
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.4 APRIL 2015
807

LETTER Special Section on Information and Communication System Security—Against Cyberattacks—

Access Control to Prevent Malicious JavaScript Code Exploiting
Vulnerabilities of WebView in Android OS∗

Jing YU†, Nonmember and Toshihiro YAMAUCHI†a), Member

SUMMARY Android applications that using WebView can load and
display web pages. Interaction with web pages allows JavaScript code
within the web pages to access resources on the Android device by us-
ing the Java object, which is registered into WebView. If this WebView
feature were exploited by an attacker, JavaScript code could be used to
launch attacks, such as stealing from or tampering personal information
in the device. To address these threats, we propose an access control on
the security-sensitive APIs at the Java object level. The proposed access
control uses static analysis to identify these security-sensitive APIs, detects
threats at runtime, and notifies the user if threats are detected, thereby pre-
venting attacks from web pages.
key words: Android, WebView, static analysis, access control

1. Introduction

In the last several years, the Android [2] has become more
popular. Android provides rich libraries, such as OpenGL,
SQLite, WebKit, etc. In this paper, we focus on WebKit.
WebView [3], provided by WebKit, could be used to imple-
ment a simple browser function in an Android application
(hereafter, Android app), so that users can load web pages
in the Android app directly without using a browser. In ad-
dition to displaying web pages, WebView allows JavaScript
within web pages to invoke methods defined in the Android
apps. However, if the rich features of WebView are not used
properly, devices could become vulnerable to malicious at-
tacks [4], such as those that steal personal information or
tamper with data on the Android device.

Reference [5] has reported attacks using the vulnera-
bilities of WebView in Android, and these attacks fall into
two types: attacks from web pages to the Android OS and
attacks from Android apps to web pages. Reference [6] was
first to recognize the threat of JavaScript code that abuse An-
droid permissions, and the authors proposed a static analysis
method to estimate the potential threat of Android apps that
use WebView. However, no effective countermeasures were
discussed in existing works.

In this paper, to address the attacks using the vulner-
abilities of WebView from web pages, we propose an ac-
cess control on the security-sensitive APIs at the Java ob-
ject level. The Java object is an interface to the web pages

Manuscript received May 20, 2014.
Manuscript revised September 26, 2014.
Manuscript publicized December 4, 2014.
†The authors are with Graduate School of Natural Science and

Technology, Okayama University, Okayama-shi, 700–8530 Japan.
∗This paper is an extended version of the paper presented at

[1].
a) E-mail: yamauchi@cs.okayama-u.ac.jp

DOI: 10.1587/transinf.2014ICL0001

loaded in WebView. By using the Java object, JavaScript
code in the web pages can access the resources on the An-
droid device. To detect potential attacks that use the Java ob-
ject, we performed static analysis to determine the security-
sensitive APIs that could be invoked by the Java object, and
we ran a threat-detection process each time the Java object
is registered into WebView. If a threat is found, the user is
warned, and the user decides whether to allow the registra-
tion of the Java object or to disable it to prevent attacks from
web pages. Because the proposed method performs access
control at the Java object level, the user disables only the
Java object. The Android app could continue running with-
out enabling the suspicious Java object, and the user could
browse the web page in WebView safely.

2. Android OS

Dalvik is the virtual machine that runs Android apps on the
Android OS. Dalvik executable files are formatted as dex
(Dalvik Executable) files. An Android app written in Java is
compiled and converted to a dex file, which contains all the
source code of the Android app.

The permission mechanism performs access control on
the resources that Android apps can access. If permissions
are requested by an Android app, the user is prompted at
installation time. However, the installation continues, only
if the user grants all requested permissions. In addition, the
permissions cannot be changed after the Android app is in-
stalled.

3. WebView

3.1 What is WebView

WebView is a component provided by a browser engine
named WebKit. WebView provides basic browser function-
ality to load and display Web pages within Android apps
without switching to the default browser. More importantly,
the Android app can interact with JavaScript code embedded
in web pages by using the APIs described below provided in
WebView.

The setJavaScriptEnabled API enables web pages to
use JavaScript, which plays an important role in the interac-
tion. The addJavascriptInterface API registers the Java ob-
ject into WebView, so that the JavaScript code within web
pages could use the registered Java object to run methods
defined in the Java class. The loadUrl API loads a specific

Copyright c© 2015 The Institute of Electronics, Information and Communication Engineers



808
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.4 APRIL 2015

Fig. 1 Overview of Android application using WebView.

web page.

3.2 Problems with WebView and Attack Models

Figure 1 shows an overview of an Android app that uses
WebView. Path A and Path B are the two main interactions
between the Android app and web pages. Path A shows
that web pages loaded in WebView can invoke methods de-
fined in the Android by using registered Java objects. Path B
shows that by using the loadUrl API, an Android app can in-
voke JavaScript code within web pages or insert JavaScript
code into web pages.

Two attack models, which also have been discussed in
[5], should be considered. One model involves attacks from
web pages. After the Java object is registered into Web-
View, all web pages loaded in WebView can use the regis-
tered Java object, regardless of the origin of the web pages.
If WebView loads the malicious web pages, the JavaScript
code in those malicious web pages could launch an attack,
such as stealing or tampering with the personal information
in the Android device. Many attack examples that exploit
WebView were documented in [7].

The other model involves attacks from Android apps.
Malicious Android apps can inject malicious JavaScript
code into web pages to perform attacks. There are some
researches against JavaScript injection attacks as Web se-
curity. These researches can be applied to web server as
countermeasures of the JavaScript injection attacks. On the
other hand, attacks from web pages to Android device have
not really been studied. Therefore, in this paper, we propose
a method to address the attacks from web pages.

4. Proposed Method

4.1 Purpose and Concept

We define threats in this paper as stealing personal informa-
tion from the device and tampering and deleting personal

Fig. 2 Overview of proposed method.

information in the device. The threats are caused by calling
security-sensitive APIs as shown in Sect. 4.4 through mali-
cious JavaScript code. The security-sensitive APIs are de-
fined as getting personal information from the device, send-
ing information outside of the device, and tampering per-
sonal information of the device.

The purpose of the proposed method is to prevent ma-
licious JavaScript code from accessing security-sensitive
APIs through the Java object.

We know that the threat from JavaScript code stems
from the use of security-sensitive APIs. The user is
prompted to grant permissions requested by the Android app
at installation time. However, a user is not aware that these
permissions could be used by malicious JavaScript code in
a web page to invoke the security-sensitive APIs through
the Java object to attack. Therefore, we applied access con-
trol on the security-sensitive APIs at Java object level. If the
security-sensitive APIs are detected in methods that the Java
object could execute, we control this Java object.

One requirement for achieving this purpose is to be
able to identify whether a specific Java object needs to be
controlled. To achieve this requirement, the following two
challenges must be met. Challenge a) is to clarify what APIs
can be executed by the Java object. Challenge b) is to ad-
dress the security-sensitive APIs at Java object level.

The other requirement is to be able to manage the Java
object that needs to be controlled. To achieve this require-
ment, the following challenge must be met. Challenge c) is
to prompt the user to manage the potential threat that has
been addressed.

4.2 Design

Figure 2 is an overview of the proposed method, which
mainly consists of three components: the Static Analysis
Unit, the Threat Detection Unit, and the Alarm application.
As shown in Fig. 2, our method controls the Java object at
the framework layer. By intercepting the call to the add-
JavascriptInterface API from Android app, the information



LETTER
809

about the Java object is sent to the Threat Detection Unit.
Next, the Threat Detection Unit detects whether a poten-
tial threat exists in the Java object based on the API Class
Matching List (described in next subsection). If a threat is
detected, the Alarm application is called.

The Alarm application warns the user of the threat.
Then, the user replies to it to decide whether to disable the
Java object. In order to support the user in making a deci-
sion, the following information is displayed: name of An-
droid app, URL that WebView is supposed to load, name of
Java object that was determined to be a threat, and security-
sensitive API associated with the Java object The user can
press either the “Enable” or “Disable” button located be-
low the warning information to indicate whether to allow
the use of the Java object. In addition, by clicking the URL
displayed, the default browser will be invoked to load the
web page. As sandbox protection is implemented in gen-
eral browser, the Java object cannot be used to interact with
the Android app. Therefore, if the user is not certain of the
safety of the Java object, the user can use the default browser
to load the web page, instead of loading it in WebView.

The Alarm application forwards the user’s decision to
the Threat Detection Unit. The Threat Detection Unit for-
wards the decision to the addJavascriptInterface API. If the
user granted the use of the Java object, the Java object is reg-
istered into WebView as usual. Otherwise, the registration
is aborted.

4.3 Static Analysis Unit

To determine what APIs could be executed by Java objects,
we need to refer to the source code of the associated Java
class. However, the Android app is compiled and packaged
in the form of apk files, and we could not refer directly to
the source code of the Java class. We use dexdump, which is
a disassembly tool for Android, to convert the dex file into
assembly code on Android OS. By analyzing the assembly
code, we can determine what APIs were used. The purposes
of the static analysis are to create the API Class Matching
List and to get URL that WebView is supposed to load. In
order to achieve these purposes, the information of class de-
scriptor, APIs which can be executed by class, and argu-
ments of APIs are required for the static analysis. To make
the assembly code simple and easy to be analyzed, we re-
moved unnecessary features of dexdump excluding the three
information mentioned above to make it lighter, thereby re-
ducing the overhead of the static analysis.

Static analysis would need to be performed on every
Android app at installation time. The time spent on static
analysis could be perceived as part of the installation time,
so the user does not feel inconvenienced because the instal-
lation time is relatively long. The static analysis must be
done once on each Android app and again, if the Android
app is updated.

As shown in Fig. 2, the Static Analysis Unit consists
of the Disassemble Unit and the API Class Matching Unit.
The Static Analysis Unit gets the dex file from the apk file

Table 1 security-sensitive APIs.

getCellLocation getAccounts

getDeviceId getAuthToken

getNetworkOperator getPassword

getPhoneType getUserData

getSubscriberId peekAuthToken

getLine1Number removeAccount

getSimSerialNumber setPassword

getVoiceMailAlphaTag getName

getVoiceMailNumber getProfileConnectionState

sendDataMessage getProfileProxy

sendMultipartTextMessage getParams

sendTextMessage getUngzippedContent

getAllProviders getCertificate

getBestProvider clearHistory

getGpsStatus clearSearches

getLastKnownLocation getAllBookmarks

clearPassword getAllVisitedUrls

editProperties

of the Android app. Next, the Disassemble Unit converts
the dex format to assembly code by using dexdump. Then,
the API Class Matching Unit compares the assembly code
with the Security-Sensitive API List. If the assembly code
contains the the security-sensitive APIs, the Static Analysis
Unit stores the API information and the associated Java class
information in the API Class Matching List.

4.4 Security-Sensitive APIs

In our work, we investigate on API Level 15, and we de-
fine security-sensitive APIs as the APIs that communicates
with outside or that deal with personal information. Ta-
ble 1 shows the list of APIs that we defined to be security-
sensitive.

5. Evaluation

5.1 Experiment to Test the Operation of Proposed Method

We implemented the proposed method on Android 4.0.3.
We used an Android app named HelloWebView, which has
the functionality to obtain the phone number and the device
ID using JavaScript code embedded in the web page and us-
ing the Java object named Obj for JS.

The warning information is shown in Fig. 3. By
choosing “Disable”, the user could deny access to the get-
Line1Number API and the getDeviceID API through the
Java object by the proposed method.

It also confirmed that the implemented prototype of the
proposed method can detect the use of all security-sensitive
APIs described in Sect. 4.4 by other experiments. This re-
sults show the proposed method can detect the potential
threats as mentioned above.



810
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.4 APRIL 2015

Fig. 3 Example of warning information.

Table 2 Environment of host OS.

OS Windows 7 Home Premium

CPU Intel(R) Core(TM) i7-3517U 1.90GHz

Memory 8 GB

Virtualization Software VMware Player 4.0.4

Table 3 Environment of guest OS.

Distribution Ubuntu 10.04 LTS

Kernel Linux 2.6.32-44-generic

Number of virtual CPU 2

Memory 4 GB

5.2 Effectiveness of Modified Dexdump

We compared the unmodified and the modified dexdump.
The comparison details are shown in Table 4. We used
six free Android apps that downloaded from the “Recom-
mended Apps This Week” on Google Play on June 11, 2013.
The size of the assembly code generated by the modified
dexdump was significantly reduced by about 90%, com-
pared to the one generated by the unmodified dexdump.

5.3 Overhead of the Static Analysis Unit

We measured the processing time of the static analysis. The
environment we used are shown in Table 2 and Table 3. We
ran the guest OS using VMware Player 4.0.4 on the host
machine and then ran Android 4.0.3, which the proposed
method has been implemented, on the guest virtual machine.
We tested two representative Android apps using WebView:
HelloWebView, which is the smallest Android app that uses
WebView, and LivingSocial, which has been introduced in
[5] is the size of a typical Android app that uses WebView.

Table 4 Comparison between unmodified dexdump and modified dex-
dump.

Android App A B C D

The Weather Channel 4,944 KB 74,630 KB 5,501 KB 92.63%

Vyclone-Film together 4,659 KB 71,885 KB 6,917 KB 90.38%

Contacts+ 3,131 KB 53,704 KB 5,222 KB 90.28%

Instructables 2,628 KB 41,272 KB 4,014 KB 90.27%

Sports Republic 3,531 KB 48,396 KB 3,348 KB 93.08%

Appy Gamer 2,496 KB 35,776 KB 3,081 KB 91.39%

Note: Each column shows the size of the dex file (A), the size of the
assembly code generated by the unmodified dexdump (B), the size of
the assembly code generated by the modified dexdump (C), and the rate
of reduction (D), respectively.

Table 5 Processing times of static analysis.

Android App Size of Dex File C Average of

Processing Time

HelloWebView 5.6 KB 4 KB 203 ms

LivingSocial 781.8 KB 1,050 KB 8,781 ms

Note: Column C shows the size of the assembly code generated by the
modified dexdump.

Processing times of static analysis are shown in Ta-
ble 5. The processing times were measured from the start of
converting the dex format to assembly code by using dex-
dump until the end of the creation of API Class Matching
List. As shown in Table 5, the processing time of HelloWe-
bView is 203 ms, which is very short. On the other hand,
the processing time of LivingSocial is about 9 s. However,
because the static analysis is performed only once at instal-
lation and the installation requires relatively long time, 9 s
may not be a serious inconvenience.

6. Related Works

Nowadays, JavaScript has been widely used and many
works have been done to enhance the security in web
browsers. Reference [8] identified the fundamental lack of
fine-grained JavaScript access control mechanisms in mod-
ern web browsers and proposed a method that enables fine-
grained access control in JavaScript contexts. Reference [9]
presented a client-side advice implementation called CON-
SCRIPT, which allows the hosting page to express fine-
grained application-specific security policies at runtime.

On the other hand, the researches on Android secu-
rity are also booming. Reference [10] adopted bytecode
rewriting to implement fine-grained access control at the
API level. Reference [11] proposed DroidTrack, a method
for tracking the diffusion of personal information and pre-
venting its leakage on Android device.

Vulnerabilities caused by the use of WebView have at-
tracted the attention of the research community [4], [7]. Ref-
erence [5] reported that WebView is used in 86% of the
top 20 most downloaded Android apps in 10 different cat-
egories. Further, two attack models were discussed. Refer-



LETTER
811

ence [6] proposed a static analysis method, to estimate the
threat while using WebView. However, the threat is evalu-
ated at the Android app level, and the user is only notified
whether the Android app is dangerous or not. Therefore,
the user can do nothing, except to keep the dangerous An-
droid app unused. On the other hand, our proposed method
can use Android apps with disabling suspicious Java ob-
ject. As results, Android apps can run safely without calling
security-sensitive APIs via JavaScript. Thus, users do not
need to give up to use the Android apps.

7. Conclusions

In this paper, we described the attacks to Android devices
from web pages caused by exploiting the vulnerabilities of
WebView. To resolve these attacks, we proposed an ac-
cess control on the security-sensitive APIs at the Java ob-
ject level. The threat detection is performed when the add-
JavascriptInterface API is invoked to register the Java object
into WebView, and the user is notified if a threat is detected.
By disabling the malicious Java object, attacks from web
pages could be prevented.

As a future work, we will evaluate the proposed method
by using various Android apps and study a method of detect-
ing actual threats from potential threats.

References

[1] J. Yu and T. Yamauchi, “Access control to prevent attacks exploiting
vulnerabilities of WebView in Android OS,” Proc. 2013 IEEE Inter-
national Conference on High Performance Computing and Commu-
nications (HPCC-2013) and 2013 IEEE International Conference on

Embedded and Ubiquitous Computing (EUC-2013), pp.1628–1633,
2013.

[2] Android, the world’s most popular mobile platform - Android De-
velopers. [Online]. Available: http://developer.android.com/about/
index.html

[3] WebView - Android Developers. [Online]. Available:
http://developer.android.com/reference/android/webkit/
WebView.html

[4] Dangers lurking in the implementation of the browser features to
smartphone app - issue of WebView class. (in Japanese). [Online].
Available: http://codezine.jp/article/detail/6618

[5] T. Luo, H. Hao, W. Du, Y. Wang, and H. Yin, “Attacks on web-
view in the android system,” Proc. 27th Annual Computer Security
Applications Conference (ACSAC’11), pp.343–352, 2011.

[6] H. Kawabata, T. Isohara, K. Takemori, and A. Kubota, “Threat
of script abuse android permissions and static analysis,” IPSJ SIG
Technical Report (in Japanese), vol.2011-CSEC-53, no.3, pp.1–6,
2011.

[7] lexanderA - WebView examples. [Online]. Available:
http://lexandera.com/category/webview examples/

[8] K. Patil, X. Dong, X. Li, Z. Liang, and X. Jiang, “Towards fine-
grained access control in javascript contexts,” Proc. 31st Interna-
tional Conference on Distributed Computing Systems (ICDCS’11),
pp.720–729, 2011.

[9] L. Meyerovich and B. Livshits, “CONSCRIPT: specifying and en-
forcing fine-grained security policies for javascript in the browser,”
IEEE Symposium on Security and Privacy (SP’10), pp.481–496,
2010.

[10] H. Hao, V. Singh, and W. Du, “On the effectiveness of api-level ac-
cess control using bytecode rewriting in android,” Proc. 8th ACM
Symposium on Information, Computer and Communications Secu-
rity (AsiaCCS’13), pp.25–36, 2013.

[11] S. Sakamoto, K. Okuda, R. Nakatsuka, and T. Yamauchi, “Droid-
Track: Tracking and visualizing information diffusion for preventing
information leakage on Android,” J. Internet Services and Informa-
tion Security (JISIS), vol.4, no.2, pp.55–69, 2013.


