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Abstract
Stem cells have essential applications in in vitro tissue engi-
neering or regenerative medicine. However, there is still a 
need to understand more deeply the mechanisms of stem 
cell differentiation and to optimize the methods to control 
stem cell function. In this study, we first investigated the ac-
tivity of DNA methyltransferases (DNMTs) during chondro-
genic differentiation of human bone marrow-derived mes-
enchymal stem/progenitor cells (hBMSCs) and found that 
DNMT3A and DNMT3B were markedly upregulated during 
hBMSC chondrogenic differentiation. In an attempt to un-
derstand the effect of DNMT3A and DNMT3B on the chon-
drogenic differentiation of hBMSCs, we transiently transfect-
ed the cells with expression vectors for the two enzymes. 
Interestingly, DNMT3A overexpression strongly enhanced 
the chondrogenesis of hBMSCs, by increasing the gene ex-

pression of the mature chondrocyte marker, collagen type II, 
more than 200-fold. Analysis of the methylation condition in 
the cells revealed that DNMT3A and DNMT3B methylated 
the promoter sequence of early stem cell markers, NANOG 
and POU5F1 (OCT-4). Conversely, the suppression of chon-
drogenic differentiation and the increase in stem cell mark-
ers of hBMSCs were obtained by chemical stimulation with 
the demethylating agent, 5-azacitidine. Loss-of-function as-
says with siRNAs targeting DNMT3A also significantly sup-
pressed the chondrogenic differentiation of hBMSCs. To-
gether, these results not only show the critical roles of DN-
MTs in regulating the chondrogenic differentiation of 
hBMSCs, but also suggest that manipulation of DNMT activ-
ity can be important tools to enhance the differentiation of 
hBMSCs towards chondrogenesis for potential application in 
cartilage tissue engineering or cartilage regeneration.

© 2019 S. Karger AG, Basel
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Introduction

Stem cells are characterized by their ability to self-re-
new and capacity to differentiate into several other cell 
types [Jaenisch and Young, 2008; Tewary et al., 2018]. 
Identification and characterization of adult stem cells in 
various tissues have led to a greater understanding of tis-
sue development, homeostasis, and regeneration [Lin et 
al., 2019]. A deeper understanding of the biology of stem 
cells is still required for the development of novel meth-
ods to control stem cell functions by intracellular or ex-
tracellular factors, and for further improvement in the 
efficacy of methods for regenerative medicine [Tewary et 
al., 2018].

Most of the cellular functions are initially regulated by 
the gene transcription pattern, which involves a complex 
biological process regulated not only by the genetic code, 
but also by epigenetic mechanisms. DNA methylation 
and histone modifications are the most important epi-
genetic regulations of DNA. In particular, DNA methyla-
tion involves the addition of a methyl group to the car-
bon-5 position in the pyrimidine ring of the cytosines 
nucleotides [Bird, 1986; Perez-Campo and Riancho, 
2015]. It is known that methylation of the cytosine-phos-
phate-guanine (CpG) islands located on the promoter re-
gions, or the first exon, inhibits the transcription of the 
corresponding genes [Bird, 1986; Denis et al., 2011]. 
Therefore, DNA methylation determines the global gene 
expression pattern, and directly controls stem cell differ-
entiation during tissue development or regeneration, and 
is also associated with a number of key biological pro-
cesses, including aging and cancer [Berdasco and Esteller, 
2011; Challen et al., 2011; Denis et al., 2011; Feng et al., 
2014; Perez-Campo and Riancho, 2015].

Methylation of CpGs is catalyzed by a family of DNA 
methyltransferases (DNMTs), consisting basically of 3 
members, i.e., DNMT1, DNMT3A, and DNMT3B. Gene 
deletion of DNMTs results in embryo mortality [Li et al., 
1992; Okano et al., 1999], indicating that DNA methyla-
tion is essential for normal embryonic development by 
epigenetic modification of gene expression in a tissue- 
and context-specific manner [Perez-Campo and Rian-
cho, 2015]. DNMT1 has a preference for hemi-methylat-
ed DNA (one strand), and therefore is mainly involved in 
the maintenance of pre-existing methylation, and is im-
portant for transferring patterns of methylation to a new-
ly synthesized strand after DNA replication [Goll and Be-
stor, 2005]. DNMT3A and DNMT3B act as de novo 
methyltransferases, modifying unmethylated DNA [Ok
ano et al., 1999; Goll and Bestor, 2005]. During embry-

onic development, the two major de novo methyltrans-
ferases, DNMT3A and DNMT3B, are known to silence 
stem cell marker genes (e.g., NANOG, POU5F1/OCT-4) 
[Li et al., 2007], as well as cell type-specific genes required 
for the establishment of genomic methylation patterns 
[Okano et al., 1999].

During embryonic development, mesenchymal 
stem/progenitor cells (MSCs) condensate and differen-
tiate into chondrocytes to form the limb buds [Shimizu 
et al., 2007]. These chondrocytes proliferate and differ-
entiate into mature chondrocytes, eventually forming 
the entire limb [Shimizu et al., 2007]. Understanding 
the methylation condition during the process of MSC-
to-chondrocyte differentiation may enable the develop-
ment of novel techniques for application in cartilage re-
generation. 

Previous studies have shown that the DNA methyla-
tion levels of CpG-rich promoters of chondrocyte-related 
genes (e.g., SOX9) are kept hypomethylated during chon-
drogenesis of human MSCs [Ezura et al., 2009; Herlofsen 
et al., 2013]. Although these studies evaluated the meth-
ylation of chondrocyte-related genes, the expression lev-
els of DNMTs and their roles in regulating the expression 
of stem cell marker genes (e.g., POU5F1, NANOG) during 
chondrogenic differentiation of MSCs are still unknown. 
In this study, we first investigated the DNA methylation 
patterns during chondrogenic differentiation of human 
bone marrow-derived MSCs (hBMSCs), analyzed the 
methylation condition of stem cell markers, and finally 
manipulated the chondrogenic differentiation of hBM-
SCs by exogenous stimulation with demethylating agent, 
5-azacitidine (5-Aza), or by inducing overexpression of 
DNMT3A and DNMT3B in the cells. The results showed 
that the expression levels of both DNMT3A and DN-
MT3B, but not DNMT1, are increased during chondro-
genic differentiation of hBMSCs. DNMT3A and DN-
MT3B suppressed NANOG and POU5F1 expression, and 
particularly DNMT3A had a remarkable role in promot-
ing chondrogenesis of hBMSCs.

Materials and Methods

Cells, Culture Conditions, and Chondrogenic Differentiation
hBMSCs were purchased from Lonza (Walkersville, MD, USA) 

and cultured in alpha-Modified Eagle Medium (α-MEM, Invitro-
gen, Carlsbad, CA, USA) containing 15% FBS (Invitrogen), 100 
mM L-ascorbic acid 2-phosphate (Wako Pure Chemical Industries, 
Osaka, Japan), 1% penicillin and streptomycin (Sigma-Aldrich, St. 
Louis, MO, USA), and 1% L-glutamine (Invitrogen). In the exper-
iments, cells from at least 2 individuals and from the third to the 
sixth passage were used.
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For chondrogenic differentiation, hBMSCs were cultured in 
micromasses or pellets, as reported previously [Hara et al., 2015]. 
In brief, for micromass culture, cells were trypsinized and collect-
ed by centrifugation, resuspended at a concentration of 2 × 107 
cells/mL, and cultured in 10-µL micromasses. For pellet culture, 
hBMSCs were trypsinized, centrifuged, counted, and aliquoted in 
15-mL tubes at a concentration of 1 × 106 cells per 500 µL of culture 
medium. The cell-containing tubes were then centrifuged to make 
the cell pellets. Chondrogenic medium consisted of DMEM (low 
glucose, Invitrogen) containing 6 µg/mL of insulin, transferrin, 
and selenous acid (ITS solution, BD, Bedford, MA, USA), L-ascor-
bic acid (50 µg/mL), TGF-β3 (5 ng/mL, R&D Systems, Minneapo-
lis, MN, USA), fluocinolone acetonide (100 nM, Tokyo Chemical 
Industry Inc., Tokyo, Japan), and antibiotics, as reported [Hara et 
al., 2015, 2016]. Cultures were maintained for 21 days, with the 
medium changed every 3–4 days, and further submitted to analysis 
of mRNA levels or histology. 

For chemical control of hBMSC function, 5-Aza (Sigma-Al-
drich) was added to the hBMSC culture for 24 and 48 h. Undiffer-
entiated hBMSCs were then washed and collected for total RNA 
purification, and further analysis of the expression of stem cell 

marker genes. Alternatively, hBMSCs were trypsinized, collected 
by centrifugation, and cultured in micromasses for evaluation of 
chondrogenic differentiation after 5-Aza treatment.

Histological and Immunohistochemical Analysis
hBMSC micromasses/pellets were cultured for 21 days in chon-

drogenic medium, and then fixed with 4% paraformaldehyde, de-
hydrated through immersion in increasing concentrations of etha-
nol (50, 70, 80, 90, and 100%), and embedded in paraffin. Sections 
of 5 μm were cut using a microtome (Thermo Scientific, HM 355S 
Automatic Microtome), hydrated, and stained with toluidine blue 
or safranin O for glycosaminoglycans. Sections were also used for 
immunohistochemical analysis of collagen type II expression in 
the pellets using a specific rabbit polyclonal antibody (Chemicon, 
Billerica, MA, USA).

Reverse Transcription and Real-Time Reverse  
Transcription-Polymerase Chain Reaction
Total cellular RNA was extracted using Purelink (Life Tech-

nologies, Gaithersburg, MD, USA), according to the manufactur-
er’s instructions. hBMSCs, either undifferentiated or differentiat-

Table 1. List of primer pairs used for real-time RT-PCR analysis

Gene name (accession No.) Direction Nucleotide sequence

S29 (BC032813) Sense 5′-TCTCGCTCTTGTCGTGTCTGTTC-3′
Anti-sense 5′-ACACTGGCGGCACATATTGAGG-3′

NANOG (NM_024865.2) Sense 5′-GCCTTCACACCATTGCTAT-3′
Anti-sense 5′-TCTCCAACATCCTGAACCT-3′

POU5F1 (NM_001159542.1) Sense 5′-GAAAGGGACCGAGGAGTA-3′
Anti-sense 5′-CCGAGTGTGGTTCTGTAAC-3′

DNMT3A (NM_175629.2) Sense 5′-GCAGCCATTAAGGAAGAC-3′
Anti-sense 5′-TGGTTATTAGCGAAGAACATC-3′

DNMT3B (NM_006892.3) Sense 5′-TTACCTTACCATCGACCTCACA-3′
Anti-sense 5′-CTGTCTCCATCTCCACTGTCT-3′

DNMT1 (NM_001379.2) Sense 5′-CCATCAGGCATTCTACCA-3′
Anti-sense 5′-CGTTCTCCTTGTCTTCTCT-3′

COL10A1 (NM_000493) Sense 5′-GAATGCCTGTGTCTGCTT-3′
Anti-sense 5′-TCATAATGCTGTTGCCTGTT-3′

COL2A1 (NM_00184) Sense
Anti-sense

5′-TGGAGCAGCAAGAGCAAGGAGAAG-3′
5′-CCGTGGACAGCAGGCGTAGG-3′

ACAN (BC036445) Sense
Anti-sense

5′-GGCATTTCAGCGGTTCCTTCTCC-3′
5′-CAGCAGTTGTCTCCTCTTCTACGG-3′

NT5E (BC065937) Sense
Anti-sense

5′-TCCTTGCCTTTAATGTGTGAA-3′
5′-GTTGCTGACCCTGAGTAATC-3′

THUY1 (BC065559) Sense
Anti-sense

5′-GGACCTGATGGAGAGTGAGA-3′
5′-CCGATGGGCAAGGATGAC-3′

ENG (BC014271) Sense
Anti-sense

5′-TGAACTTGCCTAACTAACTGG-3′
5′-ATTGGTGGTGAATACACAGG-3′
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ed (in pellets or micromasses), were washed with PBS and lysed 
with lysing buffer before total cellular RNA purification. To re-
move potential residual DNA, the samples were treated with DN-
ase I (DNASE I, Invitrogen). RNA samples were reverse-tran-
scribed by using the iScriptTM cDNA Synthesis Kit (Bio-Rad, Her-
cules, CA, USA), according to the manufacturer’s protocol. A 
real-time RT-PCR method was used for mRNA quantitation using 
the KAPA SYBR FAST qPCR Master Mix (Kapa Biosystems, 
Wilmington, MA, USA) and Chromo4TM real-time detector (Bio-
Rad), as described previously. The ΔΔCt method was used for cal-
culation of the relative gene expression values. The levels of mRNA 
of interest were normalized to that of the reference gene, ribosom-
al protein S29. The primer sequences are shown in Table 1. 

Transient Transfections and Inhibition Assays
For transfection experiments, hBMSCs were seeded in 10-cm 

dishes and cultured until a subconfluent condition was reached. 
hBMSCs were then transiently transfected with DNMT3A and 
DNMT3B overexpression vectors with Lipofectamine 3000 (Life 
Technologies), or with scrambled siRNA (control) or siRNA tar-
geting DNMT3A with RNAiMAX (Life Technologies), according 
to the manufacturer’s instructions. Details of the plasmid con-
structs were published previously [Bachman et al., 2001; Jair et al., 
2006]. The sequences were inserted in a pcDNA3 backbone, and 
the empty vector was used as a control in the transfection assays. 
Three hours (for POU5F1 and NANOG mRNA levels) and 12 h 
(for DNMT3A or DNMT3B mRNA levels) after transfection, 
hBMSCs were washed, and total RNA was collected for gene ex-
pression analysis. Alternatively, hBMSCs were trypsinized, collect-
ed by centrifugation and cultured in micromass or pellet cultures 
for evaluation of chondrogenic differentiation.

In silico Target Prediction of Methylation Sites
In silico analysis of methylation sites in the early stem cell 

markers, POU5F1 and NANOG, was performed with the online 
software MethPrimer (http://www.urogene.org/methprimer) 
for CpG islands, set for ≥70% of CG%, 60% of the observed/ex-
pected CpG ratio, and a minimum of 200 bp. The promoter se-

quence was obtained from the eukaryotic promoter database 
(https://epd.epfl.ch), from 0 to 4,000 bp relative to the transcrip-
tion starting site.

Methylation Assay
Bisulfite conversion of DNA was performed by using the Epi-

Tect Fast Bisulfite Conversion Kit (Qiagen, Hilden, German). 
Thermal cycler conditions for bisulfite conversion were two re-
peated cycles of denaturation (5 min, 95  ° C) and incubation (10 
min, 60   ° C), as recommended by the manufacturer. The DNA 
methylation pattern was analyzed by methylation-specific PCR 
(EpiTect MSP, Qiagen) using GoTaq DNA Polymerase (Promega, 
Madison, WI, USA) and unmethylated-specific and methylated-
specific primers (Table 2) designed with MethPrimer online soft-
ware. The thermal cycler conditions were initial denaturation  
(5 min, 95  ° C), and 35 cycles of denaturation (1 min, 95  ° C), an-
nealing (20 s, 57  ° C), extension (20 s, 72  ° C), followed by final ex-
tension (7 min, 70  ° C). PCR products (20 μL) were electrophoresed 
in agarose gel (1%), and the bands were detected under ultraviolet 
light and photographed with an image detector and analyzer (LAS 
4000 mini, Fujifilm, Tokyo, Japan).

Statistical Analysis
Analysis of the differences between groups was performed with 

the unpaired Student t test, or one-way ANOVA followed by a 
Tukey post hoc correction test when appropriate. GraphPad Prism 
7 software was used for the analyses.

Results

Expression Pattern of DNA Methyltransferases during 
hBMSC Chondrogenic Differentiation
First, hBMSCs were cultured in micromasses and in-

duced to differentiate into chondrocytes, which was de-
termined by safranin O staining for mature chondrocyte-

Table 2. List of primer pairs used for methylation-specific PCR analysis

Gene Species M or 
UM

Primer sequence PCR product 
length, bp

NANOG Human M 5′-TTTGGGTAATATGGTGAAATTTTGT-3′ (S) 162
5′-TACCAAACCGAAATACAATAACGTA-3′ (AS)

UM 5′-TTTGGGTAATATGGTGAAATTTTGT-3′ (S) 162
5′-TACCAAACCAAAATACAATAACATA-3′ (AS)

POU5F1 Human M 5′-TTTAGGAAGTTGAGGTAGGAGAATC-3′ (S) 169
5′-AAAATTACAAATATAAACCACCGCA-3′ (AS)

UM 5′-TTTAGGAAGTTGAGGTAGGAGAATT-3′ (S) 169
5′-AAAATTACAAATATAAACCACCACA-3′ (AS)

M, methylated-specific primer; UM, unmethylated-specific primer; S, sense; AS, antisense.
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derived glycosaminoglycans (Fig.  1a), as well as by the 
increase in the expression of mature chondrocyte marker 
genes, aggrecan (ACAN) and collagen type II (COL2A1) 
from day 14 onwards (Fig. 1b). We then investigated the 
expression pattern of DNMT1, DNMT3A, and DNMT3B 
throughout the entire period of chondrogenic differen-
tiation of hBMSCs. As shown in Figure 1c–e, there were 
no significant changes in the expression of DNMT1, but 
the expression levels of DNMT3A and DNMT3B signifi-
cantly increased from day 3 onwards, with a substantial 
increase of almost 10 times in DNMT3B expression levels 
after day 14. These results indicate that DNMT1 is not 
directly associated with the expression of the genes re-
lated to chondrogenic differentiation. On the other hand, 

the data suggested that DNMT3A and DNMT3B could be 
the major DNA methyltransferases associated with chon-
drogenic differentiation of hBMSCs.

Manipulation of Chondrogenic Differentiation of 
hBMSCs Using Overexpression Vectors
To evaluate the direct effects of DNMT3A and DN-

MT3B on chondrogenesis, hBMSCs were transiently 
transfected with plasmid vectors inducing overexpres-
sion of the two DNA methyltransferases (Fig. 2a). Sur-
prisingly, DNMT3A overexpression strongly enhanced 
the chondrogenic differentiation of hBMSCs, as demon-
strated by intense toluidine blue staining for glycosami-
noglycans and immunostaining for collagen type II 
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Fig. 1. a Safranin O staining of hBMSCs cultured in micromasses. 
Note the deposition of glycosaminoglycans (red area) stained with 
safranin O. Scale bar, 500 μm. b Chondrogenesis of hBMSCs was 
also confirmed by the increase in mRNA levels of the two major 
chondrocyte marker genes, ACAN and COL2A1. Note the signifi-
cant increase in the mRNA levels of the two genes from day 14 of 
culture onwards. Gene expression levels of DNMT1 (c), DNMT3A 
(d), and DNMT3B (e) during the 21-day period of chondrogenic 

differentiation. Note that DNMT1 mRNA levels did not change 
throughout the entire period. DNMT3A mRNA levels increased 
significantly from day 3 onwards, reaching a 3-fold relative in-
crease compared to day 0. DNMT3B mRNA levels increased dra-
matically from day 7 onwards, reaching a peak of a more than 10-
fold relative increase on day 21. * p < 0.05, ** p < 0.01, *** p < 0.001, 
ANOVA/Tukey test. 
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(Fig. 2b). The gene expression analysis of ACAN and CO-
L2A1 further confirmed the dramatic effect of DNMT3A 
overexpression on chondrogenesis of hBMSCs. On the 
other hand, DNMT3B also enhanced the chondrogenic 
differentiation of hBMSCs, however to a lesser extent 
compared to DNMT3A, as shown by the histological 
analysis, and more clearly by the analysis of mRNA ex-
pression levels of ACAN and COL2A1 (Fig. 2c). 

We also analyzed the expression levels of the master 
regulator of chondrogenesis, SOX9, 1 and 3 days after 
transfection with DNMT3A and DNMT3B. Interestingly, 
however, there was no significant difference in the expres-
sion levels of SOX9, either at mRNA levels (Fig. 2c) or at 

protein levels (data not shown). These results indicate that 
DNMT3A and DNMT3B could not be directly promoting 
methylation of the genes associated with chondrocyte dif-
ferentiation (SOX9, ACAN, COL2A1), but, on the other 
hand, the methyltransferases could be promoting meth-
ylation in the promoter region of genes associated with the 
maintenance of the stem cell phenotype of hBMSCs.

Methylation Pattern in the Promoter Sequence of Stem 
Cell Marker Genes
Next, we investigated the methylation condition of the 

early stem cell markers, POU5F1 (OCT-4) and NANOG, 
as well as other markers for MSCs, including ecto-5′-
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Fig. 2. a Relative mRNA levels of DNMT3A and DNMT3B in hBM-
SCs, 12 h after the transfection of overexpression vectors. Note the 
dramatic increase in the mRNA levels of DNMT3A and DNMT3B 
in the cells. b Toluidine blue staining and immunostaining for col-
lagen type II (COL II) in the histological sections of hBMSC mi-
cromasses after 21 days of culture. Note the remarkable deposition 
of glycosaminoglycans and collagen type II by the cells transfected 
with the DNMT3A overexpression vector. DNMT3B overexpres-
sion also increased cartilaginous matrix deposition, but to a lesser 
extent compared to DNMT3A. c Gene expression levels of the ear-

ly chondrocyte marker, SOX9, as well as of the mature chondrocyte 
markers, ACAN, COL2A1, and COL10A1, after overexpression of 
DNMTs. Note that overexpression of either DNMT3A or DN-
MT3B did not affect SOX9 mRNA levels, but markedly increased 
the expression levels of mature chondrocyte marker genes. 3A, 
DNMT3A; 3B, DNMT3B. SOX9 mRNA levels were analyzed 1 day 
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test. Transfection of empty vector (pcDNA) was used as a control.
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nucleotidase (NT5E, CD73), THY1 (CD90), and endoglin 
(ENG, CD105). As shown in Figure 3, overexpression of 
DNMT3A and DNMT3B strongly suppressed the gene 
transcription of NANOG and POU5F1, but no changes in 
the gene expression of NT5E, THY1, and ENG could be 
observed. Since a previous study showed that DNMT3A 
and DNMT3B promote methylation of Pou5f1 and Nanog 
in stem cells [Li et al., 2007], we also analyzed the meth-
ylation state of these two genes upon overexpression of 
DNMT3A and DNMT3B. The results revealed that both 
DNMT3A and DNMT3B were able to promote the meth-
ylation of NANOG promoter. On the other hand, POU5F1 
methylation was only observed by DNMT3B overexpres-
sion. These results in part explain the decrease in mRNA 

transcription levels of the two stem cell markers, POU5F1 
and NANOG.

Chemical Manipulation of hBMSC Stem Cell 
Phenotype and Chondrogenic Differentiation
Finally, hBMSCs were chemically stimulated with an 

exogenous demethylating agent, 5-Aza. As shown in Fig-
ure 4a and b, stimulation with 5-Aza induced a significant 
decrease in the expression levels of DNMT3A, but not in 
that of DNMT3B. Additionally, 5-Aza significantly in-
creased the expression levels of the stem cell markers 
POU5F1 and NANOG (Fig. 4c, d). In accordance with the 
overexpression experiments, 5-Aza treatment did not in-
duce any change in the mRNA transcription levels of the 
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DNMT3B overexpression. mRNA levels of POU5F1 and NANOG 

were analyzed 3 h posttransfection. f, g Results of methylation-
specific PCR showing CpG methylation of promoter regions of 
NANOG and POU5F1 after overexpression of DNMT3A or DN-
MT3B. **  p < 0.01, ANOVA/Tukey test. Transfection of empty 
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other analyzed markers for MSCs, NT5E, THY1, and 
ENG (Fig. 4e–g). Next, we attempted to control chondro-
genic differentiation with 5-Aza, and indeed 5-Aza mark-
edly suppressed chondrogenesis of hBMSCs, as demon-
strated by toluidine blue staining of hBMSC micromass 
cultures, and mRNA levels of ACAN, COL2A1, and CO-
L10A1 (Fig.  5). Together, these results suggested that 
5-Aza could be affecting the transcription of specific 
genes associated with undifferentiated hBMSCs (i.e., 
POU5F1, NANOG) or differentiated hBMSCs (i.e., CO-
L2A1, ACAN) in a direct and indirect manner, through a 
possible parallel regulation of DNMT expression. 

Finally, to confirm the direct role of DNMT3A on the 
chondrogenesis of hBMSCs, we performed inhibition of 
DNMT3A by using a specific siRNA. As shown in Figure 
6a, siDNMT3A significantly suppressed DNMT3A ex-
pression, and markedly inhibited chondrogenesis of 
hBMSCs, as demonstrated by toluidine blue staining and 
mRNA levels of ACAN, COL2A1, and COL10A1 (Fig. 6b, 
c). Taken together, these data show that DNMTs play cru-
cial roles in the control of genes associated with stemness 
of stem cells, which could further affect the chondrogen-
ic differentiation of hBMSCs.
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21 days of chondrogenic differentiation of 
hBMSCs treated with 5-Aza. Note the inhi-
bition in the glycosaminoglycan synthesis 
and the expression of chondrocyte marker 
genes by 5-Aza treatment. * p < 0.05, ** p < 
0.01, *** p < 0.001, ANOVA/Tukey test.
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Discussion

MSCs have been regarded as a high potential cell 
source in regenerative medicine. In particular, the chon-
drogenic differentiation of MSCs has been largely inves-
tigated. For instance, previous reports have identified 
the key factors that drive the chondrogenesis of MSCs 
[Furumatsu et al., 2005; Jin et al., 2007; Kita et al., 2008; 
Hara et al., 2015, 2016]. Additionally, other chemical 
drugs or compounds have been shown to actively induce 
chondrogenesis [Johnson et al., 2012; Hara et al., 2013]. 
Manipulation of MSC chondrogenic differentiation 
with biomaterials have also been extensively studied 
[Holland et al., 2005; Zhang et al., 2015; Tan and Hung, 
2017]. However, there is still a need to understand the 
intracellular mechanisms regulating the chondrogenic 
differentiation of stem cells, which may allow further 
improvement in the methods for cell differentiation for 
application in tissue engineering or regenerative medi-
cine.

A recent genome-wide map of quantified epigenetic 
changes after 7 days of chondrogenic differentiation of 
MSCs showed that the promoters of signature genes were 
hypomethylated both before and after chondrogenesis, 
suggesting that DNA methylation was not crucial in reg-
ulating transcription of these key genes during chondro-
genesis [Herlofsen et al., 2013]. In this present study, 
however, we investigated the DNA methylation patterns 
during chondrogenic differentiation of hBMSCs, and 
demonstrated that the expression levels of both DNMT3A 
and DNMT3B, but not DNMT1, were increased during 
the 21-day differentiation process. We also demonstrated 
that DNMT3A in particular strongly enhanced the chon-
drogenesis of hBMSCs. Nevertheless, these findings could 
only be clarified by inducing overexpression of DNMT3A 
and DNMT3B. A possible reason for the apparent dis-
crepancy between our study and the genome-wide anal
ysis showing no marked difference in the methylation 
pattern of signature genes in MSCs and differentiated 
chondrocytes could be associated with a more complex 
regulatory mechanism of DNMT3A and DNMT3B ex-
pression in the physiological state [Denis et al., 2011; Jia 
et al., 2016].

Regarding the intracellular machinery of how DN-
MT3A and DNMT3B could be enhancing chondrogen-
esis, a possible mechanism would be by suppressing the 
expression of stem cell markers, POU5F1 and NANOG. 
The effect of Dnmt3A and Dnmt3B in regulating the ex-
pression of Nanog and Pou5f1 has been already clarified 
[Li et al., 2007]. Dnmt3A and Dnmt3B were shown to 

form a common complex to silence Nanog and Pou5f1 
transcription [Li et al., 2007].

On the other hand, by inhibiting the activity of DN-
MTs with 5-Aza, we could maintain the expression of 
stem cell markers. More interestingly, 5-Aza was shown 
to increase the mRNA levels of the early stem cell marker 
genes, Pou5f1, Nanog, and Sox2, and to convert somatic 
cells into tissue-regenerative MSCs [Tsuji-Takayama et 
al., 2004; Chandrakanthan et al., 2016]. Together, these 
data indicate that DNMTs play crucial roles both in the 
maintenance of the stemness as well as in the chondro-
genic differentiation of MSCs.

Regarding the CpG methylation of chondrocyte mark-
er genes, it has been extensively studied in cases of carti-
lage degenerative diseases, such as osteoarthritis [Barter 
et al., 2012; Kim et al., 2013]. Previous reports showed an 
increased DNA methylation in the SOX9 promoter in 
damaged chondrocytes of OA patients compared to that 
of normal chondrocytes, suggesting that DNMT-associ-
ated downregulation of SOX9, which controls the gene 
expression of the main cartilage matrix components (i.e., 
collagen type II and glycosaminoglycans), could be lead-
ing to cartilage degeneration [Kim et al., 2013]. On the 
other hand, DNA methylation of the major markers of 
mature chondrocytes, in particular that of ACAN, was 
shown not to correlate with their mRNA transcription 
levels [Fernandez et al., 1985; Pöschl et al., 2005]. The de-
crease in ACAN expression in chondrocytes from osteo-
arthritic articular cartilage did not correlate with in-
creased methylation of the CpG islands in the ACAN 
promoter [Pöschl et al., 2005]. In other words, CpG meth-
ylation may not have a central role in the inhibition of 
aggrecan promoter activity during cartilage degradation 
[Pöschl et al., 2005]. Therefore, DNA methylation of 
SOX9 could be a more relevant event eventually leading 
to cartilage degeneration. Nevertheless, the present study 
showed an apparently contradictory result regarding the 
roles of DNMTs on chondrogenesis of hBMSCs. DN-
MT3A and DNMT3B mRNA levels increased from day 3 
onwards during the chondrogenic differentiation of 
hBMSCs, which would be after the peak period of SOX9 
activity. The transient transfection performed herein 
during the initial stages of culture in fact enhanced the 
differentiation of hBMSCs without affecting the mRNA 
levels of SOX9. Possible explanations could be associated 
with distinct activities of DNMT3A or DNMT3B on sup-
pressing the expression of yet unknown genes that inhib-
it the chondrogenic differentiation of MSCs. Alterna
tively, as shown in the present study, DNMT3A and 
DNMT3B could be inhibiting the transcription of stem-
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ness-related genes, and promote a stronger differentia-
tion of hBMSCs.

In conclusion, regulation of DNMT3A and DNMT3B 
activity by overexpression vectors or demethylating 
agent, 5-Aza, allowed discoveries on the function of these 
methyltransferases during chondrogenic differentiation 
of hBMSCs and could be useful tools for control of stem-
ness and differentiation of stem cells for potential appli-
cation in tissue engineering and cartilage regeneration.
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