1	"Title"
2	Enhancement of zinc ion removal from water by physically-mixed particles of iron/iron sulfide
3	
4	
5	"Author name"
6	Yuya Kamba ¹ , Miharu Ueta ¹ , Md. Azhar Uddin ¹ , Yoshiei Kato ^{*1}
7	
8	"Author address"
9	1: Department of Material and Energy Science, Graduate School of Environmental and Life Science,
10	Okayama University, 1-1 Tsushima-naka, 3-chome, Kita-ku, Okayama 700-8530 Japan
11	
12	"Corresponding author"
13	*Yoshiei Kato, E-mail address: y-kato@cc.okayama-u.ac.jp
14	
15	

17 Abstract

18	Zinc (Zn) removal by physically-mixed particles of zero-valent iron (Fe) and iron sulfide (FeS) was
19	investigated as one technology for Zn removal from waste groundwater. The effects of the Fe/FeS mass
20	ratio, including a single Fe and FeS particles, and pH on changes in the concentrations of Zn, Fe and S were
21	examined by a batch test and column tests, and the mechanism of Zn elimination was discussed. Among all
22	the mixing fractions of Fe and FeS, Zn was eliminated most effectively by 3Fe/7FeS (mass ratio of Fe/FeS
23	= $3/7$). The Zn removal rate decreased in the order of 3 Fe/7FeS, FeS and Fe, whereas the Fe concentration
24	decreased in the order of Fe, FeS and 3Fe/7FeS. The S concentration of FeS was larger than that of 3Fe/7FeS.
25	The Zn removal rate by physically-mixed 3Fe/7FeS particles was enhanced by a local cell reaction between
26	the Fe and FeS particles. The electrons caused by Fe corrosion moved to the FeS surface and reduced the
27	dissolved oxygen in the solution. Zn^{2+} , Fe^{2+} and OH^{-} ions in the solution were then coprecipitated on the
28	particles as $ZnFe_2(OH)_6$ and oxidized to $ZnFe_2O_4$. Moreover, Zn^{2+} was sulfurized as ZnS by both the Fe/FeS
29	mixture and the simple FeS particles. The Zn removal rate increased with increasing pH in the range from
30	pH 3 to 7. From a kinetic analysis of Zn removal, the rate constant of anode (Fe)/cathode (FeS) reaction
31	was almost the same as that of ZnS formation, and slightly larger than that of Fe alone.
32	
33	Key words: Zero-valent iron, iron sulfide, zinc ion, zinc removal, groundwater treatment

35 1. Introduction

36	Many heavy metals in groundwater have a harmful impact on human health and the ecosystem due to
37	their persistent toxicity. Although industrial plants are obliged to release effluents with heavy metal
38	concentrations below effluent standards, contaminated water is occasionally released into groundwater
39	when elimination and effluent monitoring of heavy metals are inadequate (Arao et al. 2010). Therefore, it
40	is important to remediate groundwater contaminated by heavy metals (Hashim et al. 2011; Adeli et al. 2017;
41	Dan'azumi and Bichi 2010; Inglezakis et al. 2003; Momodu and Anyakora 2010).
42	Zinc (Zn) metal is used in manufacturing hot-dip and electrogalvanized products, die-cast alloys,
43	copper alloy products and so on, and was increasingly produced from a half century ago. Groundwater and
44	soil have been contaminated by Zn-containing water discharged from industrial plants and mines
45	(Kishimoto et al. 2018; Bhattacharya et al. 2006), which has been recognized as a serious environmental
46	issue. Waste water from the plants of hot-dip and electrogalvanized products is especially contaminated by
47	Zn alone (Ministry of the Environment, Government of Japan 2006). Zn is considered to be relatively
48	nontoxic for human health (Fosmire 1990), but is toxic to fish and aqueous insects and plants (Iwasaki et
49	al. 2009). In 2006, the Zn emission standard in Japan was decreased from 5 mg/L to 2 mg/L (Ministry of
50	the Environment, Government of Japan 2006).
51	Various technologies for Zn removal from waste groundwater are available, including coagulation-
52	flocculation (Kurniawan et al. 2006), ion exchange (Kurniawan 2006), adsorption (Kwon et al. 2005; Lu et
53	al. 2007), ultrafiltration (Katsou et al. 2011) and electrodialysis (Kirkelund et al. 2010). Among these

54	treatment technologies, coagulating sedimentation is the most widely-used due to its simple equipment and
55	operation. As a drawback of this technology, because amphoteric Zn has a narrow pH range of 9 to 10.5 for
56	coagulation as zinc hydroxide, there is a danger of discharges exceeding the Zn effluent standard if
57	operational conditions unintentionally deviate from this range (Inamoto 2006).
58	Zero-valent iron has been also applied to groundwater remediation (Stokes and Moller 1999; Dries
59	et al. 2005; Rangsivek and Jekel 2005; Oh et al. 2007; Cundy et al. 2008; Kishimoto et al. 2011; Fu et al.
60	2014; Tosco et al. 2014; Lefevre et al. 2016; Kishimoto et al. 2018). Target heavy metals such as aluminum
61	(Al), cadmium (Cd), nickel (Ni) and Zn are precipitated by using the difference in their ionization
62	tendencies from Fe acting as a reductant, or are removed by iron coprecipitation and physical/chemical
63	adsorption on the iron surface (Kishimoto et al. 2018; Nobactep 2010). As the Zn removal mechanism in
64	water, Kishimoto et al. 2011 proposed that zero-valent iron is oxidized into ferric ion by dissolved oxygen,
65	iron hydroxide is then precipitated on the iron surface by the ferric ion, and finally the Zn ion is absorbed
66	on and/or coprecipitated with the ferric ion hydroxide.
67	Nakamaru et al. (2002; 2006) and Ono et al. (2005) found that a higher sulfur content in iron powder
68	promoted trichloroethylene (TCE) degradation in water and soil because local electrodes were formed
69	between iron (Fe: anode) and iron sulfide (FeS: cathode) partly precipitated on the Fe particle surface, and
70	reduction of TCE was enhanced on the FeS cathode. Instead of the high-S content iron described above,
71	FeS or iron disulfide (FeS ₂) particles were physically mixed with Fe particles to materialize a local cell

72	reaction between the Fe and FeS particles, which are in mutual contact, and an increase in TCE degradation
73	in water was confirmed by a batch test (Shiba et al. 2014) and column tests (Demiya et al. 2018). TCE
74	degradation with originally synthesized Fe/FeS nanoparticles was also investigated by Kim et al. (2011;
75	2013; 2014). In research on removal of heavy metals from contaminated water, removal of arsenic (Min et
76	al. 2017), cadmium (Su et al. 2015) and chromium (Gong et al. 2017) was accelerated by the high reactivity
77	of S with the metal and the chemical stability of the formed metallic sulfide. However, little research has
78	been done on Zn removal by Fe/FeS mixed particles. Therefore, in the present study, the effects of the
79	Fe/FeS mass ratio and pH on the change in the Zn ²⁺ concentration in water were investigated to obtain an
80	optimal Fe/FeS composition, and a Zn elimination mechanism was proposed based on batch and column
81	tests. Contribution of Fe-FeS, Fe and FeS to a Zn removal rate was calculated by a kinetic model.
82	
83	
84	2. Experimental
85	2.1 Sample preparation
86	100 mg/L Zn solution was prepared by using Zn(NO ₃) ₂ ·6H ₂ O. Putting together 0.1 M HNO ₃ or 0.1
87	M NaOH, the pH values in the solution were varied to 3, 5.6 and 7. Fe (255MC, JFE steel) and FeS
88	(FUJIFILM Wako Pure Chemical) were used for the experiments. The mean diameter of Fe particles was
89	185 μ m, whereas FeS was pulverized between 140 and 200 μ m by a grinding mill (Wonder Blender,

90	OSAKA CHEMICAL). The density, ρ_i ,	and specific surface area,	, γ _i , of <i>i</i> (=Fe, FeS	are shown in Table 1.
----	----------------	----------------------------	----------------------------	--	---

- 91 $\gamma_{\text{FeS}} (= 0.30 \text{ m}^2/\text{g})$ value was larger than $\gamma_{\text{Fe}} (= 0.17 \text{ m}^2/\text{g})$. The samples used for the experiments were
- 92 composed of Fe, FeS, Fe/FeS (mixture of Fe and FeS) particles. The Fe/FeS particles sample was
- 93 premixed for 10 h by a rotator (VMRG-5, AS ONE) to obtain a homogeneous mixture. The experimental
- 94 temperature was about 298 K.
- 95
- 96 2.2 Experimental procedure
- 97 2.2.1 Batch test
- 98 A 2.3 g sample and 100 mg/L Zn solution were added to a 30 mL vial bottle without headspace and
- 99 mixed with a rotator (VMRG-5, AS ONE) at a rotation speed of 100 rpm for 3 h. The Fe, FeS and Fe/FeS
- 100 (mass ratio: 7/3, 5/5, 3/7, 1/9) samples were tested at a constant temperature of 298 K. The supernatant
- 101 solution after filtration was diluted with a 0.1 M HNO₃ solution, and the Zn, Fe and S ion concentrations
- 102 were measured by inductively coupled plasma atomic emission spectrometry (ICP-AES) (Visa-PRO,
- 103 Seiko Instruments).
- 104 2.2.2 Column tests
- 105 Figure 1 shows a schematic diagram of the column-type experimental apparatus. A 10 g sample was
- 106 packed in a glass column (inner diameter: 13.5 mm, height: 360 mm). The Fe, FeS and Fe/FeS (mass
- 107 ratio: 3/7) samples were used in the experiments. A 100 mg/L Zn solution was supplied inside the column

108	upward at a flow rate of 2.0 mL/min.	The solution temperature was	s kept at 298 K by flowing tap water
-----	--------------------------------------	------------------------------	--------------------------------------

- 109 throughout the outer cylinder of the column. The starting time, *t*, of the experiment was defined as 0 when
- 110 the solution began to reach the sampling site. The 0.2 mL treated solution was withdrawn at 10, 20, 30,
- 40, 50, 60, 90, 120 and 180 min and diluted with 0.1 M HNO₃, and the Zn, Fe and S ion concentrations
- 112 were measured by the ICP-AES, as in the batch test. The dried sample after treatment was analyzed with
- 113 an X-Ray diffractometer (XRD) (RINT-2100, Rigaku).
- 114
- 115 3. Results and discussion
- 116 3.1 Effect of mass ratio of Fe/FeS on Zn removal rate
- 117 The batch test was carried out to clarify the effect of the mass ratio of Fe to FeS on Zn removal and
- 118 Fe dissolution in the solution, as shown in Fig. 2. The pH value was kept at 5.6 with no addition of 0.1 M
- 119 HNO₃ or 0.1 M NaOH. The lowest Zn concentration was obtained at the mass ratio of Fe/FeS = 3/7
- 120 (3Fe/7FeS), and the lowest Fe concentration also occurred at around Fe/FeS of 3/7. Therefore, the
- 121 mixture of Fe and FeS particles was studied under the 3Fe/7FeS condition. Shiba et al. (2014) indicated
- 122 that the TCE degradation rate was highest under the 3Fe/7FeS condition, while the γ_{Fe} and γ_{FeS} values
- 123 were 0.17 and 0.34 m²/g, respectively, because the local cell reaction between Fe (anode) and FeS
- 124 (cathode) proceeded most efficiently in this condition, as follows:
- 125 Fe anode: $Fe \rightarrow Fe^{2+} + 2e^{-}$ (1)

126 FeS cathode: $RCl + H_2O + 2e^- \rightarrow RH + OH^- + Cl^-$

- 127 Here, RCl is TCE (trichloroethylene: ClCH=CCl₂).
- 128 The specific surface areas of Fe (= $0.16 \text{ m}^2/\text{g}$) and FeS (= $0.30 \text{ m}^2/\text{g}$,) in the present study were also
- 129 similar to the TCE degradation condition in the above-mentioned study, suggesting that the Zn removal
- 130 rate was also promoted most effectively.
- 131
- 132 3.2 Effect of pH on Zn removal rate for Fe, 3Fe/7FeS and FeS

133 The temporal changes in the Zn removal rate and Fe and S concentrations in the column tests with

134 the Fe, 3Fe/7FeS and FeS samples were compared. The graphs for the tests with pH = 3, 5.6 and 7 are

135 shown in Figs. 3, 4 and 5, respectively. Here, the Zn removal rate, R (%), was defined as shown in Eq.

136 (3).

137
$$R = \frac{c_0 - C(t)}{c_0} \times 100$$
(3)

138 where, *R* is the Zn removal rate (%), C_0 is the initial Zn²⁺ concentration (mg/L) and C(t) is the Zn²⁺

139 concentration (mg/L) at time, t (h).

140 The Zn removal rate and Fe and S concentrations of all samples gradually decreased with time.

141 This suggests that the surface area for Zn removal and the number of Fe and S dissolution sites decreased.

- 142 The Zn removal rate decreased in the order of 3Fe/7FeS, FeS and Fe, whereas the Fe concentration
- 143 decreased in the order of Fe, FeS and 3Fe/7FeS. In addition, the S concentration of FeS was larger than

144	that of 3Fe/7FeS. The above tendencies applied to all figures of Figs. 3 to 5. The enhancement of the Zn		
145	removal rate resulted in higher consumption of Fe and S dissolved in the solution, and thereby caused the		
146	decrease in the Fe and S concentrations.		
147	In all samples, the pH increase enhanced the Zn removal rate, as also reported by Kishimoto et al.		
148	(2011) and Rangsivek and Jekel (2005), and decreased the Fe and S concentrations. At $pH = 7$, the Zn		
149	removal rate of 3Fe/7FeS was maintained at almost 100 %, and even the simple Fe sample eliminated		
150	more than 80 % of the Zn^{2+} in the solution in this study. The enhancement of the Zn removal rate by the		
151	larger pH value is estimated to be due to Zn^{2+} precipitation, as discussed in the following section.		
152			
153	3.3 Mechanism of Zn removal		
154	XRD analyses of the samples were carried out before/after the experiment. The XRD patterns of		
155	3Fe/7FeS and FeS, and Fe at pH = 5.6 are shown in Fig. 6 (A) and Fig. 6 (B), respectively. ZnFe ₂ O ₄ , Fe,		
156	FeS and ZnS were detected after the treatment. Interestingly, Fe was found even in the FeS sample.		
157	Firstly, it is suggested that the ZnFe ₂ O ₄ was formed by the following coprecipitation (Eq. (4)) (Tokumura		
158	and Kawase, 2013) and sequential oxidation reactions of ZnFe ₂ (OH) ₆ (Eq. (5)).		
159	$Zn^{2+} + 2Fe^{2+} + 6OH \rightarrow ZnFe_2(OH)_6 $ (4)		
160	$ZnFe_2(OH)_6 + 1/2O_2 \rightarrow ZnFe_2O_4 + 3H_2O $ (5)		
161	Here, O_2 of Eq. (5) depends on the dissolved oxygen under an aerobic condition of the solution or the		

162	sample drying procedure before the XRD measurement. Eq. (4) indicates that a larger OH ⁻ (higher pH
163	value) promotes ZnFe ₂ (OH) ₆ formation thermodynamically, which causes the enhancement of the Zn
164	removal rate seen in Section 3.2.
165	The detected ZnS resulted from the following reaction (Eq. (6)), which indicates higher Zn removal
166	rates by the 3Fe/7FeS and FeS samples.
167	$Zn^{2+} + S^{2-} \to ZnS $ (6)
168	The observed Fe in the FeS sample after the experiment is due to the S^{2-} dissolution reaction, as
169	follows:
170	$FeS + 2e^{-} \rightarrow Fe + S^{2-} $ (7)
171	The electrons in Eq. (7) were generated by Fe dissolution (Fe \rightarrow Fe ²⁺) and were transferred from the Fe
172	particles to the FeS particles.
173	The results of the XRD analyses of the samples at $pH = 3$ and 7 are shown in Fig. 7. Even under the
174	higher acidity (pH = 3) and neutral (pH = 7) conditions, $ZnFe_2O_4$ was detected in all samples, and ZnS
175	was detected in the 3FeS/7FeS and FeS samples after the treatment, as in Fig. 6. On the other hand, Fe
176	was detected in the Fe sample at $pH = 3$ and 5.6, but was not observed in the 3Fe/7FeS and FeS samples
177	at $pH = 7$ (neutrality). As shown in Figs. 3 to 5, the decreased S dissolution with increasing pH inhibited
178	the reaction of Eq. (7) and the Fe formation on the FeS.
179	Based on the above facts, the Zn removal sites of the Fe/FeS particles are as shown schematically

180	in Fig. 8. Both electrons and Fe^{2+} are more easily generated by a local cell reaction between particles of	f
181	Fe (anode) and FeS (cathode) (Shiba et al. 2014; Demiya et al. 2018). The electrons move from Fe to I	FeS
182	particles and reduce the dissolved oxygen (O ₂) to the hydroxyl ion (OH ⁻) in addition to the S ²⁻ dissolut	ion
183	in Eq. (7). Zinc iron hydroxide ($ZnFe_2(OH)_6$) is then formed by the chemical coprecipitation of Zn^{2+} , F	²⁺
184	and OH ⁻ , and subsequently, this compound is partially oxidized to zinc ferrite (ZnFe ₂ O ₄), as indicated	in
185	the right and left sides of Fig. 8. The formation of ZnFe ₂ (OH) ₆ and ZnFe ₂ O ₄ by simple Fe or FeS partic	eles
186	was also observed in Figs. 6 and 7, although a larger number of unreacted zinc ions remained in the	
187	solution in comparison with the Fe/FeS particles, as shown in Figs. 2 to 5. This is thought to be due to	an
188	incomplete local cell reaction. The above process is described by the following reactions:	
189	Anode reaction (iron corrosion):	
190	$Fe \rightarrow Fe^{2+} + 2e^{-}$	(8)
191	Cathode reaction (reduction of dissolved oxygen):	
192	$O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$	(9)
193	Coprecipitation of Zn ²⁺ and Fe ²⁺ :	
194	$Zn^{2+} + 2Fe^{2+} + 6OH^{-} \rightarrow ZnFe_2(OH)_6$	(4)
195	Oxidation of zinc-iron hydroxide (reduction of dissolved oxygen):	
196	$ZnFe_2(OH)_6 + 1/2O_2 \rightarrow ZnFe_2O_4 + 3H_2O$	(5)
197	Zn^{2+} was sulfurized by S ²⁻ as follows:	

198 Sulfurization:

199	$Zn^{2+} + S^{2-} \rightarrow ZnS$	(6)
200	In this study, because the physically-mixed particles of 3Fe/7FeS (optimal combination of Fe and	ł
201	FeS) displayed more efficient Zn removal than Fe and FeS in all cases, the local cell reaction between	Fe
202	and FeS was the key factor for enhancement of the Zn removal rate. XPS (X-ray Photoelectron	
203	Spectrometry) is effective to analyze an elementary composition and chemical-bonding state just below	v
204	some nanometers from a sample surface. As the next logical step, these results obtained from the XRD	
205	measurement must be confirmed by the XPS analysis.	
206		
207	3.4 Kinetic model of Zn removal rate	
208	In this section, a kinetic model of Zn removal is indicated by using the results of batch test. The	Zn
209	removal occurred by the coprecipitation in Eq. (4) and sulfurization in Eq. (6) as seen in Fig. 8. From t	he
210	batch test in Fig. 2, the most rapid Zn removal rate was obtained at Fe/FeS of 3/7 due to the most efficient	ent
211	Fe (anode) – FeS (cathode) coprecipitation reaction in addition to the Zn sulfurization. Thus, supposing	5
212	that the Zn removal occurred at FeS surface in the whole range of Fe/FeS and additionally at Fe surface	ð
213	for Fe/FeS $> 3/7$ as well as Shiba et al. (2014) and Demiya et al. (2018), and the Zn removal rate was	
214	proportional to the Zn concentration, the following equations were given,	

$$215 \qquad -\frac{\mathrm{d}C(t)}{\mathrm{d}t} = KC(t) \tag{7}$$

217where, K is the overall rate constant (h⁻¹), $k_{\text{Fe-FeS}}$, k_{FeS} and k_{Fe} are the rate constants (m/h) of Zn removal by 218anode-cathode reaction between Fe and FeS (coprecipitation), ZnS formation due to FeS dissolution 219(sulfurization), and additional anode-cathode reaction at Fe surface (coprecipitation), respectively, a_{FeS} 220and a_{Fe} are the effective surface area (m²) of FeS and Fe particles, respectively. 221At Fe/FeS< 3/7, a_{Fe} became 0, and Eq. (7) and a_{FeS} are expressed by Eqs. (9) and (10), respectively. $-\frac{\mathrm{d}C(t)}{\mathrm{d}t} = (k_{\mathrm{Fe-FeS}}a_{\mathrm{FeS}} + k_{\mathrm{FeS}}a_{\mathrm{FeS}}) C(t)$ 222(9) 223 $a_{\rm FeS} = W_{\rm FeS} \gamma_{\rm FeS} / V$ (10)224where, W_{FeS} is the mass (g) of FeS and V is the Zn solution volume (m³). 225At Fe/FeS> 3/7, the anode-cathode reaction occurs in Fe particle alone in addition to Fe-FeS, and 226the effective surface area, $a_{\rm Fe}$, of Fe is given by the following equation. $a_{\rm Fe} = W'_{\rm Fe} \gamma_{\rm Fe}/V$ 227(11)228 $W'_{Fe} = W_{Fe} - [(mass\% Fe)/(mass\% FeS)]_{peak} W_{FeS}$ (12)229where, W'_{Fe} is the mass (g) of Fe without contribution of the Fe (anode) – FeS (cathode) reaction, 230[(mass% Fe)/(mass% FeS)] peak is the mass ratio of Fe/FeS to obtain the maximum Zn removal rate (=3/7). 231By substituting $a_{\text{FeS}} = 0$ in Eq. (8) and $W_{\text{FeS}} = 0$ in Eq. (12) for the Fe particles alone, and $k_{\text{Fe-FeS}} = 0$ in 232Eq. (9) for FeS particles alone, $k_{\text{Fe}}=8.77 \times 10^{-6}$ m/h and $k_{\text{FeS}}=1.26 \times 10^{-5}$ m/h were obtained from the batch 233test data, respectively. The $k_{\text{Fe-FeS}}$ values were calculated from Eqs. (9)-(12) by using these k_{Fe} and k_{FeS} .

234	The relationship between $k_{\text{Fe-FeS}}$ and mass ratio of Fe/FeS is shown in Fig. 9. The average $k_{\text{Fe-FeS}}$ value of
235	Fe/FeS=7/3, 5/5 and 3/7 became 1.25x10 ⁻⁵ m/h. Compared between k_{Fe} , $k_{\text{Fe-FeS}}$ and k_{FeS} values, the anode-
236	cathode reaction rate between Fe and FeS particles was almost same as the sulfurization of FeS, and
237	slightly larger than the anode-cathode reaction rate within Fe particles. The magnitude of average $k_{\text{Fe-FeS}}$
238	$(=1.25 \times 10^{-5} \text{ m/h})$ for Zn removal in this study was 4.8 times as large as that for TCE dechlorination
239	(Demiya et al. 2018). The effects of the operation parameters such as Zn concentration, particle diameters
240	of Fe and FeS, respectively, and mass ratio of Fe/FeS on the Zn removal rate are predictable by using the
241	above rate constant values of the batch test.
242	These k_i (i=Fe-FeS, Fe, FeS) values were also applicable to the reaction rate of column tests,
243	however, the overall Zn removal rate decreases with time due to laminar flow with very slow velocity
244	which makes it difficult to peel the adsorbent such as ZnFe ₂ O ₄ and ZnS on the FeS and Fe particles. The
245	Zn removal reaction model for the column test is needed to consider the peeling factors as well.
246	
247	4. Conclusions
248	Zn removal from a solution by Fe, Fe/FeS and FeS particles was investigated in batch and column
249	tests. Compared with simple Fe or FeS particles, the Zn removal rate by physically-mixed particles of
250	3Fe/7FeS (mass ratio of Fe/FeS = $3/7$) was enhanced due to a local cell reaction between the Fe and FeS.
251	The electrons caused by Fe corrosion moved to the FeS surface and reduced the dissolved oxygen in the

- solution. Zn^{2+} , Fe^{2+} and OH^{-} ions in the solution were then coprecipitated on the particle surface as
- 253 ZnFe₂(OH)₆ and oxidized to ZnFe₂O₄. Moreover, Zn²⁺ was sulfurized as ZnS by both the FeS of the
- 254 Fe/FeS mixture and the simple FeS particles. In this study, the Zn removal rate increased with increasing
- 255 pH in the range of pH 3 to 7.
- 256
- 257

- 258 References
- Adeli, M., Yamini, Y., Faraji, M., (2017). Removal of copper, nickel and zinc by sodium dodecyl sulphate
 coated magnetite nanoparticles from water and wastewater samples, *Arabian Journal of Chemistry*,
- 261 10, S514-S521.
- Arao, T., Ishikawa S., Murakami M., Abe K., Maejima Y., Makino T., (2010). Heavy metal contamination
- 263 of agricultural soil and countermeasures in Japan. *Paddy and Water Environment*, 8, 247-257.
- 264 Bhattacharya, A.K., Mandal, S.N., Das, S.K., (2006). Adsorption of Zn(II) from aqueous solution by using
- different adsorbents. *Chemical Engineering Journal*, 123, 43–51(2006).
- 266 Cundy, A. B., Hopkinson, L., Whitby, R. L. D., (2008). Use of iron-based technologies in contaminated
- 267 land and groundwater remediation: a review. *Science of The Total Environment*, 400, 42-51.
- 268 Dan'azumi, S., Bichi, M. H., (2010). Industrial pollution and heavy metals profile of Challawa river in
- 269 Kano, Nigeria. Journal of Applied Sciences and Environmental Sanitation, 5, 56-62.
- 270 Demiya, M., Uddin, M. A., Kato, Y., (2018). Enhancement in trichloroethylene dechlorination by mixed
- 271 particles of iron-iron disulfide or iron-iron sulfide. Journal of Environmental Chemical Engineering,
- **272** 6, 1020-1026.
- 273 Dries, J., Bastiaens, L., Springael D., Kuypers, S., Agathos S. P., Diels, L., (2005). Effect of humic acids
- 274 on heavy metal removal by zero-valent iron in batch and continuous flow column systems. Water
- 275 *Research*, 39, 3531-3540.
- Fosmire, G.J., (1990). Zinc toxicity, The American Journal of Clinical Nutrition, 51, 225–227.

277 Fu, F., Dionysiou, D. D., Liu H., (2014). The use of zero-valent iron for groundwater remediation and

278 wastewater treatment: a review. Journal of Hazardous Materials, 267, 1994-205.

- 279 Gong, Y., Gai, L., Tang, J., Fu, J., Wang, Q., Zeng, E. Y., (2017). Reduction of Cr(VI) in simulated g
- groundwater by FeS-coated iron magnetic nanoparticles. *Science of the Total Environment*, 595, 743751.
- Hashim, M. A., Mukhopadhyay, S., Sahu, J. N., Sengupta, B., (2011). Remediation technologies for heavy
- 283 metal contaminated groundwater. Journal of Environmental Management, 92, 2355-2388.
- Inamoto, J., (2006). Waste water treatment for plating. *Journal of the Surface Finishing Society of Japan*,
 57, 889-894
- Inglezakis, V. J., Loizidou, M. D., Grigoropoulou H. P., (2003). Ion exchange of Pb²⁺, Cu²⁺, Fe³⁺, and Cr³⁺
- 287 on natural clinoptilolite: selectivity determination and influence of acidity on metal uptake. *Journal*
- 288 *of Colloid Science*, 261, 49-54.
- 289 Iwasaki, Y., Kagaya, T., Miyamoto, K., Matsuda, H., (2009). Effects of heavy metals on riverine benthic
- 290 macroinvertebrate assemblages with reference to potential food availability for drift-feeding fishes,
- 291 Environmental Toxicology and Chemistry, 28, 354–363.
- 292 Katsou, E., Malamis, S., Haralambous, K. J., (2011). Industrial wastewater pre-treatment for heavy metal
- reduction by employing a sorbent-assisted ultrafiltration system. Chemosphere, 82, 557-564.
- Kim, E.-J., Kim, J.-H., Azad, A-M., Chang, Y.-S., (2011). Facile synthesis and characterization of Fe/FeS

nanoparticles for environmental applications. ACS Applied Materials & Interfaces, 3, 1457-1462.

- Kim, E.-J., Kim, J.-H., Chang, Y.-S., Turcio-Ortega, D., Trantnyek, P.G., (2014). Effects of metal ions on
- 297 the reactivity and corrosion electrochemistry of Fe/FeS nanoparticles. *Environmental Science &*
- 298 Technology, 48, 4002-4011.
- 299 Kim, E.-J., Murugesan, K., Kim, J.-H., Tratnyek, P. G., Chang, Y.-S., (2013). Remediation of
- 300 trichloroethylene by FeS-coated iron nanoparticles in simulated and real groundwater: effects of

301 water chemistry. *Industrial & Engineering Chemistry Research*, 52, 9343-9350.

- 302 Kirkelund, G. M., Ottosen, L. M., Villumsen, A., (2010). Investigation of Cu, Pb and Zn partitioning by
- 303 sequential extraction in harbor sediments after electrodialytic remediation. Chemosphere, 79, 997-
- 304 1002.
- Kishimoto, N., Narazaki, Y., Takemoto, K., (2018). Reusability of zero-valent iron particles for zinc ion
 separation. *Separation and Purification Technology*, 193, 139–146.
- 307 Kishimoto, N., Iwano S., Narazaki Y., (2011). Mechanistic consideration of zinc ion removal by zero-valent
- 308 iron. Water, Air, and Soil Pollution, 221, 183-189.
- 309 Kurniawan, T.A., Chan, G.Y.S., Lo, W.H., Babel, S., (2006). Physico-chemical treatment techniques for
- 310 wastewater laden with heavy metals. *Chemical Engineering Journal*, 118, 83–98.
- 311 Kwon, J-S., Yun, S-T., Kim, S-O., Mayer B., Hutcheon I., (2005). Sorption of Zn(II) in aqueous solutions
- 312 by scoria. *Chemosphere*, 60, 1416-1426.

- 313 Lefevre, E., Bossa, N., Wiesner, M. R., Gunsch, C. K., (2016). A review of environmental implications of
- 314 in situ remediation by nanoscale zero valent iron (nZVI): behavior, transport and impacts on
- 315 microbial communities. *Science of The Total Environment*, 565, 889-901.
- Lu, S., Gibb, S. W., Cochrane, E., (2007). Effective removal of zinc ions from aqueous solutions using crab
- 317 carapace biosorbent. Journal of Hazardous Materials, 149, 208-217.
- 318 Min, X., Li, Y., Ke, Y., Shi, M., Chai, L., Xue, K., (2017). Fe-FeS₂ adsorbent prepared with iron powder
- and pyrite by facile ball milling and its application for arsenic removal. *Water Science & Technology*,
- 320 76, 192-200.
- 321 Ministry of the Environment, Government of Japan, (2006). <u>https://www.env.go.jp/hourei/05/000001.html</u>
- 322 Momodu, M.A., Anyakora, C.A., (2010), Heavy metal contamination of ground water: the surulere case
- 323 study. Research Journal Environmental and Earth Sciences, 2, 39-43.
- 324 Nakamaru, H., Ono, T., Kato, Y., Ogura, K., (2002). Effect of the microstructure of an iron powder on the
- 325 reactivity with trichloroethylene. ACS Division of Environmental chemistry, 42. 555-559.
- 326 Nakamaru, H., Ono, T., Kato, Y., Ogura, K., (2006). Properties of sulfur-contained iron powder suitable for
- 327 degradation of chlorinated organic compounds. *Nihon Kinzoku Gakkai Shi*, 70, 809-815.
- 328 Noubactep, C., (2010). Elemental metals for environmental remediation: learning from cementation process.
- 329 Journal of Hazardous Materials, 181, 1170-1174.
- 330 Oh, B.-T., Lee, J.-Y., Yoon, J., (2007). Removal of contaminants in leachate from landfill by waste steel

- Ono, T., Nakamaru, H., Kato, Y., Ogura K., (2005). Iron powder for remediation of contaminated soil, *JFE Giho*, 7, 29-33.
- 334 Rangsivek, R., Jekel, M. R., (2005) Removal of dissolved metals by zero-valent iron (ZVI): Kinetics,
- equilibria, processes and implications for stormwater runoff treatment. *Water Research*, 39, 41534163.
- 337 Shokes, T. E., Moller, G., (1999) Removal of dissolved heavy metals from acid rock drainage using iron
- 338 metal. Environmental Science and Technology, 33, 282-287.
- 339 Shiba, M., Uddin, M. A., Kato, Y., Ono, T., (2014). Degradation of chlorinated organic compounds by
- 340 mixed particles of iron/iron sulfide or iron/disulfide. *Material Transactions*, 55, 708-712.
- 341 Su, Y., Adeleye, A. S., Keller, A. A., Huang, Y., Dai, C., Zhou, X., Zhang, Y., (2015). Magnetic sulfide-
- 342 modified nanoscale zerovalent iron (S-nZVI) for dissolved metal ion removal. *Water Research*, 74,
- 343 47-57.
- 344 Tokumura, M., Kawase, Y., (2013). Teppun (ZVI) wo motiita mizusyori gijyutu (Water treatment
- 345 technology by zero-valent iron (ZVI)). Yosui-toHaisui, 55, 574-581.
- 346 Tosco, T., Papini, M. P., Viggi, C. C., Sethi R., (2014). Nanoscale zerovalent iron particles for groundwater
- 347 remediation: a review. *Journal of Cleaner Production*, 77, 10-21.

349	Figures	and	Table	captions
~ - ~				

- 351 Fig. 1 Schematic diagram of column equipment
- 352 Fig. 2 Effect of Fe/FeS mass ratio on Zn and Fe concentrations (batch test, pH=5.6)
- 353 Fig. 3 Comparison of temporal change in Zn removal rate and Fe and S concentrations between iron-based
- 354 samples (column test, pH=3)
- 355 Fig. 4 Comparison of temporal change in Zn removal rate and Fe and S concentrations between iron-based
- 356 samples (column test, pH=5.6)
- 357 Fig. 5 Comparison of temporal change in Zn removal rate and Fe and S concentrations between iron-based
- 358 samples (column test, pH=7)
- 359 Fig. 6 X-ray diffraction patterns of 3Fe/7FeS, FeS and Fe samples before/after column test (pH=5.6).
- 360 Fig. 7 X-ray diffraction patterns of 3Fe/7FeS, FeS and Fe samples after column test (pH=3, 7).
- 361 Fig. 8 Schematic diagram of Zn removal sites of Fe/FeS particles.
- 362 Fig. 9 Relationship between rate constant of Zn removal by coprecipitation and mass ratio of Fe/FeS.
- 363
- 364 Table 1 Particle density and specific surface area of Fe and FeS
- 365

Fig. 1 Schematic diagram of column equipment

Fig. 2 Effect of Fe/FeS mass ratio on Zn and Fe concentrations (batch test, pH=5.6)

Fig. 3 Comparison of temporal change in Zn removal rate, and Fe and S concentrations between iron-based samples (column test, pH=3)

397 Fig. 4 Comparison of temporal change in Zn removal rate, and Fe and S concentrations between iron-

based samples (column test, pH=5.6)

based samples (column test, pH=7)

413 Fig. 6 X-ray diffraction patterns of 3Fe/7FeS, FeS and Fe samples before/after column test (pH=5.6).

419 Fig. 7 X-ray diffraction patterns of 3Fe/7FeS, FeS and Fe samples after column test (pH=3, 7).

426	Fig. 8 Schematic diagram of Zn removal sites of Fe/FeS particles.

435 Fig. 9 Relationship between rate constant of Zn removal by coprecipitation and mass ratio of Fe/FeS.

