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Placement of an anatomic tibial tunnel significantly improves the medial meniscus posterior extrusion 1 

at 90˚ of knee flexion following medial meniscus posterior root pullout repair 2 

  3 
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Abstract 4 

Purpose: The purpose of this study was to evaluate the influence of tibial tunnel position in pullout 5 

repair for a medial meniscus (MM) posterior root tear (MMPRT) on postoperative MM extrusion. 6 

Methods: Thirty patients (median age: 63 years, range: 35–72 years) who underwent transtibial pullout 7 

repairs for MMPRTs were included. Three-dimensional computed tomography (3D-CT) images of the 8 

tibial surface were evaluated using a rectangular measurement grid for assessment of tibial tunnel 9 

position and MM posterior root attachment. Preoperative and postoperative MM medial extrusion 10 

(MMME) and posterior extrusion (MMPE) at 10° and 90° knee flexion were measured using open 11 

magnetic resonance imaging.  12 

Results: Tibial tunnel centers were located more anteriorly and more medially than the anatomic center 13 

(median distance: 5.8 mm, range: 0 to 9.3 mm). The postoperative MMPE at 90° knee flexion was 14 

significantly reduced after pullout repair, although there was no significant reduction in MMME or 15 

MMPE at 10° knee flexion after surgery. In the correlation analysis of the displacement between the 16 

anatomic center to the tibial tunnel center and improvements in MMME, and MMPE at 10° and 90° 17 

knee flexion, there was a significant positive correlation between percentage distance and 18 

improvement of MMPE at 90° knee flexion. 19 

Conclusion: This study demonstrated that the nearer the tibial tunnel position to the anatomic 20 

attachment of the MM posterior root, the more effective the reduction in MMPE at 90° knee flexion. 21 

Our results emphasize that an anatomic tibial tunnel should be created in the MM posterior root to 22 

improve the postoperative MMPE and protect the articular cartilage in a knee flexion position. 23 

Placement of an anatomic tibial tunnel significantly improves the medial meniscus posterior extrusion 24 

at 90˚ of knee flexion after medial meniscus posterior root pullout repair. 25 

 26 

Level of Evidence: Level IV 27 

 28 
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 31 

Introduction 32 

A medial meniscus (MM) posterior root tear (MMPRT) is a critical injury to the medial 33 

compartment of the knee [1, 28, 29]. It leads rapidly to osteoarthritic or osteonecrotic changes [26, 29] 34 

and is treated with arthroscopic repair in order to protect the knee joint [6, 17, 24]. Arthroscopic pullout 35 

repair has been performed and evaluated using clinical scores and magnetic resonance imaging (MRI) 36 

measurements in previous studies [14, 18, 22]. In these studies, pullout repair has not completely 37 

reduced MM extrusions. Nevertheless, Chung et al. demonstrated that transtibial pullout repair leads 38 

to favorable midterm outcomes in patients with MMPRTs, despite the presence of residual meniscal 39 

extrusion [3, 4]. One of the reasons for this may be pathological MM posterior extrusion (MMPE) as 40 

MMPRTs result in not only in MM medial extrusion (MMME), but also posterior extrusion at 90° knee 41 

flexion [23, 27]. However, pullout repair of MMPRTs reduces the MMPE at 90° knee flexion [18, 22] 42 

and restores the hoop structure of the MM by stabilizing the MM posterior root [2, 21]. Biomechanical 43 

studies revealed that anatomic pullout repair of MMPRTs restores the loading profiles of the medial 44 

compartment and non-anatomic repair does not restore the contact area or mean contact pressure to 45 

that of the intact knee or the anatomic repair knee [5, 20]. In a study of meniscal allograft 46 

transplantation, tibial tunnel position changes affected meniscus subluxation, indicating that 47 

transplanting the MM close to its native position could reduce MM extrusion after MM allograft 48 

transplantation [16].  49 

Previous studies have showed the anatomic attachment of the MM posterior root [9, 12]. A 50 

cadaveric study reported that the MM posterior insertion was located 9.6 mm posteriorly and 0.7 mm 51 

laterally from the medial tibial eminence (MTE) apex and 8.2 mm directly from the nearest tibial 52 

attachment margin of the posterior cruciate ligament (PCL) [12]. One histological study also 53 
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demonstrated that the distance from the MM posterior insertion center is located 7.7 mm posterior to 54 

the MTE apex [9].  55 

Based on these findings, we considered that tibial tunnel position in MMPRT pullout repair 56 

might affect not only hoop stress, but also MM extrusion. Therefore, the purpose of this study was to 57 

evaluate how tibial tunnel position in MMPRT pullout repair affects postoperative MM extrusion. It 58 

was hypothesized that it is difficult to reduce the MM extrusion when a tibial tunnel is created far from 59 

the anatomic attachment of the MM posterior root. 60 

 61 

Materials and Methods 62 

This study was approved by the Institutional Review Board of Okayama University Graduate 63 

School (ID number: 1857) and patients provided informed consent prior to participation. The flow 64 

chart of the study protocol is shown in Fig. 1. Pullout repair of the MMPRT was performed in patients 65 

with a femorotibial angle (FTA) < 180°, Kellgren–Lawrence (K-L) grade 0–2, and mild cartilage lesion 66 

(Outerbridge grade I or II), which was confirmed by preoperative radiographs and MRI. We excluded: 67 

1) patients diagnosed with a partial MMPRT, 2) patients diagnosed with spontaneous osteonecrosis of 68 

the knee, 3) patients with a concomitant ligament injury, 4) patients without a memory of painful 69 

popping, and 5) patients with insufficient postoperative computed tomography (CT)/MRI data. Thirty 70 

patients (25 women and 5 men, mean age 61 years) who underwent transtibial pullout repairs for 71 

MMPRT using the FasT-Fix (Smith & Nephew, Andover, MA, USA) modified Mason-Allen (F-MMA) 72 

suture technique between April 2016 and July 2018 were included. We reviewed the patients’ medical 73 

records to determine age, sex, height, body weight, body mass index (BMI), interval from injury to 74 

preoperative MRI and to surgery, and arthroscopic findings of MMPRT. The patient demographics are 75 

summarized in Table 1. 76 

 77 

Surgical procedure 78 
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The patients were placed in a supine position on the operating table. A standard arthroscopic 79 

examination was performed using a 4-mm-diameter 30° arthroscope (Smith & Nephew, Andover, MA, 80 

USA) through routine anteromedial (AM) and anterolateral (AL) portals. A probe was introduced 81 

through the AM portal and the severity of MMPRT was evaluated. In cases with a tight medial 82 

compartment, we used the outside-in pie-crusting technique on the medial collateral ligament with a 83 

standard 18-gauge hollow needle (TERUMO, Tokyo, Japan) [30]. The posterior meniscal peripheral 84 

attachment of the MM was detached by a rasp to achieve meniscal mobility. For the F-MMA technique, 85 

the Knee Scorpion suture passer (Arthrex, Naples, FL, USA) was used to pass a no. 2 Ultrabraid (Smith 86 

& Nephew) vertically through the meniscal tissue. Subsequently, the FasT-Fix 360 meniscal repair 87 

system was inserted from the AM portal into the MM posterior horn and root across the Ultrabraid in 88 

a modified Mason-Allen configuration [6, 17].  89 

The MMPRT guide (Smith & Nephew), which can create the tibial tunnel at a favorable 90 

position because of a narrow twisting/curving shape during transtibial pullout repair for MMPRT, was 91 

placed at the center of the attachment area [8]. A 2.4-mm guide pin was inserted using the MMPRT 92 

guide at a 45° angle to the articular surface, and a 4.5-mm cannulated drill was used to over-drill. The 93 

free-ends of the sutures were pulled out through the tibial tunnel using a suture manipulator. Gentle 94 

tension was applied to the sutures until the posterior horn reached its tibial attachment area. The pulled 95 

sutures were tied rigidly to the double-spike plate (Meira, Aichi, Japan) 10 mm from the extra-articular 96 

aperture of the tibial tunnel. Tibial fixation was performed using the double-spike plate and screw with 97 

the knee flexed at 45° using an initial 20-N tension [6, 17]. 98 

 99 

Postoperative rehabilitation 100 

The postoperative rehabilitation protocol was similar for all patients. All patients wore a knee 101 

immobilizer for 2 weeks after surgery to avoid weight-bearing. Knee flexion was limited to 90° for the 102 

first 4 weeks. The patients were allowed full weight-bearing and 120° knee flexion after 6 weeks. Deep 103 
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knee flexion was permitted 3 months postoperatively [6]. 104 

 105 

Radiographic evaluations 106 

The coronal radiological FTA was measured to assess the degree of preoperative knee 107 

deformity. FTA is defined as the external angle between the femoral and tibial shaft axes on coronal 108 

radiograph of the entire lower limbs in the standing position. The Rosenberg 45° posteroanterior 109 

standing view was used to assess the K-L arthritis grade preoperatively. The K-L grades were defined 110 

as follows: 0, no degenerative change; 1, questionable osteophytes and no joint space narrowing; 2, 111 

definite osteophytes with possible joint space narrowing; 3, definite joint space narrowing with 112 

moderate multiple osteophytes and some sclerosis; and 4, severe joint space narrowing with cysts, 113 

osteophytes, and sclerosis [15]. Radiographic images were examined independently by two orthopedic 114 

surgeons blinded to the procedures using the digital caliper function of a picture archiving and 115 

communication system (PACS). FTA can be measured up to the unit digit. Two observers 116 

independently measured each radiological outcome, and the averages of these measurements were 117 

used in analysis. 118 

 119 

Three-dimensional (3D) CT-based measurements 120 

All patients underwent CT examination 1 week postoperatively. CT images were obtained 121 

with an Asteion 4 Multislice CT System (Toshiba Medical Systems, Tochigi, Japan) using 120 kVp 122 

and 150 mA, and 1-mm slice thickness. CT reconstruction of the tibial condyles in the axial plane [23] 123 

was completed using a three-dimensional volume-rendering technique (AZE Virtual Place software; 124 

AZE Ltd., Tokyo, Japan). 3D-CT images of the tibial surface were evaluated using a rectangular 125 

measurement grid as described by Tsukada et al. [31]. The image was rotated to visualize the superior 126 

aspect of the proximal tibia, with the internal/external rotation adjusted until the most posterior 127 

articular margins of both the medial and lateral tibial plateaus were placed on the horizontal level (Fig. 128 
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2). The location on the tibial surface was assessed using a percentage-dependent method [31] and the 129 

location of a critical point was determined by two coordinates (one on an anteroposterior [AP] axis 130 

and the other one on an ML axis). The anatomic center of the MM posterior root attachment and tibial 131 

tunnel center were determined according to a previous study [8]. The anatomic center of the MM 132 

posterior root attachment was the center of a virtual circle that joined the three sides (anterior border 133 

of the PCL tibial attachment, lateral margin of the medial tibial plateau, and retro-eminence ridge [33]) 134 

of the triangular footprint of the MM posterior root, and the tibial tunnel center was the central point 135 

of the circular or oval tunnel aperture. The percentage distance between the anatomic center and tunnel 136 

center was calculated using the Pythagorean theorem: (percentage distance)2 = (difference between the 137 

AP percentage of each center; ΔPosterior)2 + (difference between the ML percentage of each center; 138 

ΔLateral)2 [8] (Fig. 2). We also calculated the absolute distance as the minimum distance between the 139 

anatomic center and tunnel center. 3D-CT measurements that allowed one decimal value were 140 

documented two times at six-week intervals to assess intra-observer reliability. The averages of these 141 

measurements were used in analysis. 142 

 143 

MRI measurements 144 

MRI was performed preoperatively and 3 months postoperatively using an Achieva 1.5 T 145 

(Philips, Amsterdam, The Netherlands) and an Oasis 1.2 T (Hitachi Medical, Chiba, Japan) with a coil 146 

under a non-weight-bearing 10° knee flexion position. Standard sequences of the Achieva included 147 

sagittal (repetition time [TR]/echo time [TE], 601/14), coronal (TR/TE, 553/14) T2-weighted multi-148 

echo with a 30° flip angle, and axial (TR/TE, 4330/104) T2 BLADE fat saturation with a 150° flip 149 

angle. The slice thickness was 3 mm with a 0.6-mm gap. The field of view was 16 cm with an 150 

acquisition matrix size of 205 × 256. Standard sequences of the Oasis included a sagittal proton density 151 

weighted sequence (repetition time [TR]/echo time [TE], 1718/12) using a driven equilibrium pulse 152 

with a 10° flip angle and coronal T2-weighted multi-echo sequence (TR/TE, 4600/84) with a 10° flip 153 
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angle. The slice thickness was 4 mm with a 0-mm gap. The field of view was 16 cm with an acquisition 154 

matrix size of 320 × 416 [7, 11]. The MM medial extrusion (MMME) was measured as the distance 155 

from the medial edge of the tibial plateau cartilage to the medial border of the MM (Fig. 3a). The MM 156 

posterior extrusion at 10° (MMPE [10°]) and 90° (MMPE [90°]) knee flexion was measured using a 157 

line passing orthogonally through the medial tibial plateau, the distance from the posterior edge of the 158 

tibia (excluding osteophytes) to the posterior edge of the MM. Using the posterior edge of the tibia as 159 

the standard, extrusions toward the posterior from the tibial edge were noted as a positive value, and 160 

absence of extrusion as a negative value (Fig. 3b, 3c). MMME or MMPE measurements were obtained 161 

in the mid-coronal plane or in the mid-sagittal plane by linking the sagittal or coronal image series, 162 

respectively. The MMME and MMPE were evaluated independently by two reviewers using the PACS. 163 

The mean value of each observer’s measurement was obtained [13]. 164 

ΔMMME was calculated as follows; ΔMMME = (preoperative MMME) – (postoperative 165 

MMME). A negative value of ΔMMME indicated improvement of MMME after pullout repair and a 166 

positive value of ΔMMME indicated that postoperative MMME had worsened compared to the 167 

preoperative result [14]. ΔMMPE (10°) and ΔMMPE (90°) was calculated in the same way. 168 

 169 

Clinical outcome evaluations 170 

 Clinical outcomes were assessed preoperatively and at 1-year follow-up after the surgery, 171 

using the Knee Injury and Osteoarthritis Outcome Score (KOOS), International Knee Documentation 172 

Committee (IKDC) subjective knee evaluation form, Lysholm knee score, Tegner activity level scale, 173 

and visual analogue scale (VAS) as pain score. Preoperative results were compared with the 1-year 174 

follow-up results. The KOOS consists of five subscales: pain, symptoms, activities of daily living 175 

(ADL), sport and recreation function (sport/rec), and knee-related quality of life (QOL). 176 

 177 

Statistical analysis 178 
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Values are expressed as mean ± standard deviation (SD) unless otherwise indicated. 179 

Statistical significance was set at p < 0.05. The Wilcoxon signed-rank test was used to compare the 180 

preoperative and the postoperative results. The Chi-square test was used for sex, MMPRT type and 181 

K-L grade comparison, and the Mann-Whitney U-test was used for the other items to compare 182 

between two groups. Correlation analyses were performed using a Spearman’s rank correlation 183 

analysis. Statistical calculations were performed using EZR-WIN software (Saitama Medical Center, 184 

Saitama, Japan). The inter-observer and intra-observer reliabilities were assessed with the intra-class 185 

correlation coefficient (ICC). All measurements were completed by two independent orthopedic 186 

surgeons to determine inter-observer reliability using the ICC. Each observer repeated the 187 

measurements with a 6-week interval to determine intra-observer reliability. An ICC >0.80 was 188 

considered to represent a reliable measurement. The sample size was estimated for a minimal 189 

statistical power of 80% (α = 0.05). In the Spearman’s rank correlation analysis, a sample of 29 190 

patients was sufficient to detect an effect size of d = 0.5 with 80% statistical power. 191 

 192 

Results 193 

From 2016 to 2018, a total of 64 MMPRTs were identified in 64 patients (17 men, 47 women) 194 

with a median age of 63 years (range, 35–72 years) at our institution. Of the 64 MMPRTs, 34 patients 195 

were excluded according to the exclusion criteria (Fig. 1). Therefore, 30 MMPRTs in 30 patients were 196 

included in the final analysis. As for MMPE (90°), eight patients were excluded because they did not 197 

have MR images in 90° knee flexion.  198 

Twenty-seven out of 30 patients had a radial tear (type 2) and three patients had an oblique 199 

tear (type 4). In radiographic evaluations, the mean preoperative FTA was 176.8 ± 1.8° (range, 173–200 

179°). We found six patients with no radiographic osteoarthritis (OA) and 24 patients with mild 201 

radiographic OA in the medial compartment, including 16 patients diagnosed with K-L grade 1 and 202 

eight patients with K-L grade 2. The mean ICC values for inter-observer and intra-observer reliabilities 203 
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were 0.88 and 0.91, respectively. Patient demographics are reported in Table 1. 204 

The anatomic center of the MM posterior root footprint was located at a mean position of 205 

78.1% ± 2.9% posteriorly and 39.6% ± 2.6% laterally (Table 3). The tibial tunnel center of the MM 206 

posterior root was located at a mean position of 70.0% ± 4.9% posteriorly and 38.3% ± 2.7% laterally. 207 

The tibial tunnel centers were thus located more anteriorly and medially compared to the anatomic 208 

center (Fig. 4). The mean absolute distance between the tibial tunnel center and the MM posterior root 209 

anatomic center is 5.1 ± 2.3 mm. The inter-observer and intra-observer reliabilities were considered 210 

high, with mean ICC values of 0.88 and 0.90, respectively. 211 

In MRI evaluations, the postoperative MMPE (90°) was significantly reduced after pullout 212 

repair, although there was no significant difference in the preoperative and postoperative MMME, or 213 

preoperative and postoperative MMPE (10°) (Table 2). Regarding MRI measurements, the mean ICC 214 

values for inter-observer and intra-observer reliabilities were 0.86 and 0.89, respectively. 215 

 In the correlation analysis between the displacement from the anatomic center to the tibial 216 

tunnel center and improvement in MMME, MMPE (10°), and MMPE (90°), there was a significant 217 

positive correlation only between the percentage distance and ΔMMPE (90°) (rs = 0.46; p = 0.03, Fig. 218 

5). The same was true of the absolute distance and ΔMMPE (90°) (rs = 0.47; p = 0.03, Table 3). 219 

However, there were little correlations between preoperative FTA or BMI and improvement in MMME, 220 

MMPE (10°), and MMPE (90°) (Table 3). 221 

Patients were divided into two groups according to the previous study [20]: anatomic group, 222 

which represented patients whose distances between the tibial tunnel center and the MM posterior root 223 

anatomic center were ≤ 5.0 mm, and non-anatomic group, which represented patients whose distances 224 

between the two points were > 5.0 mm. Patients of the anatomic group were significantly smaller than 225 

those of the non-anatomic group (p = 0.02). The improvement of MMPE at 90° flexion of the anatomic 226 

group was significantly better than that of the non-anatomic group (p = 0.02) (Table 4). In the 227 

evaluation of clinical outcomes, the 1-year postoperative scores showed significant improvement when 228 
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compared with the preoperative scores in all the items assessed in both groups. However, there was no 229 

significant difference in any of the clinical scores between the anatomic group and the non-anatomic 230 

group preoperatively, and at 1-year follow-up after the surgery, excluding the preoperative Lysholm 231 

knee score (p = 0.03) (Fig. 6). 232 

 233 

Discussion 234 

The most important finding of our study was that transtibial pullout repair of MMPRTs 235 

reduces MM posterior extrusion at 90° knee flexion, and the nearer the tibial tunnel position to the 236 

anatomic attachment of the MM posterior root, the more effective the reduction of postoperative MM 237 

posterior extrusion at 90° knee flexion. Furthermore, the mean reduced distance of postoperative MM 238 

posterior extrusion at 90° knee flexion in anatomic group was twice better than that in non-anatomic 239 

group. Our results emphasize that surgeons should create an anatomic tibial tunnel of the MM posterior 240 

root to improve postoperative MMPE.  241 

There are several possible reasons why cases with larger percentage and absolute distances 242 

did not show the same postoperative MMPE reduction at 90° knee flexion as those with smaller 243 

percentage and absolute distances. We considered that in the knee extension position, tension on the 244 

MM posterior segment and pullout suture might not be as tight, even when a non-anatomic tibial tunnel 245 

is created. On the other hand, when the knee is flexed to 90°, the MM extrudes in a posteromedial 246 

direction [27], and excessive load on the posterior part of the MM [32] creates tension that is too tight 247 

to endure and this might result in suture loosening or tearing (Fig. 7). A cadaveric study demonstrated 248 

that non-anatomic repair, which was placed 5 mm posteromedially from the MM posterior root 249 

attachments, did not restore the contact area or mean contact pressure to that of the intact knee or the 250 

anatomic repair knee [20]. In this study, mean reduction of the MMPE at 90° knee flexion in the 251 

anatomic group was twice better than that in the non-anatomic group (1.8 mm vs. 0.9 mm). Although 252 

the displacement direction of the tibial tunnel from the MM anatomic attachment is different between 253 
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the above cadaveric study and this clinical study, the displacement itself would result in preventing the 254 

repaired MM from regaining the original hoop structure. From these findings, surgeons should 255 

recognize the necessity to create an anatomic tibial tunnel of the MM posterior root, at least within 5 256 

mm from the anatomic attachment. However, it is unclear how much displacement can be accepted. 257 

Further research is required to confirm this point. 258 

In this study, tibial tunnel positions were located more anteriorly and medially than the MM 259 

posterior root attachments. This result was similar to a previous study [8]. One of the reasons for the 260 

discrepancy may be that it is difficult for surgeons to view the MM posterior root attachment through 261 

an arthroscope because it is located posterior to the apex of the medial tibial eminence. Another reason 262 

may be the relationship between the insertion angle of the guide pin and the posterior slope of the MM 263 

posterior attachment, which would lead to creation of a tibial tunnel anterior to the position where the 264 

surgeon wants to create a tunnel. Surgeons should have a complete understanding of the surgical 265 

technique so that an exact anatomic tibial tunnel can be created during pullout repair of MMPRTs so 266 

as to improve MM stability.  267 

A negative finding of this study was that postoperative MMME and MMPE at 10° knee 268 

flexion were not significantly reduced using the F-MMA technique, although postoperative 1-year 269 

clinical outcomes were significantly improved in comparison with preoperative ones. A morphological 270 

analysis using 3D-MRI suggested that pullout repair may have an effect of reducing not medial 271 

extrusion but pathological posteromedial extrusion of the knee flexion in patients with MMPRTs [25]. 272 

Another study demonstrated that suppression of cartilage degeneration was observed at medial and 273 

posterior parts of medial femoral condyle (MFC) at 12 months after pullout repair, although 274 

progression of cartilage degeneration was observed especially at anteromedial part of MFC [18]. On 275 

the other hand, it was reported that two simple stitches technique, additional surgical augmentation 276 

like centralization technique or an early pullout repair surgery after injury can be effective in reducing 277 

MMME [10, 14, 19]. Therefore, we should improve a surgical strategy for reducing MMME in order 278 
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to get better MM function and prevent articular cartilage from degeneration.   279 

There were several limitations to this study. First, we did not address the direction of the 280 

percentage distance. However, 96.7% of patients (29/30) were located at a more anterior position 281 

compared to the anatomic attachment and the improvement of postoperative MMPE at 90° knee 282 

flexion exhibited a significant positive correlation with percentage distance. Second, we evaluated MM 283 

extrusions using short-term follow-up MRI after pullout repair. In this study, the patients underwent 284 

postoperative MRI at a mean of 3 months after pullout repair. Therefore, postoperative MRI may 285 

directly detect the effect of the pullout repair of MMPRTs. Third, we did not evaluate long-term clinical 286 

outcomes. Further studies are required to evaluate the transitional impact of MRI measurements to 287 

clinical outcomes. Nevertheless, this study is clinically relevant as it discusses the importance of 288 

creating an anatomic tibial tunnel to improve the medial meniscus posterior extrusion at 90˚ knee 289 

flexion. 290 

 291 

Conclusions 292 

This study demonstrated that transtibial pullout repair of MMPRTs reduced MM posterior 293 

extrusion at 90° knee flexion. The nearer the tibial tunnel position to the anatomic attachment of the 294 

MM posterior root, the more effective the reduction of the postoperative MM posterior extrusion at 295 

90° knee flexion. Our results emphasize that an anatomic tibial tunnel should be created in the MM 296 

posterior root to improve the postoperative MM posterior extrusion and protect the articular cartilage 297 

during knee flexion. 298 
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Figure legends 316 

Fig. 1 Flow chart detailing the study protocol  317 

MMPRT, medial meniscus posterior root tear; MMME, medial meniscus medial extrusion. MMPE, 318 

medial meniscus posterior extrusion 319 

 320 

Fig. 2 Measurements of anatomic center (Ac) and tibial tunnel center (Tc) 321 

The location on the three-dimensional CT-based tibial surface is expressed as a posterolateral 322 

percentage using Tsukada’s method [21]. White dashed circle: expected anatomic attachment of the 323 

medial meniscus (MM) posterior root. White triangle: MM posterior root attachment anatomic center 324 

(Ac). White dot: tibial tunnel center (Tc). White double line: percentage distance between the anatomic 325 

center and tunnel center. ΔPosterior: difference between the anteroposterior percentage of each center. 326 

ΔLateral: difference between the mediolateral percentage of each center. 327 

 328 
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Fig. 3 MRI-based measurements in the mid-coronal plane of the right knee flexed at 10° and in the 329 

mid-sagittal plane of the right knee flexed at 10° and 90° 330 

(a) Medial meniscus medial extrusion at 10° knee flexion. (b) Medial meniscus posterior extrusion at 331 

10° knee flexion. (c) Medial meniscus posterior extrusion at 90° knee flexion. Dotted line: medial or 332 

posterior edge of medial tibial plateau. Solid line: medial or posterior border of the medial meniscus. 333 

White arrow: distance from medial or posterior edge of medial tibial plateau to medial or posterior 334 

border of the medial meniscus.  335 

MFC, medial femoral condyle; MTP, medial tibial plateau 336 

 337 

Fig. 4 Respective locations of (a) anatomic centers and (b) tibial tunnel centers 338 

(a) The mean of the MM posterior root anatomic center is 78.1% posterior and 39.6% lateral (black 339 

dot) on a three-dimensional CT image of the tibial surface. White dots indicate the location in each 340 

case. (b) The mean of the tibial tunnel center is 70.0% posterior and 38.3% lateral (black triangle). 341 

White triangles indicate the location in each case. The mean distance between the MM posterior root 342 

anatomic center and the tibial tunnel center is 5.1 ± 2.3 mm. 343 

 344 

Fig. 5 Correlation analysis of the three tibial tunnel position parameters and postoperative increase in 345 

medial meniscus or posterior extrusions 346 

ΔPosterior and (a) ΔMMME (rs = -0.17, n.s.), (b) ΔMMPE (10°) (rs = -0.09, n.s.), and (c) ΔMMPE 347 

(90°) (rs = -0.28, n.s.). ΔLateral and (d) ΔMMME (rs = 0.02, n.s.), (e) ΔMMPE (10°) (rs = -0.13, n.s.), 348 

and (f) ΔMMPE (90°) (rs = -0.29, n.s.). Percentage distance and (g) ΔMMME (rs = 0.27, n.s.), (h) 349 

ΔMMPE (10°) (rs = 0.23, n.s.), and (i) ΔMMPE (90°) (rs = 0.46, p = 0.03). Black dots, triangles, and 350 

squares denote each case. The grey, light blue, and red dots lines show little, weak and moderate 351 

correlation, respectively, between two items. There is a significant positive correlation between 352 

percentage distance and ΔMMPE (90°). 353 
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 354 

Fig. 6 Between-group comparisons of clinical outcomes 355 

Data were collected preoperatively and at 1-year follow-up. All scores were significantly improved at 356 

the 1-year follow-up after surgery (p < 0.05). However, there was no significant difference between 357 

the anatomic and non-anatomic groups, excluding the preoperative Lysholm knee score (p = 0.03). 358 

KOOS, Knee Injury and Osteoarthritis Outcome Score; ADL, activities of daily living; Sport/Rec, 359 

sport and recreation function; QOL, quality of life. IKDC, International Knee Documentation 360 

Committee subjective knee evaluation form; VAS, visual analogue scale. 361 

 362 

Fig. 7 Theory of how malposition of tibial tunnel affects the reduction of MM posterior extrusion at 363 

90° knee flexion 364 

(a) MRI of a volunteer’s normal knee. (b) During knee extension, the tension between the medial 365 

meniscus posterior segment and pullout suture might not be tight even if a nonanatomic tibial tunnel 366 

is created. (c)(d) When the knee is flexed to 90°, the tension may be too tight to endure and result in 367 

loosening or tearing of the sutures. 368 

 369 
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