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ABSTRACT

The first aim of this paper is to give four types of examples of surface bundles over surfaces with
non-zero signature. The first example is with base genus 2, a prescribed signature, a 0-section
and the fiber genus greater than a certain number which depends on the signature. This provides
a new upper bound on the minimal base genus for fixed signature and fiber genus. The second
one gives a new asymptotic upper bound for this number in the case that fiber genus is odd.
The third one has a small Euler characteristic. The last is a non-holomorphic example.

The second aim is to improve upper bounds for stable commutator lengths of Dehn twists
by giving factorizations of powers of Dehn twists as products of commutators. One of the
factorizations is used to construct the second examples of surface bundles. As a corollary, we see
that there is a gap between the stable commutator length of the Dehn twist along a nonseparating
curve in the mapping class group and that in the hyperelliptic mapping class group if the genus
of the surface is greater than or equal to 8.

1. Introduction

1.1. Notation

In here, we introduce notation. Let Xj be a compact oriented surface of genus g with r
boundary components, and let M be the mapping class group of X7, that is the group of
isotopy classes of orientation preserving self-diffeomorphisms of Xj such that diffeomorphisms
and isotopies fix the points of the boundary. For simplicity, we write X, = Eg and M, = Mg.
For a subsurface ¥ of 37, let M(X) denote the subgroup of Mj generated by elements whose
restrictions on Xy — X are identity. We denote by i(a,b) the geometric intersection number for
two simple closed curves a and b on X7.

For ¢1,¢2 € My, the notation ¢2¢; means that we first apply ¢1 then ¢, the conjugation
bad1d; " of ¢y by b is denoted by 4,(¢1), and we write [¢1, ¢o] for the commutator of ¢; and
¢2. We denote by t. the right-handed Dehn twist along a simple closed curve ¢ on 7. Since
M is generated by Dehn twists [13], every f in M can be written as a word in the set of all
Dehn twists. If we consider f without explicit word, then we suppose that a certain word of f
is given and fixed.

A surface bundle over a surface is a fiber bundle that the fiber and the base are closed
oriented surfaces. If the fiber and the base are ¥, and ¥, respectively, then we call this a
Y ,-bundle over . For the total space X of this bundle, we denote by o(X) the signature of
X. We write it simply o when no confusion can arise.
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In this paper, we introduce the symbol “=p” in Section 2.3. If the reader is interested only
in the results on the (stable) commutator length, then he or she may replace “=p” by “=”
and skip Section 2.1, 2.3, 5 and 6.

1.2. Surface bundles over surfaces with non-zero signature

Even though to consider surface bundles over surfaces is one simple way to get 4-manifolds,
many fundamental problems on such bundles remain open. Problems about surface bundles
with non-zero signature are exemplified as one of them.

Euler characteristics multiply for fiber bundles. In contrast, this property does not hold for
the signature. Equivalently, there is a surface bundle over a surface with non-zero signature.
Such examples were first exhibited by Atiyah [2] and, independently, Kodaira [26]. Since then,
many examples of surface bundles with nonvanishing signature have been constructed (see e.g.
[24, 14, 9, 8, 42, 16, 1, 34]).

A ¥ ,-bundle over X, gives some restrictions on the signature o. For example, o must be
divisible by 4, and it vanishes if h <1 or g < 2 using Meyer’s signature cocycle and Birman-
Hilden’s relations [6] of My (see [36, 37]). Hence, the case of g > 3 and h > 2 is interesting.
The existence of an example of g = 3 and o # 0 was shown in [36, 37], and explicit examples
were constructed in [14, 42, 16, 34]. In particular, for any integer n, there is a ¥3-bundle over
Yy witho =4nif h > 7ln| + 1 (see [34]). An example of h = 2 and o # 0, which solves Problem
2.18 (A) in [25], was first given by Bryan-Donagi [8]. Precisely, it satisfies g = 4k3 — 2k? + 1
and o = 8(k® — k)/3 for any integer k > 2. Thus, we notice that g and o in the example of
h = 2 take discrete values compared to h and o in the examples of g = 3. If the example of [8]
has a O-section (i.e. a section of self-intersection zero), then the genus of a fiber can extend to
g > 4k3 — 2k? + 1 using “section sum operations”. However, the author does not know whether
it admits a 0-section or not. The motivation for the next result comes from these observations.

THEOREM A. For any integer n, there is a ¥,-bundle over ¥y with o = 4n if g > 39|n|. In
particular, it admits a 0-section.

Meyer [36, 37| also proved that for every g > 3 and n, there is a ¥,-bundle over ¥ with o =
4n for some h. Motivated by this result, Problem 1.1 below, which is a refined version of Problem
2.18 (A) in [25], was posed by Endo [14]. Solving Problem 1.1 is equivalent to computing the
minimal genus of the surfaces representing the n times generator of Ha(Myg;Z)/Tor for fixed
g >3 and n (see [32]).

PrROBLEM 1.1 Endo [14]. Let hy(n) be the minimal h such that there exists a X ,-bundle
over ¥ with ¢ = 4n. Determine the value hgy(n).

Upper bounds on hy(n) were given in [14] after the initial work in [42, 16, 34]. A sharper
bound given by Lee [34] is hy(n) < 5|n|+ 1 for g > 6. As a corollary of Theorem A, we can
compute hy(n) for the special case and give it’s upper bound for g > 39 by pulling back the
bundle to unramified coverings of 35 of degree |n|.

COROLLARY 1.2.  For any n, hy(n) =2 if g > 39|n|, and hy(n) < |n|+1 if g > 39.

Kotschick [32] first gave the lower bound on hy(n). The best known bound was obtained by
Hamenstadt [22]: 3|n|/(g — 1) + 1 < hy(n). Since the upper bound with the same shape as the
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above lower bound, in which g appears in the denominator, was given in [16], we next turn to
study the asymptotic behavior of hy(n). This is natural since the base genus and the signature
grow linearly in a sequence of bundles by pulling back by covers of the base of a given bundle.
We consider the following problem posed by Mess (see Problem 2.18 (B) in [25]).

h
PROBLEM 1.3 Mess [25]. Let H, i lim "2

n—soo N

. Determine the limit H,.

The limit exists and is finite and interpreted as the Gromov-Thurston norm of the generator
of Hy(Mgy;Z)/Tor (see [32]). The lower bound 3/(g — 1) < H, is immediately obtained from
the result of [22]. For any g > 3, an upper bound on H, was first given in [16]. This bound
was improved as follows: Hy < 6/(g — 2) for even g, H; < 9/(g —2) for g =3k > 6 and H, <
14/(g — 1) for odd g (see [8, 9, 34]). Since there is a gap between the even and odd ¢ cases,
we fill it.

THEOREM B. If g is odd, then, for any integer n, there is an ¥,-bundle over Y, 5 with
o = 4(g — 1)n. Therefore, Hy, < 6/(g — 1) for odd g.

We next focus on surface bundles over surfaces with non-zero signatures and small Euler
characteristics. The Euler characteristic of a ¥ ,-bundle over X, is 4(g — 1)(h — 1). The smallest
known example is that of [34] (¢ =3, h = 8 and o = 4). We slightly improve it.

THEOREM C. There exists a Y3-bundle over Y7 with o = 4 and a 0-section.

Finally, we give non-holomorphic examples with non-zero signature. Thurston [43] showed
that the total space of a ¥,-bundle over X, is symplectic for g > 2. Then, the following question
arises: For which pairs of g and h does there exist a ¥4-bundle over ¥, with o # 0, whose total
space does not admit a complex structure? If a holomorphic surface bundle is isotrivial, then
o =0 (see [8]), and there are simple examples with o = 0 that is non-isotrivial and whose
total space can not be complex (see [4]). From this, we require the assumption that o # 0.
Baykur [4] showed that for any positive integer N and for any h > 3, there exists g > N such
that there are infinite families of (pairwise non-homotopic) 4-manifolds with o # 0 admitting
a Yg-bundle over ¥ and not admitting any complex structure with either orientation (The
same holds for any g > 4 if h > 9). Using Theorem 4 (2) of [4] and Theorem A, we see that
the same is true for A = 2 (i.e. the smallest h satisfying o # 0).

COROLLARY 1.4. For any integer n and for any g > 39|n| + 1, there is an infinite family
of (pairwise non-homotopic) 4-manifolds with o = 4n admitting a ¥,-bundle over ¥, and not
admitting any complex structure with either orientation.

1.3. Stable commutator lengths of Dehn twists

Since the monodromy factorization of a 3 4-bundle over ¥, is a factorization of the identity
as a product of h commutators in Mg, techniques constructing commutators and reducing the
number of them are required to prove Theorem A, B and C. We apply the techniques of (stable)
commutator lengths on M, to obtain the results on surface bundles. Especially, Theorem D
(1) below will be used to show Theorem B.
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Let [G, G] be the commutator subgroup of a group G. For x € [G, G], the commutator length
clg(x) of x is defined to be the smallest number of commutators whose product is equal to x.
The stable commutator length sclg(x) of x is the limit

1 n
sclg(x) = nh_)rréo #

Note that the limit exists. We define clg(z) := 0o if x ¢ [G, G], sclg(z) := sclg(z*)/|k| if
r ¢ [G,G] but z* € [G,G] for some k and sclg(z) := oo if 2* ¢ [G,G] for any k. From the
results of [6] and [41], scly, (z) < oo for any x € M, and any g > 1. Since Dehn twists are
the most fundamental generators of My, computing clay, (t.) and sclay, (t.) is the natural
problem. Korkmaz and Ozbagci [29] showed that clay, (t.) = 2 for any non-trivial (separating
or nonseparating) Dehn twist ¢. if g > 3. Therefore, our next problem is to calculate claq, (£7)
for any n and sclaq, (t.). However, since it is difficult to compute clg and sclg in general, it
makes sense to give estimates on claq, (t7) and sclaq, (Zc).

A lower bound on sclay, () was given by Endo-Kotschick [17]. Consequently, M, is not
uniformly perfect, and the natural homomorphism from the second bounded cohomology of M,
to its ordinary cohomology is not injective, which were conjectured by Morita [40]. For technical
reasons, they showed that |n|/(18g — 6) + 1 < claq, (t7!) for any n if c is a separating curve. This
gives 1/(18g — 6) < sclp, (tc) for a separating curve c. This assumption that c is separating
was removed by Korkmaz [27], and the above results were extended to positive multi twists in
[7]. In [27], an upper bound on sclaq, (t.) was also given. He showed that sclaq, (t.) < 2/30 for
a nonseparating curve c if g > 2. On the other hand, there is an estimate scla, (t.) = O(1/g)
for any simple closed curve ¢, so limy o scla, (tc) = 0 (see [33] and also [10]). Explicit upper
bounds that realize such an estimate were given in [11] if ¢ is nonseparating, and in [39]
if ¢ is separating. However, they do not give an explicit factorization of ¢? as a product of
commutators realizing lim,_, . sclaq, (tc) = 0 explicitly.

The purpose is to give sharper upper bounds for stable commutator lengths of Dehn twists
giving explicit factorizations of powers of Dehn twists as products of commutators. We call a
simple closed curve s on ¥, the separating curve of type h if s separates ¥, into two components
with genera h and g — h for h =1,2,...,[4]. To state our results, let sy be a nonseparating
curve on X, and let s;, a separating curve of type h on X,. Our main results are following.

THEOREM D. Let g > 2 and h > 2. For any integer n, we have the following.
(1) clpm, (tig(gfl)n) < |n| + 3, and therefore sclq, (ts,) < 1/(10g — 10),
(2) clag, (t597 ™) < [7|n|/2] + 5, and therefore sclaq, (t5,) < 7/(10g — 10),
(3) clag, (t9/"™) < [(In] + 3)/2], and therefore sclu, (ts,) < 1/(2[g/h)).
In particular, there are factorizations of powers of Dehn twists as products of commutators
realizing the above upper bounds for the commutator lengths.

Sharper upper and lower bounds were given in [38, 11, 39] if g = 2.

Let H4 be the hyperelliptic mapping class group of ¥4, that is the subgroup of M, consisting
of all mapping classes that commute with isotopy class of some fixed hyperelliptic involution.
Since M, =H, if g = 1,2, we have sclrq, = scly,. In general, for a subgroup H of a group
G, we have sclg(z) < scly(z). By 1/(8¢g +4) < scly, (ts,) (see [38]) and Theorem D (1), we
obtain the following corollary.

COROLLARY 1.5. If g > 8, then scla, (ts,) < scly, (ts,)-
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From [41], we have claq, (t7) < oo for any n if g > 3. In contrast, clag, (t7,) < oo if and only
if n =0 (mod 10), cla, (t7,) < oo if and only if n = 0 (mod 5), and claq, (t7,) < oo if and only
if n =0 (mod 12). Even though sclaq, (ts,) = 1/12 (see Remark 4.5 in [11]), to my knowledge,
cla, (t42) is still unknown. We determine clag, (£12™). It was shown in [29] (resp. [31]) that
t;g (resp. ti’l) in Mj is written as products of 2 commutators (resp. 6 commutators). Hence,
el (t12) <2 and clag, (£5,) < 6. We generalize the results to 10n and 5n and improve the
result of [31] slightly.

THEOREM E. For any integer n, we have the following.
(1) elag, (#27) = |n[ + 1,
(2) claa(ts™) < Inf +1,
(3) clagy (£5) < [TIn] /2] + 2.
In particular, there are factorizations of powers of Dehn twists as products of commutators
realizing the above upper bounds.

1.4. Outline

The outline of the paper is as follows. In Section 2, we introduce some relators in My and
a signature formula for achiral Lefschetz fibrations given by Endo-Hasegawa-Kamada-Tanaka
[15]. They will be used to compute the signatures of surface bundles over surfaces. Section 3
exhibits techniques to write certain words as products of commutators and to reduce the
number of commutators. In Section 4-8, we give the proofs of the main results. Throughout
the paper, we only give proofs for n > 0 since the case of n < 0 is immediately follows from
the case of n > 0.

Acknowledgements. 1 wish to express my gratitude to H. Endo, S. Kamada and K. Tanaka
for their explanations on [15] and helpful comments, to A. Akhmedov and R. I. Baykur for
their interests and asking me the existence of the bundle in Theorem A and to M. Korkmaz for
his comments. I am especially grateful to H. Endo with whom I discussed the subject matter of
this paper and to the referee for his/her careful reading of the paper and for his/her numerous
comments which led to a considerable improvement of the accuracy and of the quality of the
exposition.

2. Relators in mapping class groups and a signature formula

In this section, we present the signature formula for achiral Lefschetz fibrations given in
[15]. When we consider an achiral Lefschetz fibration, we obtain its global monodromy in the
mapping class group of the fiber. The result in [15] says that we can compute the signature of
the total space of the fibration by “counting the numbers of certain relators” included in the
global monodromy.

The outline of this section is as follows. We give a brief summary of the global monodromy of
an achiral Lefschetz fibration in Subsection 2.1. In Subsection 2.2, we describe four fundamental
relators and the infinite presentation of M, given by Luo [35]. In Subsection 2.3, we review
the result of [15].

2.1. The global monodromy of an achiral Lefschetz fibration

We briefly describe the global monodromy and the section of an achiral Lefschetz fibration.
Let g > 2. Roughly speaking, a genus-¢g achiral Lefschetz fibration m : X — ¥, is a smooth
fibration of a 4-manifold X over ¥j; with regular fiber ¥, and finitely many singular fibers.
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The singular fibers are classified two types: of type +1, and of type —1. Each singular fiber
is obtained by collapsing a simple closed curve v on Y4, called the vanishing cycle. Note that
if 7 has no singular fibers, then it is an ¥,-bundle over ;. When we give a genus-g achiral

Lefschetz fibration X — X; with n singular fibers of type €1, €s, ..., €, whose vanishing cycles
are v1,va,. .., U, where ¢; = =1, we obtain the following relator (up to cyclic permutations),
called the global monodromy of m, in My:

tzllt?; o t?,ﬁ [Xlayl][X%yﬂ T [thyh] = id, (2'1)
where A, Y, are some words in M,. Conversely, if we give a relator of the above form, then
we get a genus-g achiral Lefschetz fibration X — Y5, with n singular fibers of type €1, €3, ..., €,
whose vanishing cycles are vy, va, ..., v,.

A genus-g achiral Lefschetz fibration 7 : X — ¥ with the global monodromy (2.1) admits
a (—k)-section (that is, s : ) — X such that 7o s =idy, and [s(3,)]? = —k) if and only if
there exists a lift of (2.1) from M to M} in the form

dp2 .. gin [??1,?1][552,372] e [/?h,yh] = t5,

V1 V2 Un
where 0 is the boundary curve on E}], t3, is a Dehn twist mapped to ¢,, under the map
./\/l}] — M, induced by the inclusion E_}] — X4, and similarly, )?j and )N)j are mapped to &; and
Y;, respectively.
By the result of [15], the signature of X is determined by “the numbers of certain relators”
of Mg included in (2.1). In the next subsection, we introduce the relators.

2.2. Infinite presentations of mapping class groups

In [15], the authors employ an infinite presentation of M given by Luo [35] building on
earlier work of Gervais [21]. To state it, we introduce four fundamental relators in M.

DEFINITION 2.1. Let a, b be simple closed curve on ¥7.
— If a is homotopically trivial, then t, = id, so we call it the trivial relator and write

T :=1,.

— Let ¢ = tp(a). Then, we have the relation ¢, = tbtatgl, called the primitive braid relation.
Therefore, we obtain the primitive braid relator

P =ttt t; "

— Let a,b be simple closed curves on the subsurface ¥} bounded by d with i(a,b) =1 as
in Figure 1. Then, the 2-chain relation tg = (tat5)® holds in M{ C M. This gives the
2-chain relator

Oy =t (taty)".

— Let x,y, z be the interior curves on a subsurface X3 in ¥y as in Figure 2, and let a,b,¢,d
be the boundary curves on Eé as in the figure. Then, the lantern relation totytc.tq = tatyts
holds in Mg C M. Then, we have the lantern relator

o1l —1,—-1,-1
L=ty b

Luo [35] gave the following infinite presentation of the mapping class group M.

THEOREM 2.2 ([35]). My} has an infinite presentation whose generators are the set of all
Dehn twists and whose relators are T', P, Cy and L.
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{1

FIGURE 1. The curves a,b,d on 1.
FICURE 2. The curves a,b,c,d,x,y,z on S¢.

In the rest of this subsection, we present variations of the primitive braid relator P. They
are used throughout this paper. Before it, we give the following lemma.

LEMMA 2.3.  Let f be a word in My. For a simple closed curve a on ¥, t;(la)ftaf_1 is a
product of conjugates of primitive braid relators and their inverses.

Proof. Let f=t}.--t;>t;', where ¢; = £1 and each b; is a simple closed curve on Xj.
For simplicity, we set co =a, ¢; =t} (c;-1) for i =1,2,...,k, so ¢y = f(a). Then, P, =
t;ltZ’i tcifltb:ei is a primitive braid relator if ¢, = 1, and P, ., is the conjugation of the inverse
of the primitive relator tc_iltbi te, tb_i1 by t,;_l if e, = —1 since tp,(¢;) = ¢;—1 from ¢; = tb_il(ci_l).
Here, let us consider the following conjugation Q; ¢, of P; ,:

Qk,ek = Pk,eka
— f€k —€k
Qk—17€k71 = tbk Pk—1,€k71tbk ’

and in general

.k, S D TEiHL €k
Qie; = tbk tbiﬂpl,eitbiﬂ tbk :

Then, we have

€ €k—1 € —€2 g —€3 —€k
Qk,Eka*LEkA T QLEl = Pk,éktbz ’ Pkflﬁékfltbk,l T P27€2tbz P, - tbg 2tb3 e .tbk g
_ g4—1yer . —1 €r—1 —1 €0 . —14€1 —€1  4—€21—€3 1€k
- tCk tbktckfl tckfltbk_ltck—Z tCz tthcl tcl tbltcotbl tbz tbg tbk
_ =1 g€py€k—1  g€24€1 | L p—€lp—€2 | 1—€k
=t tbktbk,l tthbl te, tbl tb2 tbk

—1 —1
=ty ftal

This finishes the proof. U

From Lemma 2.3, we can regard the word t;(la) ftaf~! as a primitive relator, so we use

the same letter P for t;(la)ftaf_l, and we call the relation ft,f ! = tf(a) the primitive braid
relation again. Moreover, the two well-known relations, called the commutative and the braid
relations, are also the primitive braid relations.

DEFINITION 2.4. Let a,b be two simple closed curves on 7.

— Let f be a word in Mj. Then, we have the primitive braid relation ftof ' = tf(a) and
the primitive relator

=1 —1
Pi=tyl ftaf 7t



Page 8 of 30 N. MONDEN

— If i(a,b) = 0, then ¢;(a) = a. Therefore, we have the commutative relation t,t, = tpt, in
M and the commutative relator

P =t 'ttty

— If i(a,b) = 1, then t,ty(a) = b. Then, the braid relation t,tyt, = tytqty holds in Mj. This
gives the braid relator

P =t Mtatptaty Mt

2.3. A signature formula

We now present the work of [15]. This was essentially derived in the earlier work of Endo
and Nagami [18], which gives a signature formula for Lefschetz fibrations over S2. Since (2.1)
is normally generated by T', P, Co, L from Theorem 2.2, we can count the number of these four
relators included in (2.1). This fact is the key to state the result in [15].

THEOREM 2.5 ([15], Proposition 5.1). Let n*(R) be the number of a relator R*! included
in the global monodromy of a genus-g achiral Lefschetz fibration m: X — X, where R =
T, P,Cy, L. We set n(R) =n*(R) —n~(R). Then, we have

o(X) = —n(T) — ™n(Cy) + n(L).

REMARK 2.6. Originally, Proposition 5.1 in [15] is stated in terms of a graphical method,
called the “chart” description.

From Theorem 2.5, we notice that primitive braid relators are not needed for the computation
of o(X). Equivalently, if we have an achiral Lefschetz fibration 7’ : X’ — ¥, with the
monodromy obtained by applying primitive braid relations to that of w: X — X, then
o(X) = o(X’) holds. For this reason, we introduce the following notation.

DEFINITION 2.7.  Let @ be a conjugate of primitive braid relator in M.
— Let V and V' be words in M with V'V—! = Q¢, where e = 1. Set

W .= U1VU2,
W’ = U1V/U2,
where Uy and Uz are words in Mg. Then, we can construct W' from W using Q as follows:
(L QU HYW = (U, QU YU VU, = UL VU, = W,

When W' is obtained from W by applying a sequence of the above operations (i.e. by
using the primitive braid relations), we denote it by

W =p W'.
— We say that W commutes with W’ modulo P if the next relation holds:
W-W'=pW - -W.
— Let Wy, Wa, ..., W, be words in M. If the relation
WiWy o - Wy Wy, =p W, Wi Wo - Wy

holds, then we call it a cyclic permutation.
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Remark 2.8 below collects fundamental properties of the equivalence relation =p. We will
use it (without specifying) repeatedly.

REMARK 2.8. Let f,X1,Xs be words in M;, and let a,aq,as,...,ar be simple closed
curves on Xg. We follow the notation of Definition 2.7.
(1) For a primitive braid relator Q = tjf(la)ftaffl, we set V =tpq), V' = ftaf ™, Up = X1,

U; = X5. Then, we have
X1 tpay - Xo=p X1 ftaf " Xo.

(2) For a primitive braid relator Q) = tjf(la)ftaffl, weset V=7FfV = t;(la)fta, U = Xitya),
U; = X5. Then, we have

X1'tf(a)'f'XQEPXl'f'ta'XQ,

In particular, for any f, the Dehn twist along a boundary curve 0 of ¥j commutes with f
modulo P from f(9) = 0.

(3) When dealing with a relator R one can always perform any cyclic permutation for the
following reason: we set R =t t2 - - t&k and Q., = t5: Rt,*R™', where ¢; = +1. Then,
Q_1 is a primitive braid relator from R(ay) = ax, and Q1 = (to,Q_1t;})~"'. Therefore,
when we set Q = Q.,, V =R, V' =t Rt , Uy = Uy =id, we have

k ag’?

€1 4€2 | 4€k—1 46k — €k, €1 4€2 | 4€k—1
taltaz tak—ltak =P tak taltaz tak—l

(4) It is clear that WW' = W'W as elements in My, if WW' =p W'W. Conversely, we see
that WW' =p W'W if WW' = W'W as follows: we set W' = te1 t$2 - -tgk , where ¢; = £1.
From W/ = WW'W ™! and the primitive braid relation, we obtain W' =t§ ---t& =p
t This gives WW' = Wil -tk =p t}; . -t;’;(ak)W =p W'W.

War) " W (ay)- W(ar)

3. Lemmas

This section exhibits techniques to prove the main results.

From Section 2, we see that we need to write relators as a product of commutators. The
next lemma will be useful for constructing commutators. This technique was used for example

in [23], [29] and [5].

LEMMA 3.1.  Let ay,az,...,an and by, bs, ..., b, be simple closed curves on Xy . If there is a
word f in M} mapping (ai,asz,...,a,) to (by,ba,...,by,), then for any integers ki, ka, ..., kn,
the following holds:

Ky gk En 4—kn —koyp—k1 — [k gk En
tarlay tan tbn "'tbz 2tb1 '=p [taitai T tamf]'
Proof. By the primitive braid relations and (ft,, f~')~% = ft;ikiffl, we have
Ky 4k kn 4—kn —koy—k1 _ 4k gk kn  4—kn —ky —k
taitai e tan tbn U tbz thl b= taitaiz) e tan ’ tf(an) o tf(a22)tf(a11)
=p taytes - ton fta ot T
By t Fn ot ke b = (thigha . k) =1 we obtain the required formula. O

The next three lemmas are used to construct a word f in Lemma 3.1.

LEMMA 3.2. Let a,b,c be nonseparating curves on ¥y such that i(a,b) = i(b,c) = 1. Then

the following holds.
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(1) tptetqts maps a to c. It maps (a,c) to (¢,a) if i(a,c) =0,
(2) tqtpte maps (a,b) to (b, c) ifi(a,c) = 0.

Proof.  Since t,tp(a) =0, tpt.(b) = ¢, t.dp(c) = b and tpt,(b) = a, and t,(c) = ¢, t.(a) =a
and tot. = tet, if i(a,c) = 0 (see Definition 2.4), (1) follows from

)
)
tytetaty(a) = tpte(b) = c,
tbtctatb(c) = tbtaﬁctb(c) = tbta (b) =a,

and (2) is obtained as follows:

O

LEMMA 3.3. Let a,b,c,, 3, be nonseparating curves on X such that i(a,b) = i(b,c) =
i(a, B) = i(B,7) = 1. Suppose that a is disjoint from «, 8, and that v is disjoint from a,b, c.
Then, tptctqty - tgtytats maps (a,a) to (¢,7). It maps (a,c, a,7) to (c,a,v,a) if ¢ is disjoint
from a,«, 8,7, and if « is disjoint from =, a, b, c.

Proof. Since a (resp. v) is disjoint from a, 8,7 (resp. a, b, ¢), we have
totetaty - tatstats(a) = totetats(a) = c,
tbtctatb . tgt,ytatg (Oé) = tbtctatb(’)/) =7

by the farmer part of Lemma 3.2 (1). By a similar argument, the latter part of Lemma 3.3
follows from that of Lemma 3.2 (1). This finishes the proof. O

LEMMA 3.4. Let a,b,c,a, 3,7 be nonseparating curves on X such that i(a,b) = i(b,c) =
i(a, B) = i(B,v) = 1. Suppose that a,c are disjoint from «,f3,~ and that § is disjoint from
a,b,c. Then, tgt - tpt taty - tats maps (a,a) to (c,7).

Proof. Since a, ¢ (resp. ) are disjoint from «, 3,7 (resp. a, b, ¢), by tatg(a) = B, taty(8) =
(see Definition 2.4) and the farmer part of Lemma 3.2 (1), we have

tgty - tptetaly - tatg(a) =tgty - tytetaty(a) = tgt-y(c) =c,
tgtﬁf stptetaty - tatg(oz) = tﬁlf7 . tbtctatb(ﬁ) = tﬁtry(ﬁ) =,
and this finishes the proof. ]

The key lemma of this paper is following.

LEMMA 3.5. Let a,az,...,am+1 be disjoint simple closed curves on 7. If there is a word
[ in M such that f(a;) = a;41 fori=1,2,...,m, then we have the following relations in My
for any integers k1, ko, ..., kyy1:
(1) thih --~tf§;';ii =p [thighithe . ghithatothn g .tlgint’j2+"'+kﬂl+l7
(2) thithz - tani ) =p dal, T ke gl bRt tRep),

k — ykitkottk —kyp—k1— ki —kg—-—
(3) thihe . pimAl = g2 L f k1ta2k1 LEIN 'ta,,lfl k2 km]_

ay”az m+1 Am+41 1
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Proof. For abbreviation, set K; := ki + ko 4+ - - - + k;. Then, we have

kigko | pkm4r _ g K13—K1 Koy —Ko K3y —Ksz | 1 Kmp—Km 1 Kmi1
talta2 ta'm+1 - tal ta2 ta2 tU/S ta3 ta4 tanL ta'm+1 tam+1 N

This relation and the commutative relations give the following three relations:

thighz o pkmatr =p tEupKe o Em =K ...t;:(z‘t;?Kl pEm

ay”az Am+1 ay “az am Am+41 Am+41 7
kigka o gkmir = o pBmyr  pEipKe o 4 Km =K K2y~ K
taltag tam+1 =P tam+1 tal taz tam tCLm+1 tas taz ’
kl k72 e knL+1 — K'm+1 . _Kl _K2 e _KTVL . K'm .. K2 Kl
ta1ta2 tam+1 - tam+1 taz ta% tllm+1 tam ta2 ta1 :

Here, by the primitive braid relation to, , =p ftq, f~' and (ftq, f~1) 5 = ft;iK’if’1 for i =
1,2,...,m, we obtain
K14 K Km —Km —Koy—Ki — Ki4K K —Km —Koy—Kq p—1
talltagz T tam ' tam+1 T t(lg 2ta2 t=p tallta; e tam : ftam T tag 2ta1 lf )
—K1;—K. —Kp 1 Km Koy K1 — —K1;—K —Kop =1 K, Ko, K
t(lg ltag R tam,+1 ! t(zm e ta;tall =P ftal ltag 2o tam f ' tam e tagztall'

Hence, the relations (1)—(3) follow from tg%m ...t Fopo Ko — (¢Eighe o glom) =1 5pq

Ko Koy Ky __ (4+—Ki141—K. —Kn\—1
tam o 'ta;tall - (tal ltag 2. .tam ) . |

The next four lemmas are used to reduce the number of commutators.

LEMMA 3.6. For words X1, Xo,Y1,Ys in My with X;Y; =p Y;X; (i,j = 1,2), we have
[X1, Xp][V1,Y2] =p [X1Y7, XoY3).

Proof. It follows from

X1 XX X ViYaY Yo =p XV X Yo Y XY X

O
LEMMA 3.7. For any three words X,Y,Z in a group G, we have
XYY, 2] = (X2, 2YZ"").
Proof. The equation immediately follows from the following computations:
(X, Y|[Y,Z] = XYX 'y L. yzy-lz7' = XyX-lzy-'z71
Xz hzyz | =(XZ Y zyz Y)Y zX YHYzy'z7h)Y=XxyXlzy-lz L.
O

LEMMA 3.8. Let X,Y be words in M. For any integer n, we have
(1) (XY)" = x(YV)x2(Y) -+ xn (V) - X7,
2) (XY)"=X"  x-ari(V) - x2(Y)x-1(Y)Y.

Proof. The equations immediately follow from
(XY)" = (XY X H(X?’Y X ?) - - (X"YX ™")X",
(XY)" = X"( X "Hyx" .. (XY X)) (X 'Y X)Y.
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LEMMA 3.9. Let X and f be words in ./\/lg such that X is the product X = X1 Xo--- X,
whose factors Xi satisfy that X,’ : Xj =p Xj . X,’ for 1 35_], Xi+1 . f =p f XZ and X1 . f =p
f - X,. Then, we have

Proof. We obtain the claim as follows:

X1 Xg-- Xy Xy - f=Ep Xo X3 X0 Xg - f=p f- X0 X - X1 X

4. Scl of the Dehn twist along a nonseparating curve

We first give the proof of Theorem D (1) since some of the results that will be obtained in
the course of this proof will also be used in the proofs of Theorems A, B and E. Note that since
Dehn twists along two nonseparating curves s, 86 (resp. two separating curves sy, s;l of type h
and a separating curve s,_j, of type g — h) are conjugate, and a conjugate of a commutator is
again a commutator, it suffices to prove Theorem D and E for some nonseparating curve (resp.
separating curve of type h).

In order to prove Theorem D (1), we present the 3-chain relator and factorize its n-the

power as a product of commutators and Dehn twists. The factorization will be used to show
Theorem A, C, D (1) and E (1) and (2).

DEFINITION 4.1. Let a,b, ¢ be simple closed curves on ¥2 bounded by d,d" with i(a,b) =
i(b,c) = 1 and i(c,a) = 0 as in Figure 3. Then, we have the 3-chain relation tyty = (t,tpt.)* in
M2 and the 3-chain relator

Cy =t "t (tatpte)™

FIGURE 3. The curves a,b,c,d,d’,s1,z on X3.

The next proposition is the key result in this section. We will use some equations in the
proof to show Theorems A, C, D (1) and E (1) and (2).

PROPOSITION 4.2. In the notation of Definition 4.1, for any integer n, there are words
Vi, Wi, Va, Wa, oo, Vip 41 Win 41 in M? such that the following holds in M?3:

CZ? =P t;2n[‘/1’ Wl][VQv WQ] e [V\nH-lﬂ VV\nl-‘rl] : t;nt;'n‘

Proof. Let v = t,t.(b). Since a is disjoint from ¢, ¢, 1(c) = c and t_ ', '(a) = a (see

Definition 2.4). By the primitive braid relation and Lemma 3.2 (2), we have
tyto(a) = tytatotyt, 't (a) = tytatety(a)
tyty(c) = tytatetyts 't () = tytatety(c) = a.

G,
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This gives the following two relations:
tpty - ta =p te - tbtvy (41)
tpty - te =p tq - tpty. (42)
Note that using the primitive braid relation, we have
tatvtetatote =p totptatetyte
=p to - ty(tatetpt ;1) - tatete
=p tq - tply - tatete-

This equation, together with the relations (4.1) and (4.2), the commutative relation t,t. = t.t,
and a cyclic permutation, gives

Cy =p tatd(tpty)?t; "

When we take n-th power of this relation, by the property of boundary curves d, d’, the relations
(4.1) and (4.2) and the commutative relation t,t. = t.t,, we have

O3 =p 22" (tty) 2"t "t (4.3)
By this equation and the primitive braid relations, we have
O =p 22"ty - t, 1t “toti)ty o)t "t
_ Angdna -1 -1 —ny—
=p "t (b - 1y o2ty )"

Here, when we set ¢3:=tot.t7 in M2, ¢3(b) =tutc(b) =v and ¢3(t; > (v)) = tatcty(v) =
totetptate(b). From the commutative and the braid relations, we have

talctotate = tatelvteta = tatvletota.
By Lemma 3.2 (2), we see that
tatptetpta(b) = tatpte(a) = b,
s0 ¢3(t; 2(v)) = b. Therefore, ¢3 maps (b, t, 2(v)) to (v,b). This gives
Cy =p timdn (i} - [t;lttb—z(v), o3)) "t
from Lemma 3.1. Therefore, by Lemma 3.8 (2), we obtain the following relation:
n
cy=p ittty ] it ([t 2y, 6a]) - £ "5 (4.4)
i=1
Note that the conjugation of a commutator is also a commutator, and that we have
tintﬁclntzln =p tzl)Qn . tb_4n (tb—Sntgntgn)tb—Ml (tb—4ntﬁclntzln)

— 12n —4ndn —4n4n
=P tb . tb ttl:gn tb tt;4n(c).

(a)
Since t,tyt. maps (a,b) to (b,c) by Lemma 3.2 (2), we find that ¢, *"t,tyt 5", denoted by ¢y,
maps (b, t, *"(a)) to (t, *"(c),b), so Lemma 3.1 gives

EEE =p 2 [ ),

and this establishes the formula. ]

Theorem D (1) directly follows from Theorem 4.3 below, which will also be used to prove
Theorem B, since the left hand side of the equation in it is a relator.
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THEOREM 4.3. Let so be a nonseparating curve on ¥, for g > 2. Then, there exist
3-chain relators Cs; (j=1,...,9—1) such that for any integer n there are words
Vi, Wi, Vo, Wa, ..., V|n‘+3, W|n‘+3 in M, that satisfy

g—1
[1 s, =p 200V, WAI Vo, Wal -+ Vi a3, Win 4:3)-
j=1

Proof. Let us consider the simple closed curves aj,b;,c; on the genus-1 subsurface 512
of ¥, bounded by di,dy—1 as in Figure 4. Then, we obtain the 3-chain relator Cs; :=
t;glilt(;l(taltbltcl)‘*. By Proposition 4.2, the relation

C31=p 6" Vi, Wil Vo, Woal - [Vinpn,n Wi, Ut 157

holds in M(S%) for any integer n, where V; 1, W; 1 are some words in M(S?).

FIGURE 4. The rotation r of ¥4 and the curves ai,b1,c1,d1,dg—1, 81,1, 21.

Let r be the rotation of X, by 27/(g — 1) as in Figure 4. We set

C3j = i-1(C3,1),
bj =177 (by), dj := I (dy),
Vij = ri-1 (Vi) Wi ;= ri—1 (Wi 1)

forj=1,2,...,9— 1. Also set dy = dg—1. Then, using the primitive braid relations, the relation
holds in M(ri=1(5%)):

C3 5 =p " Vg Wi l[Va,s Wal - Vinpg, Wingas 313" 5"

for j=1,2,...,9 — 1. Here, any simple closed curves on Int(r/=1(S%)) are disjoint from
any simple closed curves on Int(r/'~1(S?)) if j # j/, and d;,d;j_; are boundary curves of
ri=1(S?). Hence, for any words e; in M(r7=1(S?)) and any words f; in M(r7 ~1(S?)), we
have e; fj; = fjre; by the commutative relations and the property of boundary curves if j # j'.
From Lemma 3.6 and dg = dy, we have

g—1 g—1 |n|+1 g—1

(- 12n —2n
1L =e I10 1T w114
j=1 j=1 i=1 j=1

n|+1

g—1 g—1
= [T TLa> - T v
j=1 j=1

i=1
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where V; =V;1Vio--- Vi g—1 and W; = W, 1 W, 2 --- W, 4_1. Using Lemma 3.5 (2) and (3), we
see that

H t12n _ g 1)n[B r,

Ht n 72_9 1)n[T7 D,

where B := téf”tfﬁ” = ~t;:£g272)n and D := ti?tig = ~td(g D™ This gives

g—1 |n|+1
n __ ,12(g—1)n Dn
[T e, =67 Br] 2" D] T v W,
j i=1
Since bj,a; are disjoint from dj for any j and k, we have B(dg)=d;. This gives
[B,7](dg—1) = BrB~'r~}(dy_1) = dg_1, so we have [B,r]ty2% V" =p 129"V [B,r]. From
this and Lemma 3.7, we obtain
[n|+1
[Tz, =p 6,20 2070 (B0, DrD7Y - T Vi W)
j= i=1
Since by_1 and dy—1 are nonseparating, there exists a diffeomorphism f satisfying f(by—1) =

dy—1. Therefore, by Lemma 3.1 we have

tl?(g—l) t—2(g 1)n _ th(g—l)n . tQ(g—l)nt—Q(g—l)n

b1 -1 bg—1 bg-1  ldg_:
10(g—1)ny,2(g—1)n
=p 1y, ", " 1)
and this proves Theorem 4.3 and therefore Theorem D (1). U

REMARK 4.4. M. Korkmaz gave interesting proof of an upper bound on sclp, (ts,) in his
talk at Max Plank, 2013 (see [28]). The main idea is to use his result of [27] and quasi-
morphisms and to consider [§] disjoint subsurfaces of ¥, each of which has genus-2 and one
boundary component. The proof of Theorem D is much 1nsp1red by his idea.

5. Surface bundles with base genus two

In this section, we prove Theorem A.

Throughout this section, we suppose that g > 39. Let us consider E}] with one boundary
component J as in Figure 5. Then, we can take 13 disjoint subsurfaces Si,S5s,..., 512 and
S of genus 3 with one boundary component and a word @ in ./\/l; such that ®(S;) = Siy1,
®(S12) = 51 and P|g = id|g as in Figure 5.

Let a1, 51,71,901,€1,C1,T1,Y1,21 be the simple closed curves on S; as Figure 6, and let
ai,bi,s1,1,d1,d2,7,0,y, 2,€,¢ be simple closed curves on S as in the figure. We consider the
following two lantern relators L, and L:

Ly =ty g s g i ty, ey
L= tq tyt.ty e !

S1,1°

The next lemma was proved in [29].
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Sy, &~ S,
S, o o s,
— o o =
o o o o
o o
Sie o oS - © < S
o o
- < S S
55 o () 10
o o o o
— o o —
Se S o 59

FIGURE 5. The subsurfaces S, S1, Sa, ..., S12 of £j.

FIGURE 6. The curves a1, b1, s1,1,d1,d2,7,9,€,(,y,z on S and the curves a1, 1,71, 901, €1,C1, T1,Y1, 21
on Si.

LEMMA 5.1 ([29]). Set yn = te by, ta tey, w1 = te bz ta, te, tey b, by tey s ¥ = tetyta te and ¢ =
tetytsteteta,tste. The followings hold in M(Sq) and M(S), respectively:
Ly =p [ta,, 1] - [ty tg) 1] - 1)
L71 =p t5111 : [ttst;lvd)] : [t’yvd)]?

Proof. Since a1, B1,71, 01 (resp. d,7,da, s1,1) are disjoint from x1,y1, 21 (resp. d1,y, z) and
disjoint from each other, the commutative relations give

Ly =p tp ) by, b5ttty ]

T1771 1

L =pts,, ot Mgty byt

By Lemma 3.2 (2) and 3.3, ¢; maps z1 to 1, w1 maps (y1,51) to (d1,21), ¢ maps (,z) to
(y,ds2), and ¢ maps dy to . Lemma 3.1 gives the required formulas. ]

For a simple closed curve on S; appeared in the above, say a1, we set a; := ®*~!(a;) which
is a simple closed curve on S;, curves f§;, 7;, etc. are defined accordingly, and we write the
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lantern relation L; := gi-1(L1). From Lemma 5.1 and the primitive braid relation, we obtain

P = te;ty,ta;te;s
wi = te,tytp te, e, ls by, te,,
Li =p [ta;, illty,t5,  wilty)
for i =1,2,...,12. Moreover, we define the 2-chain relator Cs 1, which holds in M(S), to be
Ca1 = (ta )0t "

S1,1°

The following proposition is the key result to prove Theorem A.

PRrOPOSITION 5.2. For g > 39, there are words ./11, gl,gl,ﬁl in ./\/lé such that

LiLy-+-L12Co L7t =p [«11,51][51,51],
To prove Proposition 5.2, we prepare two lemmas (Lemma 5.3 and 5.4).

LEMMA 5.3. For g > 39, the following relation holds in M;:
LiLy---Lis =p t;12[X, U][Y A, Q®],

@12
where X =1ty tp, - te,, Vi=1e---P1a, Y = tyltglltyztgj e tyutgllz, Q= wjws - -wio,
and A=t 2.t 1L

a1 Yoz a1y ”

Proof. Since S; is disjoint from S;; for ¢ #4i', any words in M(S;) commute with
any words in M(S;) modulo P from the commutative relations. Therefore, by L; =p
[tz,, wi][tyitgil, wilty! € M(S;) and Lemma 3.6, we have

LiLy--- Lis =p [X, V][, Q}t;llt;; oot

@12”

By Lemma 3.5 (1) and the definition of the curve «;, we obtain

LiLy-- Lip =p [X, V][V, Q)[A, @]t 2.

@12
Since «; is disjoint from B;, 0;, €, (i, s, 2; fori = 1,2, ... ,12 and S; is disjoint from S/ for 7 # 7/,
A commutes with Y, modulo P by the commutative relations. Besides, w;, Q) (resp. tyitgil,
Y) and @ satisfy the condition of Lemma 3.9 from the commutative and the primitive braid
relations, so ® commutes with  (resp. Y) modulo P. Lemma 3.6 and a cyclic permutation
give the required formula. U

The next lemma will be also used to prove Theorem C.

LEMMA 5.4. There are words V', W' in M(S) such that the following relation holds in
M(S):

Con L7V =p [V, W'][t,, )3 t4 .

Proof. Let C3 be the 3-chain relator in Definition 4.1. By the inclusion ¢ : ¥2 — X1 obtained
by gluing a disk along d’, : maps ¢ on ¥2 to a on ¥1. Then, from the map ¢, : M? — M1} induced
by ¢, the trivial relation ty = id and the braid relation t,tpt, = tptats give the 2-chain relator
Csy from Cj5. From the equation (4.4) in the case of n = 1 and ., the equation

Cy =p 3ty [V, W]t "
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holds in M}, where V, W are some words in M}. Therefore, when we denote by S} the genus-1
subsurface bounded by s1,; as in Figure 6, Lemma 5.1 gives

C’2,111_1 =p tzlt;)ll [‘/17 WI] [t5t,z_1) ¢] [t"/a w]7
where Vi, Wy are in M(S1). Since S} is disjoint from 8, ¢, €,y, 2, d2, and Vy, Wy are in M(S7),
V1, W1 commute with tst;!, ¢ modulo P by the commutative relations. This gives
Co 1 L71 =p t§ ty [Vitsts ", Wid)[ty, ¥]. (5.1)

Lemma 3.6 and a cyclic permutation give the required formula. |
We are now ready to prove Proposition 5.2.

Proof of Proposition 5.2. In the notation of Lemma 5.3 and 5.4, each of V' and W’
commutes with both of Y A and Q® modulo P since V’ and W' are supported in S while Y A
and Q@ are supported in the complement of Si. Hence, by Lemma 5.3, 5.4 and 3.6 and a cyclic
permutation, we have

LiLy-++Lig- Co L' =p t2[X, V][V A, QO] - [V, W][t., ¥]ts £,
=p [ty V]ts ty t5 2 [X, U]y AV, QeW'].

b1 Ya1z
Note that ¢, and i are supported in S while t,,,%,,t0,,, X and ¥ are supported in the

complement of S. Hence ¢, and 3 commute with ¢,,,%,,%a,,, X and ¥ modulo P. Therefore,
with Lemma 3.6 we have

LiLy- Lz Con L1 =p 5 15 t2 12t ¥][X, V][V AV, QOW']

17b1 a2

=p 15ty t 2t X, pU][Y AV, QW) (5.2)

1t0412

FIGURE 7. The separating curve s on Z;.

We take a separating curve s such that it bounds a genus-2 subsurface S5 of Eé that contains
simple closed curves aq, by, a12 (see Figure 7) and s is disjoint from dy, v, € and x;,7;, €; for any

1=1,2,...,12. Then, we can consider a half twist H, along s such that Hs|zé—sg = id|2;_s;,
Hs(a1) = a12 and Hg(a2) = ay. Here we set
H := taltble-

We see that H|2};S§ = id|zé,szl and that H(aq2) = by and H(a1) = a2 since tq, by, (a1) = by
and a9 is disjoint from aq, b;. Therefore, Lemma 3.1 gives

—12,8 44 _ 8 ;—4 44 ,—-8
tam ta1tb1 =P ta1ta12tb1t0412

=p [t5 t7* HJ.

a;’o12?
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By this equation and the equation (5.2), we obtain
LiLy- LysCo L7 =p [t8 t5% | H|[t, X, v V][V AV, QOW].

a1 'o2?
Note that ap, b1, a12, s are disjoint from dy,~,e and ~;, €, x; for any i =1,2,...,12. Hence,
by H‘E};S% = id|2£17,s%, the definitions of X, ¥, vy and the commutative relations, we see that
t8 to* and H (supported in S3) commute with ¢,X and ¢¥ (supported outside S3) modulo
P. Lemma 3.6 gives

LiLy- L12Con L7 =p [t8 t54 ¢, X, Y WH][Y AV, QOW'],

ay o122

and the proof is complete. |
We show Theorem A.

Proof of Theorem A. Assume that g > 39n and n > 1. Then, we can take n disjoint
subsurfaces S7,55,...,5), of £} of genus 39 with one boundary component and find a
diffeomorphism @ on ¥} such that ®'(S}) = S}, ;. Identify the subsurface Sj with the entire
surface for Proposition 5.2 (with genus 39) and let

Ry :=1L1Ly--- L1202,1L_17

Ri+1 = @/ (Rl)
Since S} is disjoint from S;, by the commutative relations, Lemma 3.6 and Proposition 5.2, we
have

RiRy--- R, =p |A,B|[C, D],
where .Z, g, CN,ZS are some words in M}]. In particular, we see that this relation also holds in

M. This gives a ¥g-bundle X — 35 with a O-section for g > 39n. From the above argument,
in the notation of Proposition 2.5, we have

n(T)=n"(T)—n"(T)=0-0,
n(Cy) =n"(Cy) —n~(Cy) =n — 0,
n(L) =nt(L) —n" (L) = 12n — n.
This gives
o(X)=-1-0—-7-n+1-1ln=4n
for g > 39n, and this finishes the proof. O

6. Surface bundles with odd fiber genera

This section shows Theorem B and C. To prove them, we prepare some results (Proposi-
tion 6.1 and 6.2 and Lemma 6.3).

Let a1, B1, 71, 71, Y1, 21, &}, ¥}, 21 be the nonseparating curves on the genus-2 subsurface
S3 of ¥, bounded by 61,8} as in Figure 8. We consider the following two lantern relators:

—1y—1,—1,—-1
Ly := tmt51 ?f71 tﬂ1 te by, tz,

/o p—1,—1,—-1,-1
1= tﬁl [ 2% t‘si o, tmityitzi'

PROPOSITION 6.1.  For any integer n, there are words X1,Y1, Xa,Ya,..., Xjy 12, Yp|42 In
M(S3) such that the following holds in M(S2):

(L1)>"(Ly)*" =p (X0, V1][Xa, Yol - [Xjnj 1o, Vg - 85,715,
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! / ’ 2
FIGURE 8. The curves aa, f1,71, 901, €1,C1,%1,Y1, 21, L1, Y1, 21 on S3.

Proof. Note that a1, 81,71, 01 (resp. ax, 51,71, d1) are disjoint from each other and z; (resp.
). Therefore, by the lantern relations t,ty,t., = tg,ty,ts ta, and tyty it =ta, b, tp ts and
the commutative relations, we have

tl’ltylt;}(zl) = tﬁlt“/lttsltz_ll(zl) = 21,
tytats M @h) =t o, tp, te (o)) = ).

z ’
171 1

Using these facts and the primitive braid relations, we obtain

to by tal by, =pta, -ty ty ol

Y1 an Yi1'aq
-1 _ -1
tm/l . tyitzit’vl =p tyi tzit,“ . tr/l .
These two relations and the commutative relations give
2n _ —1\2n,42n,—2n,—2n,—2
(L))" =p (ty1t21ta1) ntw?tﬁ1 "t,yl nt51 "

_ — —2n,—2n,—2
(L) =p (tagty 15,2 820 20 5] "t

Since x1, y1, 21, ¥}, Y1, 21 are disjoint from a, 51,71, 01, and 21, y1, 21 are disjoint from =}, y1, 21,
by the commutative relations, we have
(L1)2n<L/1)2n =p (tylt t_ltw’lt , t—1)2n . ththL . t;?ntg;knt;fn . tngntgfn.

#1771 Yo x1 2]
Since y1,27 are disjoint from z7,y], and «a;,v; are disjoint from yi,21,2),9], by the
commutative and the primitive braid relations, we obtain
-1 —1\2 —1, -1 —1y,—1 —1y—1 42 42
(bt by tal )2 = byt a0 (gt 208, byttt - €282

21%v1 Y1t aq Yi1%z1 z17Y]

— —1, 41 —1 —1 42 2

=p lyta, tﬂfll t’h ’ ttyi (ﬁll)t’vl ttzl (yl)tal 1 tyi'
Here, let fi :=t.,tyr - te,ty ta,te, - te,tar by, te, in M(S3). By the latter part of Lemma 3.3,
te, by Lo tey ~ T tata, e, maps (yi, a1, @1, 791) to (@1, y1,71, 7). From that oy, 71,y are disjoint
from yj, t,, maps (a1, y1,71,21) to (1, y1,71,ty, (27)). Note that y; and 7 are disjoint from 2,
80 t, (1) is disjoint from z;. From this, ., maps (a1, y1,71,ty (21)) to (ar,tz, (Y1), 71, ty; (21))
since a1, 71,y (2}) are disjoint from z;. Therefore, we see that f; maps (y1,a1,2),71) to
(a1,t, (Y1), 715ty (77)). From Lemma 3.1, we obtain

-1 —1 —1 -1 — -1 —1
Ly to, tart 'ttyi(icll)t’h ttzl (yl)toq =P [t t tm/lt fl]

Y1 o1 YT Yy Y1 o Y10

When we write [X, Y] = [t,,t; o5}, f1], we have

Y1 aq

(ty bty tarty t ) =p (X, Y82 £

21771 217Yy”

Since z; is disjoint from y{, the commutative relations and Lemma 3.8 (1) give
n n
([X’ Y] 'tiltii)n = H[Xi7 YZ] . (tiltgz/l)n =P [X%YZ] 'ti?ti?v
i=1 i=1
where [X;,Yi] = (12 2,)i-1([X, Y]), which is a commutator since the conjugation of a commu-
z1 y’

1
tator is also a commutator. Note that aq, 81,71 (resp. z1) are disjoint from x4, 21, ¥, 21 (resp.



SIGNATURES OF SURFACE BUNDLES AND SCL OF DEHN TWISTS Page 21 of 30

y1). From the above arguments and the commutative relations give
n

(Ll)Zn(Lll)Qn =p [Xiyy] t2nt2n t2nt2n t—2nt54nt—2n t62nt5_’12n

z1 'y x1 72
i=1

n
=r H[XuY e PR e Pt e el PV

21 "o

We set fo = te g, te,tyita,te,tzyte, and fs =t torte by, te te,tp, te, in M(S3). By Lemma 3.3,
f2 in M(S3) maps (21,041) to (B1,v}), and f5 in M(S2) maps (z1,01) to (71, 21). Therefore,
by Lemma 3.1, we have

A = £,

thtﬁ 2nt2nt—2n _ [thtﬁIQn, f?,]

and the proposition follows. |

PropPOSITION 6.2. Suppose that g is odd. Let sy be a nonseparating curve on

Yg. Then, for any integer n, there are lantern relators Li1,La,...,Ly4_1)|n| and words
le yla XQ; y27 ) X\n|+2; y|n\+2 in Mg such that
29-Dinl  \ Inl+2
L;| =p H ty 2(9 Dn
i=1
where e =1 whenn > 0 and e = —1 when n < 0.

Proof of Proposition 6.2. 1If g = 3, Proposition 6.2 immediately follows from Proposition 6.1
for g = 3 by setting so = 61 = 07.

FIGURE 9. The rotation ry of ¥4 for g = 2k + 1.

If g = 2k + 1 and k > 2, then there is a rotation 7 of 3, by 27/k as in Figure 9. We identify
the genus-2 subsurface bounded by d; and §f with S2 in Proposition 6.1 and then we write

Lj = Tj—l(Ll) L; = ri—l(Lll),

0 = (81), 0 =1l (0Y),
Xi,_j = riil(Xi)’ Y;,j = T‘iil(Yi)’
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for j=1,2,...,k Note that §; = d},. For j =1,2,...,k, Proposition 6.1 and the primitive
braid relations give

(L;)*™ (L) =p [X15, Y150 X2, Yo 5]+ [Xinj42.50 Vinl2,5] - t(izntiznc
Any simple closed curves on Int(ri_l(SS)) are disjoint from any simple closed curves on
Int(ry, 714(52)) if j # j', and d;, 0} are boundary curves of rifl(Sg). Hence, for any words e;
in M(r.7'(53)) and any words f; in M(r) _1(53)), we have e;f; =p fye; for j #j by
the commutative relations and the property of boundary curves. By d;11 = 6}, 61 = 0}, the
commutative relations and Lemma 3.6 we have
k
H(LJ)%(L;)Q" =p [X1, V1][Xa, Vo] -+ [Xippzs Vinpr2] t5, 85,1 - 1527,
j=1

where X; = X, 1X,0--- X, pand YV, =Y, 1Y; 2+ Y, and Lemma 3.5 (1) gives

tyangs A gpAn =p [ g TR ] gk
Since from their definition, Xj,|2, X|nj+2,; (resp. Vin|12, Y|n|+2,;) and 7 satisfy the condition
of Lemma 3.9, by the primitive braid relations, we obtain X|n|+2rk =p Tk X|pj+2 (resp.
y‘anrk =p rky|n‘+2) Moreover, since §; is a boundary curve of 7, 1(52) and disjoint from
(.5'2) if j # j', Xjn|+2 and YV}, 42 commute with 5, modulo P for any j by the commutative
relatlons and the property of boundary curves. From the above argument, Lemma 3.6 gives

n —4(k—1
[X|n\+2,y\n|+g][t61 t 2‘8 ...tékfl )n’ o] =

and we obtain the desired conclusion. O

—4(k—1)n
Ok—1

[Xln\+2t6 " té St vy|n|+27”k]a

LEMMA 6.3 ([30]). Let us consider the lantern relator L =t 2td i tets, ts, the 2-chain
relator Cy =t !(t,t,)® and the 3-chain relator Cs :=t; 't ' (tatpt.)* in M3, where the curves
are as in Figure 3. Then we have

03 EPL'CQ.

Proof. Since a,d,d are disjoint from c,z and each other, t,,tq4,ty commute with t.,t,
modulo P by the commutative relations. Combining this with a cyclic permutation give L =p
totety 't 't %, . Here, by the braid relation, we have totptatptoty =p tatatstatats. Therefore,
using a cyclic permutation we have

L-Cy=pt;'t;" totataty - tatatvtatats - tote.

By drawing corresponding curves and applying the corresponding Dehn twist, we find that
tytataty(z) = . This gives tptataty -t =p te - totataty by the primitive braid relation. Using
this equation, we have

L-Cy=pt;'t;"  totataty - tata - te  totatats - te.

We focus on the underlined part. By Lemma 3.2, we have tpt.tqts(a) = a, tatpte(b) = ¢ and
totpte(a) = b. This gives tptatats - ta =p ta - totatats, tatvle -ty =p te - tatpte and totpte -ty =p
ty - totpte. Applying them on the underlined parts, we obtain
tptatatvtatatetota =p tatalptatatptetota
=p tatatptatetotatpte.
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By the braid relation and t,tpt. - ty =p tc - tatpt. on the underlined parts, we get
tatatplaletvtatvle =p talptatplelotatpte
=p tatvtctatptetatote.
This finishes the proof. |

We now prove Theorem B.

Proof of Theorem B. 'We may assume that the two simple closed curves in Proposition 6.2
and Theorem 4.3 both of which were denoted by sg are the same since for any two nonseparating
curves ¢ and ¢’ there is a word f in M, such that f(c) = ¢ and the desired relations are
preserved after such an identification.

Replacing n in the equation in Proposition 6.2 by 5n for non-negative n and applying a
cyclic permutation, by Theorem 4.3 we get

10(g—1)n g—1 5n+2 n+3
i=1 j=1 j=1 Jj=1

This gives a Yg-bundle X — Xg,,45 for odd g (This construction is called “subtraction of
Lefschetz fibration” in [16]). By Lemma 6.3, we see that

n(T)=n"(T)—n"(T)=0-0,
n(C) =n*(C2) —n~(C2) = (9 — Hn -0,
n(L) =n" (L) —n" (L) =11(g — 1)n — 0
in the notation of Proposition 2.5. Therefore, we have
o(X)=-1-0-7-(9g—1n+1-11(g — D)n=4(g — )n.
This completes the proof. O

REMARK 6.4. We do not know whether the surface bundles constructed in Theorem B
admit sections or not.

In the rest of this section, we prove Theorem C.

Proof of Theorem C. Let us consider the two (sub)surfaces of genus 3 with one boundary
component as in Figure 8 and the left side of Figure 6. Since aq,b; are disjoint from -, €, dy,
ta,,ty, commute with t,,9(= tct,tq,tc) modulo P by the commutative relations. Therefore,
the equation (5.1) (writing V7 and W; simply as V and W) and a cyclic permutation give

Co L7 =p t§ ty [ty, 0][Vitst; ', W)
Here, there is a word f in M3 such that f(8;) = a; and f(8]) = a}, where a} is the simple

FIGURE 10. The curves a1,ay,b1,d1,v,€ on S.

closed curve as in Figure 10 since d;,d] are boundary curves of the genus-2 subsurface S7 of
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E; and aq,a) are also boundary curves of the genus-2 subsurface of S. By Proposition 6.1 with
n = 3 and the primitive braid and the commutative relations, we have

7 ((L)*(LY)°) Con L1 =p [X0, Vi][Xo, Va) -+ [X5, Vo]t 002 8, [, 0] [ViEst, W,

in M3}, where we write X, Y; again to mean #(Xi1), r(Yi1), respectively. Let f5 := t12>1 “tarto ta,
in M3. Since then tq:ty,t,, maps (a},b1) to (b1,a;) by Lemma 3.2 (2), we see that f5 maps
(a1,b1) to (b1, 2 (a1)). Therefore, the primitive braid relation and Lemma 3.1 give
1
—6,2 4 _ ,—6,-2(,2 ;2 ;—21,6
t =t 2 (1 82 )8,
- 4—6,-2,2 6
=p ta/l tbl ttgl (al)tbl
- [4—6,-2
=P [ta/1 tbl ,f5]
Note that t.,%s,, f5 commute with ¢,,9 by the commutative relations since ay,al, by are
disjoint from v, €,d;. By the above argument, Lemma 3.6 gives

£ ((L1)S(LY)®) Con L7 =p [X1, Y1][ X0, Ya] -+ [ X5, 1@,][15;,1%;2757, fs)[Vist;t, Wa).

in M. In particular, this equation holds in Ms, so we get an Y3-bundle over X; with a
0-section. To find the signature, we compute

n(T)=n"(T)—n"(T)=0-0,
n(Cy) =n"(Cy) —n~(Ca) =1 -0,
n(L)=n"(L)—n"(L)=12-1

in the notation of Proposition 2.5, and
o(X)=-0—-7-14+1-11=4.

The proof is complete. ]

7. Proofs of Theorem E Parts (1) and (2)
We show E(1): clag, (£32") = |n| + 1 and E(2): clay, (£19™) < |n| + 1. Since we no longer need

to compute signatures of surface bundles, replacing “=p” by “=" and ignoring the numbers of
the relators L, T, C5 pose no problem. From now on, we do not write =p and relators explicitly.

We use the next result to prove Theorem E (1).

THEOREM 7.1 ([3]). Let hi,91,h2,92,...,hi,gx be words in a group G. Then, for
any integer n, ([h1,g1][ha,gs] - [hr, gi])" is written as a product of |n|(k — 1)+ [@} +1
commutators.

Proof of Thoerem E (1). We apply Proposition 4.2 to a closed torus where d and d’ bound
disks and hence t4 and ¢ty become trivial. Therefore, we see that ¢}?" can be written as a
product of |n| + 1 commutators in Mj. This gives clay, (££2") < |n| + 1 for any integer n.

We now show that claq, (¢2") > |n| + 1. Assume that for some integer k> 1, t}?F can
be written as a product of k commutators. We will show that this assumption leads to a
contradiction with scla, (ts,) = 1/12. Theorem 7.1 gives

clpg, (B27) < n(k — 1) + [g] +1.
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for any positive integer n. Therefore, we have

1 1
sclag, (82F) < (k— 1) + 5=k-3
Since sclay, (tp) = sclag, (¢12%)/12k (see Section 1.3), we obtain
1 1 1
I, (B) < — — — < —.
sclaa(te) < 13 = 90 < 13
This contradicts our assumption, which proves the theorem. |

Next, we give a proof of Theorem E (2).

Proof of Theorem E (2).  We embed X2 into ¥ so that d = d’ (see Figure 11), and consider

@loy

FIGURE 11. ¥ and the curves a,b,c,d,e,v on ¥3.

d
I
d

the relation (4.3): 1 = t4"t4"(t,t,)?"¢;*". Lemma 3.8 (2) and the primitive braid relation
{-2n=) (tv) = tbfz(nq)a(ttb(v)) give

n

(tbtv)zn = t%n §o2n—i -1 (tots, (v))-
i=1
In addition, the primitive braid relations give
tintzclntgn — t;On . tb—4n(tb—6nt;1ntgn)tb—4n (tb—Zntéclntgn)
_ 410n _4—4n dn —4n 4 4n
= tb . tb ttb_gn(a)tb ttb_zn(c).
By combining the above two relations with the relation (4.3) and using the commutative
relations, we obtain

n
n 10n  4—4n 4n —4n 4n -1 -1
Cy=t"-t, tt;G"(a)tb tt;%(c) . H g 2n=i) -1 (tot, Loy (0)tq ).
i=1
Since t,tpt. maps (a,b) to (b,c) by Lemma 3.2 (2), we find that tb_Q"tatbtctg”, denoted by f3,
maps (t, %" (a),b) to (b,t, >"(c)). Let e be a nonseparating curve as in Figure 11. Since t.tqt,t.
maps (v,d) to (d,v) by Lemma 3.2 (1), tptetatyte, denoted by fy4, maps (v,d) to (d,tp(v)) by
i(b,d) = 0. By Lemma 3.1 we see that

—4ng4n —4n4n __ [4—4ng4n
by eyt an () = (B T e 0 f3),
toty it = [ttg"s fal:
Since the conjugation of a commutator is also a commutator, Theorem E (2) follows. U

8. Scl of the Dehn twist along a separating curve

8.1. A separating curve of type 1
We show Theorem D (2): claq, (t5 ™) < [7|n]/2] + 5 and E (3): clug, (¢37) < [7|n]/2] + 2.
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We consider the subsurface S? in the proof of Theorem 4.3 and the curves
a1,b1,c1,81,1,21,d1,dg—1 as in Figure 4. The separating curve s; ; is of type 1.

PROPOSITION 8.1. For any integer n, there are words V{, W{, VJ W4 ..., V[’W 11
2
in M(S%?) such that the following holds in M(S%):

tg1,1 - [V1/7 Wll][v2lv WQI] e [‘/[/%]_,'_13 W[/%]_,'_l]tgg_ltZl .

!
Mgt

Proof. From the lantern relation . ts, ,t., = fdltdg,ltzl, we get g, , = tc_lltdltdg,ltilt;f-
Since a1,d;,dy—1 are disjoint from each other and ¢y, 21, using the commutative relation and
Lemma 3.8 (1), we have

tn _ (t;lt;l)ntn tn t:iL n

S1,1 a1 a1 dg—1"dy
=, (tz_11)t212 - o - ottt b

From the commutative relations and the primitive braid relations ,—2i41(¢7!) = -2 (t;l(zl))
€1 c1 €1

1y _ 41
and tc_lzm_l(tZl )= ttc’f’”’l(m)’ we have

m
2m  __ (4—1 —1 4—2my2m  42m 42m
t2m = Htc—lzm(ttq(zl)taltzl ta,) o2 ter 3
i=1

for even n = 2m and

m
2m41 _ =1 —1 —1 2m+1,—2m—1 2m+1,2m+1
£2mil = Htglm, (o oyt o) ol L2 T
i=1
for odd m =2m+1. Note that in either case m = [g]. Since ty,tq,ts s, maps (z1,a1) to
(a1,21) by Lemma 3.2 (1), tyte,tz te,t,, maps (t7'(z1),a1) to (a1,21) by i(a,c1) =0.
From the proof of Lemma 6.3, t,tq,ta,ts, maps (a1, 21) to (a1, c1). Therefore, when we set
(bl = tb1ta1tz1tb1tc_11 and ¢2 = tb1ta1ta1tb1 'tb1ta1t21tb1t3;n+l7 (bl maps (tC1 (Z1)7 al) to (ala 21)7
and ¢ maps (tc_fm_l(zl),al) to (a1, c1). Moreover, ty, te, ta, ts,, denoted by ¢3, maps a; to ¢y
by Lemma 3.2 (1). Lemma 3.1 gives

-1 -1 _ 41
ttcl (zl)taltzl tal - [ttq (zl)ta1a¢1]a

-1 2m41,—2m—1, _ ;-1 2m+1
ttc’lzm*l(zl)ta:n tcl " tlll - [tta?mfl(zl)tain ’¢2]7
—2m 2 -2
tcl mtaT = [tcl m’ ¢3]
Since the conjugation of a commutator is also a commutator, the proof is complete. ]

Proof of Theorem E (3). In Proposition 8.1, if we consider g = 2 then d; = dy—; and we

have
o, = [Vll’ Wll][V2/’ WQI] T [V[l W[I@]+l] ' t<11(1m'

S1,1 @]-‘rl’
By applying Theorem E (2) to the nonseparating Dehn twist t4,, Theorem E (3) is proved. []
Proof of Theorem D (2). In the notation of proofs of Theorem 4.3 and Proposition 8.1, we
write

Sl,j = ’I’j_l(sl_rl), dj = ?"j_l(dl),

Vi,,j = N'*l(vi/)7 Wi/,j = rjfl(Wz',)
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for j =1,2,...,9 — 1. Also write dy = dg—1. Then, for j =1,2,...,g — 1, Proposition 8.1 and
the primitive braid relations give

to, =i WiIVa W [V[/
in M(rjl(S%)). Here, any simple closed curves on Int(r/=1(S%)) are disjoint from any simple
closed curves on Int(r/ ~1(S})) if j # j/, and d;,d;_; are boundary curves of r7=1(S7). Hence,
for any words e; in M(r7=1(S})) and any words f; in M(r7 ~1(5%)) where j # j', we have
ejfir = fie; by the commutative relations and the property of boundary curves. When we set
Vi=V VgV g and W =W W/, W] from Lemma 3.6 and dy = d;, we have

7 i,9—12

ti?lti?g et = [V1»W1][V2»W2] [Vf\sm\]ﬂvwf\

5211 41,57 [Ifm\]_H] i tdja

10n 10n 10n
td t * .tdg—l'

52"‘ ]_;’_1}

Moreover, Lemma 3.5 gives

n 10(g—1
1200 Ty ) = VLWV WL D Wi ) 1, T,
where Ty, | = t‘:’?lt;?’; = .tiﬁgg‘i)" and Ty = tP"t30" - - tilg(g_Q)" We obtain Theorem D (2) by
[Ta, 7] [TSL17 r|=t = [Ty, r][r, Ty, ,], Lemma 3.7 and Theorem 4.3. O

8.2. A separating curve of type h

We give the proof of Theorem D (3): clay, (t[g“i/h]n) < [(In] +3)/2] for g > 3 and h > 2. Note
that the small letter h in this subsection differs from that of the base genus of surface bundles.

Let a,b, ¢, d, e, z,y, z be the nonseparating curves on the genus-h subsurface S} of ¥, bounded
by the separating curve s;, of type h as in Figure 12.

h

Fi1GURE 12. The curves sp,a,b,c,d, e, x,y, 2.

PROPOSITION 8.2 ([5]). For any integer n, there are X1,Y1, Xo,Ya, ..., X[m|+3],Y[m+s] in
2 2
M(S}) such that the following holds in M(S}):

e

Proof. Let us consider the lantern relation t,tyt, = tyt.ts,tq. Since a,b,c, sy, z are disjoint
from each other, the commutative relations give t,t,-t, =t,-t,t, and therefore t7 =
(taty)"t2t "t "t.". By Lemma 3.8 (1), we have

te, = to(ty)ez (ty) - - an (b )ETTE " 1"

Sh xvz"a



Page 28 of 30 N. MONDEN

From the primitive braid relations s2i(t,) = 2i-1(t;,(y)) and 2w (ty) =t2me1(,) and the
commutative relations, we obtain

m
2m = H i (bt e, yta ) - 2y 2 M
=1

for even n = 2m and

m
ti;nﬂ _ Htgifl(tytglttz(y)tgl) 'ttﬁ’”“(y)t;l 'tim+1tb—2m—1t§m+1t;2mfl
i=1
for odd n = 2m + 1. Note that m = [§]. Since tqtqt,tq maps (y,a) to (a,y) by Lemma 3.2 (1),
tutatatyta, denoted by ¢, maps (y,a) to (a,t,(y)) by i(a,z) = 0, and tatet,tat,>™ !, denoted
by ¢, maps t2™*1(y) to a. Moreover, by Lemma 3.4, tqt, - tetctyte - tytq, denoted by 7/, maps
(x,b) to (¢, z). Therefore, Lemma 3.1 gives

-1 -1 -1
tyta ttz(y)ta = [tyta 7¢/]7
ttim'Jrl(y)t;l = [ttim’Jrl(y)? 1//]7
—k gk, —k
t];tb t’itc ¥ [t];tb 77—/]7

particularly for k = 2m or 2m + 1. Since the conjugation of a commutator is a commutator,
this finishes the proof. |

REMARK 8.3. The above proof was given in the first draft of [5]. Using Proposition 8.2 it
was shown in [5] that for a boundary curve 9 of ¥y, clumy (t5) = [(n +3)/2] if g > 2 and r > 1,
and therefore, sclyr (to) < 1/2, in fact it is known that sclay (to) = 1/2.

Proof of Theorem D (3). Suppose that g > 3 and h > 2. Let S} be the genus-h subsurface
of ¥, with one boundary component s;. When we write g = hk + ¢’ where 0 < ¢’ < h — 1, that
is k = [£], there is a word pj in M such that the subsurfaces S}, p(S}),...,p5 '(Si) are
disjoint from each other. In the notation of Proposition 8.2, we write

shg =P (sn),
Xij = pi—l(Xi)7 Y ;= pf;_l(Yi)
for j =1,2,...,k. Then, Proposition 8.2 and the primitive braid relations give

tons = K15 Vil X2, Vo] - [X[inpss o Vinesy 5.

Sh,j

for j=1,2,...,k Since pl'(S}) is disjoint from pl “'(S}) if j#j, any words e; in

M(pl 71 (S})) and any words f;: in M(p{*l(S}L)) satisfy e; fj» = fjre; from the commutative
relations. Therefore, from Lemma 3.6, we have
sl T = L VA A ¥ Vs
where X/ = X;1X; 2+ Xip and V] =Y;1Y; 2+ Y; . Moreover, Lemma 3.5 gives
00,20t T = L VAT ) [ s V)

2

In particular,
t]:fnk = [tgh,ltgg,z "'tiﬁlf)f‘apk]’l[?f{,y{][?fé%] T [X[/\n|2+s]ayf\n|2+s]]-

Since X; j, X} (resp. Y ;,V]) and py, satisfy the assumption of Lemma 3.9 from their definitions
and the primitive braid relations, we obtain X]pr = prX] (resp. Vipr = prY1). Note that sp ;
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is a boundary curve of pi_l(S}l) and that sp1,5Sh,2,...,5n,k are disjoint curves. Therefore,
ty, 2 tg’;;{)l" commutes with X] and )| by the property of boundary curves and the

commutative relations. By Lemma 3.6, we have

[tn $2n ._.t(kfl)n’pk]fl[Xll’yﬂ:[pk’tn $2n _'_t(kfl)n][Xll’y{]

Sh,1 Sh,2 Sh,k—1 Sh,1 Sh,2 Sh,k—1
_ ! an o 42n (k—1)n~y
- [pk‘)(l’ tSh,1tSh,2 e tsh,k—l yl]’
and the proof is complete. |
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