers.

5.5. Correlation between Flowering Time and Meteorological Conditions

Weather data at the paddy field from 2011 to 2019 were collected from the Weather
Data Acquisition System of the Institute for Agro-Environmental Sciences, NARO ([47],
http://www.naro.affrc.go.jp/org/niaes/aws/). We collected maximum, minimum and
average values of air temperature, relative humidity, precipitation, wind speed, wind
direction, duration of sunshine, amount of insolation and soil temperature each month
from April to November. Pearson’s correlation coefficient was used to assess relationships
among DTH and the weather data in JMP.

5.6. Evaluation of Flowering Time under High and Low Temperatures

“Koshihikari”, Koshihikari Hd16-NIL and SL2833 (“Khao Nam Jen” segment on
Chr. 11) were grown in a controlled-environment cabinet under a short daylength (10 h
light/14 h dark) or a long daylength (14.5/9.5 h). Relative humidity was maintained at 60%
under a photosynthetic photon flux density of 500 µmol m−2 s−1 provided by metal halide
lamps that covered the spectrum from 300 to 1000 nm. Ambient temperatures (light/dark)
were 30/24 ◦C, 27/24 ◦C (usual rice cultivation condition), or 24/20 ◦C. DTH in 10 plants
of each line was scored and mean values were calculated for each line.
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temperatures at panicle initiation stage from 2011 to 2019, Figure S4: Genetic pathway controlling
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and NILs from 2011 to 2019, Table S2: Loci of genes involved in flowering time regulation.
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