ON GENERATING ELEMENTS OF GALOIS
EXTENSIONS OF DIVISION RINGS IV

TakKASHI NAGAHARA

Let a division ring K be Galois over L. The aim of this paper is to
investigate under which conditions all the intermediate subrings finite
over L are simple over L. In what follows, our consideration will proceed
in principle without assuming [K: L] << oo. And our results for the
special case [ K : L] << o= will give several precisions of those cited in the
previous papers [3], [4], [5], and [6]. Finally, as to notations and ter-
minologies used here, we follow the previous ones mentioned just now.

1. Preliminaries.

Throughout the paper, K will be a division ring, and L a division
subring of K. Weset V=V, (L)and H = V,(V). Further, C, Z and C,
will be the centers of K, L and V respectively.

Now let D be an intermediate subring of K/L, and I be the L,-K.-
module consisting of all the (module) homomorphisms of D into K. Then
we set N = {m e W ml, =Lm for all /, € L,}. Under these conven-
tions, there holds the next lemma. The proof proceeds as in the proof of
[6 ; Lemma 1], and it may be left to readers.

Lemma 1. For any subset Sof N, € is linearly independent over
V., if and only if it is linearly independent over K,.

Corollary 1. Let W, Y be arbitrary K,-submodule of W and V,-
submodule of W respectively. Then :

1) WMeNN: V1. W6 K.

(2) [YH: V), = [96K,: K], and WHK, NN = N,

Corollary 2. Let K be Galois over L. and & be a galois group of

K/L, that is, the fixring of & is L. If &, means the restriction of &
on D then :

(1) [6511‘/1: Vr]r = [(SDKr: Kr]r a”d ®I)Vr = ®DK-: n%-
(2) If [D: L], <<co then [&,V,.: V,], = [D:L].
Proof. If [D: L], <<oo, then G,K. =N = {me& M |ml, = Lm

for all [, € L,} by Jacobson’s density theorem, and so [V : K.], =[D:
L],. Hence (2) is an easy consequence of (1).

Lemma 2. Let K be Galois and locally finite over L. If [V Cl<<
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oo, then K is locally Galois over LV,

Proof. Our lemma is still valid for simple rings [8, Lemma 3 (iii)].
However, for the sake of convenience, we shall give here the proof. Let
F be an arbitrary finite subset of K, and D = L[F]. As[D: L], <<oo

Corollary 1 (2) yields &, V, = 6,,V, + -+ + 7, V, for some s, € &, where
® = &(K/L). Now we set D, = H[D, Daqy, -, Dag,, V], then it is clear
that H® c H, V3 CV and Do® C D(ayp V, + ++ + 6.0 V,) for each 1.

Hence D, is ®@-normal. Noting that HD G, [V: Gl << oo, [D:L];<<oo
and that [Da;: L], <<oo for all 7, we obtain [D,: H], < and [V, (L):
Vo,(D))] < o0 by [9, Lemma 2 and Theorem 1], whence D,/L is locally
Galois by [7, Theorem 1]. Since D, D D, we have proved our assertion.

Lemma 3. Let x € L be transcendental over Z, and a submodule
Mof K be (nglzt) fzmte over V. Then there exists some positive integer
k such that Z Myt = Z‘,QMy for y = x*,

Proaf. Let {d,_, -+, d,} be a (linearly independent) right V-basis
of M. Recalling L[V] = L X ,V, it is clear that {x’} is linearly inde-
pendent over V. And so, for each positive integer 7, the d1v1310n sub-
ring F, generated by V[x"] is a quotient division ring of V[x ‘1 which
may be considered as a polynomial domain. Now we set #(7)= [g]} d;F;: F.].
for each positive integer 7. Since #() < »n, there exists some ¢ with
Max 7{12(nz) = n(g). In what follows, we shall prove n(g) =#. Suppose,

on the contrary, n(g) = m<<n. Then we may, and shall, assume that {d;,
, d,,} is a linearly independent F,basis of X‘. d;F,: L d;F, = Eq-\d Fo.

i=1

We set here dy = Ld ;Jf; with f; € F,. where, w1tnout loss of generality,

we mey assume f; % 0. And so, we set f; = (Z v (Zy v,"), where
y=x" " and vy's. v;"s are elements in V. If ¢ is an mteger w1th 2 >Max(n;, #,)

then F,.;,CF, and the maximality of s show that L d;Fy,., = i@d;FW

3

Thus, we have d,. = Zdjfj with some f/ & F,.. Then fi=

£ yields 2 Yo, = (Z yu) f). As is readily verified, {1, y, -, y- -1} s
linearly mdependent over the quotient division ring V{»* ) of V[y* ] and
so we have fi=fi'=v,"v,’ € V for each non-zero v,. Similarly, we can prove
that each f, is contained in V. But this contradicts the fact that {d;, ---,
d.} is linearly independent over V. We have proved therefore n(g) = n.

1) See [7, Definition].
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Accordingly, noting that {(;’c°q)s s=0,1, } (C F,) is linearly inde-
pendent over V, we obtain Z L@a’ YV = 2,(5M(x"“)

<iis

Proposition 1. Let [K: L], <<ce, [L: Z]<<oo, and let C be finite
and separable over LM C. If L Z C then K/L is simple.

Proof. By [1, Theorem 7.9.1], we have [K: C] <<oco. Let M be
a maximal subfield of K which is separable over C. Then M is finite
and separable over L N\ C, and so M = (LN C) [d] for some d € M.
Further, M containing only a finite number of subfields containing C,
there exists only a finite number of division subrings containing M=
V«(M). Now, the rest of the proof proceeds just as in the latter part of
the proof of [5, Lemma 7], and the details may be left to readers.

The following propositions are due to prof. M. Moriya who kindly
permitted us to state them here.

Proposition 2. Let D be a division subring of K, and S a subset
of D such that [K: V,(S)]: < oo. Then [K: Vie(8), =I[D: Vu(9)]..

Proof. If either S is empty or S contains only the zero element
then our assertion is clear. Therefore we shall assume that S contains at
most one non-zero element. Let {&, -+, k,} be an independent V,(S)-
basis of Vi(S). If {k;; i=1, 2, ---, n} is linearly dependent over D, then,
without loss of generality, we may assume {k;, -« , k,} (p <n) is a mi-
nimal subset of {k, -+, k,} which is linearly dependent over D. Accord-

ingly, Z. k.d, = 0 for some (non-zero) d;€ D (i =1, -+, p), where we
may set d, = 1. Then for each non-zero s € S, we have E kisdis™V =0,
whence together with }_. kid,= 0 it follows Z k(d, — sdts“‘) = 0, that

is, di = sd;s”'(i = 2, ---, p). Thus each d, is contained in V,(S) but
this is a contradiction. We have proved therefore [K: D], = [V(S):
VD(S)Jz- Noting that [K: D], [D: VD(S)]Z =[K: VK(S)]l [VK(S): VD(S)]h
our assertion is evident.

Proposition 3. Let [K:L], <<oo. Then:

(1) Ifvis an element of Vi(Z), then there exists some k€ K such
that L(k] D v and K = V(Z) [k].

(2) If V(Z) is simple over L then K is simple over L.

Proof. By the light of Proposition 2, (1) and (2) will be proved just
as in the proofs of [5, Lemma 6] and [5, Theorem 1] respectively.

2. Locally simple Galois extensions.
Throughout this section, K will be Galois and locally finite over L.
& the total Galois group of K/L, and D will denote an intermediate divi-
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sion subring. Further, we shall use the following conventions. Let [D: L],
< oo, Let m be the minimal number of elements in D such that D is
obtained by ring adjunction of these m elements to L. Then m will be
denoted by n(D/L). In particular, if »(D/L) = 1 for all D with [D: L],
<< oo, then we say that K/L is locally simple. Further, we set n,= Max
n(W]Z), where W runs over all the subrings of V with [W: Z] < co.

Lemma 4. Let M be a right &V, submodule of K, {x,, -, x} a
Sfinite subset of L such that 12:]] Mx, = é,:@Mxt, and let my, -+, m; be
a finite subset of M. Then :

(1) If s<t, then Limy, +++, ms] = L[E ny xq).

2) If [Limy, ==, ms, k] : Lli=n and s(n +1)<t, then there
exists a subset{xy, -+, 2y} of {xfsuch that L{my, -+, ms, k] = L[g 3 Xy,
+k].

Proof. (1) Since L' = L[}f] mixi] C L(my, -+, m;] evidently, we
shall prove only the converse inél?:sion. For each ¢« € &(K/L'), we have
Es‘. mix, = (Zs} nmx)” = Zs‘, m? x;, whence m; = m{{({ =1, -+, s). Hence [9,
Theorem 9] shows L' D {m,, " M) .

(2) Weset L, = L[Z mx;s o+ k) (7=0, 1, , n). Now suppose
that our assertion is false, and so that, for each j, we can choose such
an m, from ms that m & L, Accordingly, by [9, Theorem "] there
exists some ¢;E ®(K/L;) with ms = m,. Then Z‘. M Xt k= (E o

+ k)= :2, me? x50 + k7 implies Z:, (my? — my) %554 = k(1, — a;) for each
7. Since [L(k): L], =< n, we obtain, by Corollary 2 (2), (jé]) 1, — 6))ezyse
= 0 for not all zero v; & V. Thus we readily see that 0 = 2_,; {,};j (my?
— M) Xy Uy = Z Eﬁ (mi? — my) ¢; %5.1. But the fact that (m5 —my)v,

t
€ M is nonzero for non-zero v; contradicts E Mx; = 2% Mx..
i=m]

t=1

Theorem 1. [f [L:Z] = o< then K/L is locally simple.

Proof. Let D be an intermediate subring with [D : L],=». We shall
distinguish two cases :

Case 1. L is algebraic over Z. Since L is not of bounded degree by
[1, Theorem 7. 11. 1], there exits some intermediate subfield E of L/Z
such that n(n ~ 1)< [E: Z]<<oo. We set here Ly =V, (E), K¢ = Vs(E).
Then clearly ¢t = [L : Ly = [E : Z], and K is a right &V,-module. If
{x;, -, x} is a linearly independent left L,-basis of L, then there holds
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g:] K/x, = ?_3@ Ko'x;. For, if not, there hold among {x, ---, x.} non-
trivial relations with coefﬁc1ents in K,'. Therefore, we may assume
without loss generality that x; + Z, kix; = 0 is such a non-trivial relation
of the shortest length ¢ where some k:, say k,, does not belong to L.
Since the restriction of every automorphism in & on K, is an automor-
phism of K,' the restriction of & on K' has L, as the fixring in K,. Acc-
ordingly, there is some ¢ E® with k] 5= k&, so that we obtain a non-trivial
relation of the length less than ¢ : é (f; — kf) x. = 0, but this is a con-

tradiction. Hence i Koy'x; = Ze Ky'x,. We set here K, =V(Z), D, =
Dﬂ Ko =V,(Z), and D/ = Dﬂ K,/ =V,(E). Then we shall prove s =

'iLoli = [Do: LY < n(< t/(n +1)) and D, = z']:@D,,'x‘. Noting that
D ODy= Vy(Z)DL and [D : L], <o, we readily see that the center of
D, coincides with Z[C*], where C* is the center of D, further that D/=
VDO(E[C*]). Noting that L[ V] =L % .V, we obtain [D,: D,/], = [E[C¥*]:
Z[C*¥]1=[EX,Z[C*]: Z[C*]]=[E:Z]=[L :L,). And so, [D,: Dy]:
[Do' : Lyl = [Do : L), [L : Ly]; implies s=[D,': :LO]Z =[D,: L}, = [D:L]
=pn. Further [Dy: D], = [L: L,) =t and E@Do’xz C D, show that

}_,@Do x. Let {a, +,a} be a linearly independent L,-basis of

DO’( C Ko’) Then Dy= L[ay, *** , as] eventually. On the other hand, D

is Galois and finite over Do=V,(Z) and V(Do) = Vu(Va(Z)) C Vi(Z) =

D,. Hence, by [2, Satz 14], we have D = Dy[k] = L[a,, -+, a,; k] for
some k. Now our assertion is a direct consequence of Lemma 4 (2).

Case 2. L is not algebraic over Z. Let x € L be transcendental over

Z, and {ay, +- 5 a,} a linearly independent L-basic of D. We consider the

module M= Z, aSV, = Z a®,V,. Then, [G,V,:V,], being finite by

Corollary 2 (2) we have [M V], << o0, Hence, by Lemma 3, there holds

Z} My = E@My, where y = z* for some positive integer k. As evi-
i=0 im0

dently M D {a,, -+, a.;, we have D = L[a,, -+, a,] = L[‘é1 a: ¥'] by
Lemma 4 (1).

Theorem 2. Let no<< oo, Then:

(1) #(D/L) = n, for each D with [D: L], << oo,

(2) K/L islocally simple if and only if [L : Z] = n.

Proof. Since, in case [L: Z] = oo, K/L is locally simple by
Theorem 1, we shall restrict our attention to the case where [L : Z] < oo,
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Then, by [1, Theorem 7. 9. 1], D is also finite over its center C*, so
that D is (finite and) inner Galois over L[C*], that is, V,(V,(L)) =
L[C*). Noting that L{[V] =L Xz;V and VD V,(L) D Z[C*], we can
readily see that V,(L[V,(L)]) = L[C*] N\ V(L) = Z[C*], whence we
have V,(Z) =L[V,(L)] =L X ;V,(L). Now let V,(L)= Z[v, -, v;],
where s = n(Vy(L)/Z). Then, of course, s < n, and V,(Z) = L{v;, -+, vs].
By Proposition 3 (1), there exists some d € D such that D = V,(Z) [d]

and L[d] ® v».. Hence L[d, v;, -+, 0] = L[d][v., -+, v] = D,
which proves our assertion (1) #(D/L) <s <, Next we shall prove (2).
Let [L: Z] =t and {x), -, x} a linearly independent Z-basis of L.

Then, by our assumption, there exists some W with n(W/Z) =n,. If K/L is
locally simple then LxX;W=L[d] with some dE L X, W(CL X,V).

Accordingly, d = 2 wqx; for some w; € W, whence we obtain L[w;, «, w,]

= L[d]. Hcnce W Z[wsy, -+, w:] which means #= #,. Conversely, let
t == n, Since, as is remarked above, Vp(Z) =L X ;V,(L)YC L X,V and
Vo(L) = Z[vy, -+, v5] with s < ¢, Lemma 4 (1) proves Vy(Z) = L{v,, -+, v]

L[>} vx,]. Consequently, by Proposition 3 (2), D/L is simple.
i=1

Corollary 3. If V is commutative, then K/L is locally simple.

Proof. Since the commutative field V is (algebraic and) separable
over Z, ny=1 evidently. Consequently, our asser tion is clear by Theorem
2 (2).

Cotollary 4. Let K be of characteristic zero. Then K[/L is locally
simple if and only if either L 2 Z or V is commutative.

Proof. Evidently, each intermeditate subring Wof V/Z with [W: Z]
< o is a separable algebra over Z. Andso, n(W/Z)=1 or 2 by [10,
Theorem 2]. Now, our assertion is clear by Theorem 2 (2) and corollary 3.

Remark. If [K:L] <<, then n,<< oo evidently. And so, Theorem
2 is applicable to the case where [K: L] <<oo.

Corollary 5. Let K be of characteristic zero, and finite over L.
Then, for any intermediate subriug D of K/L, D/L is simple if and
only if either L Z V.,(D) or D is commutalive.

Proof. Since the only if part is evident, we shall prove the if part.
If either D is commutative or L 2 Z then our assertion is clear by
Corollary 4. And so, we shall restrict our attention to the case where L=
Z and L Z V,(D). Then K is finite over L N\ C? and so V(D) is finite
(and separable) over L NV,(D) (D V.(K) = LM C). Hence, our assertion
is a direct consequence of Proposition 1.

2) Cf. (6, Footnote 6].
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Lemma 6. If LC C and [K:Cl<<oo, then ng < [K: C] < oo,

Proof. Let D be an arbitrary subring with [D : L] <<eo and {d;=1,
-+, dw} a linearly independent C N D-basis of D. Then {d,, «--, d.} is
linearly independent over C. For, if not, we have a non-trivial relation

of the shortest length : d, = c.d,, + ‘2 cid,, where c, € C, ¢, & C\D.

Since J(&(K/D)c, C)=CND and C°= C for each e E®&(K/D), there exists
q q

o€ &(K/D) with ¢f 4 c.. Then c¢.d,, + > cde, = c3de, + 3] cfd,, gives a
= : i=3

i=u

contradiction 0=(c.—c?) + _?;}'(ci—cf)d%. Hence m < [K: C] << oo, And
then, noting that C M\ D is separable over L, it will be easily seen that
nDIL)Em < [K:C]l < oo,

Now we shall conclude our study with the follwoing

Theorem 3. Let [V: C] < co, and let D be an arbitrary subring
with [D : L] < oo,

1) e [V:C) < oo,

(2) K/L islocally simple if and only if [L : Z) = n,.

3) #(D/L) < n,.

(4) Every D can be embeded in some subring D* that is simple over
L if and only if either L Z C or K is commutative.

(5) D is embedded in LIk, vkv™') for some k& K and v € V.

Proof. Evidently, V is Galois and locally finite over Z (and V,(Z)
=1V), and so (1) is a consequence of Lemma 6. Further (2), (3) are con-
tained in Theorem 2. Finally, K being locally Galois over by Lemma 2,
(4), (5) are consequences of [6, Theorem 3] and [3, Theorem 1] respec-
tively.
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Added in Proof. Let K be Galois and not always locally finite over
L. Then we obtain the following that contains Theorem 1.

Theorem 1*. [f [L :Z] = oo then D/L is simple for each subring
D with [D : L], < oo, thatis, K[/L is locally simple.

To prove this, we shall require the following chain of lemmas, the
first of which is the next whose proof will be obtained in the similar way
as in that of [9, Theorem 2].

Lemma 7. Let D be an intermediate subring of K/L with [D:L],
< oo, If Dyis an intermediate subring of D/L then J(&(K/D.), KYMND
= D.

By making use of Lemma 7, we can prove the next whose proof is
analogous to that of Lemma 4. ,

Lemma 4%*. Let M be a,rz'glzt @V{-submodule of K, {x,, -, 2} a
finite subset of L such that >} Mx, = > @Mx,, and let {my, -, m;} be a
finite subset of M.

Q) If s£t, and [L{m, - ,m,) : L], <<oco then L[my, +, n; =
L[ i WX ).

) If [Llmy, - ,m, k] : L], =n<<oo and s(n+1) <+, tlsz there
exists a subset {xy, -, ¥y} of {x} such that L{my, -, i, k] = L[ mixy,
+k].

In virtue of the validity of Lemma 7 and Lemma 4%, our proof of
Theorem 1* will proceed just as in that of Theorem 1.

Moreover, one will readily see that Theorem 2 can be modified cor-
responding to Theorem 1%, too.



