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1. In vitro assays 
 
Crystallization and X-ray data collection of RXRα-LBD/10  

For crystallization of the extended state of RXRα-LBD complexed with 10 (RXRα-LBD/10), the 
receptor was firstly dialyzed against buffer containing 20 mM HEPES-NaOH (pH 8.0), 100 mM 
NaCl and 5% (v/v) glycerol, then concentrated utilizing an Amicon Ultra-15 centrifugal filter 
(Millipore). The receptor and 10 were mixed in a molar ratio of 1 (protein): 3 (10), and incubated 
for 12 hrs at 4 ºC. Crystals of RXRα-LBD/10 appeared under the conditions of PEG-ION Screen 
1-25 [20% (w/v) polyethylene glycol 3350 and 0.2 M Mg(OAc)2] at 22 ºC.  

The obtained crystals were soaked in 20% (v/v) glycerol, mounted, and flash-cooled under a 
nitrogen stream at -173 ºC. Diffraction data were collected using an ADSC Quantum 270 at 
NW12A and PILATUS3 S 2M at BL5A at the Photon Factory (Tsukuba, Japan). The data were 
collected, scaled and integrated by HKL2000 and SCALEPACK (reference S1). The initial phase 
was determined by the molecular replacement method with MOLREP(reference S2) utilizing the 
structure of 5GYM for RXRα-LBD/3 as a template. Model building and structure refinement were 
performed by COOT (reference S3) and REFMAC (reference S4), respectively. All figures were 
prepared by PyMOL (reference S5). Crystallographic parameters are shown in Table S1. 
 
UV–vis and fluorescence spectra measurements 

Absorbance spectra were recorded on a Jasco v-530. Fluorescence spectra were recorded on 
Hitachi F-4500 using a quartz cuvette (5 mm). Analytical grade solvents were obtained from Wako 
and used as received. The excitation wavelength of fluorescence spectra of 10 was set at 355 nm for 
MeOH solution, and at 396 nm for 0.1 N NaOH solution, and emission was detected from 600 nm 
to 370 nm. The excitation and emission slit widths of 10 were 10 nm and 10 nm, respectively. 
Relative fluorescence intensity of 100 nM 10 in various solvents containing 1% DMSO was 
determined at Ex/Em = 360 nm/465 nm. 
 
Fluorescence quantum yield determination 

Fluorescence quantum yield of 10 was determined according to reference S6. (-)-Quinine sulfate 
in 0.1 M H2SO4 was used as a standard (ΦF = 0.55) (reference S7). The excitation wavelength was 
set at 355 nm, and emission was detected from 600 nm to 370 nm. The fluorescence quantum yield 
of 10 was 0.47 ± 0.00 in 0.1 N NaOH and 0.09 ± 0.02 in MeOH. 
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Preparation of human RXRα-LBD 
A plasmid containing human RXRα-LBD (residues 224-462) cloned into pET28a vector was 

transformed into E. coli BL21(DE3) strain. Overexpression was performed by following the same 
protocol as in the previous study (reference S8). Cells were collected and resuspended into buffer A 
containing 20 mM HEPES-NaOH (pH 8.0), 100 mM NaCl, 0.5 mM TCEP and 5% (v/v) glycerol. 
After sonication, insoluble material was removed by centrifugation at 10000×g for 30 min. The 
obtained supernatant was applied to a HisTrap HP column (GE Healthcare). The column was 
washed with buffer A containing 70 mM imidazole, and eluted with buffer A containing 300 mM 
imidazole. The His-tag was cleaved by reacting the samples with 200 U of thrombin at 4 ºC for 2 
days. The cleaved samples were concentrated and applied to a gel filtration column (Superdex 200 
pg Increase) equilibrated with buffer A. Fractions containing samples were collected, and used for 
experiments after confirmation of their purity by SDS-PAGE. 
 
Kd determination of CU-6PMN (10) 

Assay conditions were as described in reference S9. Assay buffer for this assay contained 10 mM 
Hepes, 150 mM NaCl, 2 mM MgCl2, 5 mM DTT at pH 7.9. Final DMSO concentration was 1% 
(not considering DMSO used to dissolve fluorescein-peptides). Black 384-well microplates were 
purchased from Greiner Bio-One International (#784076). hRXRα-LBD, 3, and 10 were diluted as 
required with the assay buffer described above.  

This assay was performed according to SI Chart 1. To 4 wells per sample in a black 384-well 
plate were added 10 µL of two-fold serial dilutions of hRXRα-LBD (final concentrations of 4,000–
31 nM) in 1% DMSO assay buffer, 5 µL of 1,200 nM of 10 (300 nM final concentration) and 5 µL 
of 1% DMSO assay buffer or 40 µM bexarotene (10 µM final concentration) in 1% DMSO assay 
buffer. The plate was kept in the dark at r.t. for 2 hours. Data were collected at Ex/Em=360 nm/465 
nm using a Tecan Infinite F200. Data exclusion was performed using the Q-test (reference S10). 
The specific equilibrium binding constant (Kd) was derived from the specific binding curve by 
fitting the data to a sigmoid equation using Excel software. 
 
Transformation of measured fluorescence intensity into bound receptor concentration 

The measured fluorescent intensity (Flobs) was transformed into bound receptor concentration 
(Rb) using equation S1, modified from reference S11, 
 

Rb = Lt × [(Flobs - Flmin) / (Flmax - Flmin)] -------- (S1) 
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where Lt, Flmax, and Flmin are the total ligand concentration, and the fluorescence intensities when 
the fluorescent ligand was completely bound and not bound to hRXRα-LBD, respectively. The free 
receptor concentration (Rf) was calculated by subtracting Rb from the total receptor concentration. 
The bound ligand concentration (B) was assumed to be equal to Rb, and the free ligand 
concentration (F) was calculated by subtracting B from Lt. On the basis of the above calculations, 
Scatchard and Hill plots were prepared. 
 
Binding assay of a panel of RXR ligands with hRXRα-LBD using CU-6PMN (10) 

This assay was performed according to SI Chart 2 using similar materials to those used for Kd 
determination of 10. Two-fold serial dilutions of each test compound (100 µM to 0.2 µM, 10 
concentration levels) were incubated with 100 nM 10, 500 nM hRXRα-LBD as final concentrations 
in the assay buffer described above at r.t. for 2 hours. Final DMSO concentration was 1%. Data 
were collected at Ex/Em=360 nm/465 nm. IC50 was derived from the binding curve by fitting the 
data into a sigmoid equation using Excel software. The inhibition constant (Ki) value was calculated 
by using equation 1. The Ki values were used to compare the binding affinities of test compounds to 
hRXRα-LBD. 

To 4 wells each in a black 384-well plate were added 10 µL of 1,000 nM hRXRα-LBD in 1% 
DMSO assay buffer, 5 µL of two-fold serial dilutions of test compound in 1% DMSO assay buffer 
(final concentrations of 16 µ–31 nM), and 5 µL of 400 nM of 10 (100 nM final concentration). The 
plate was kept in the dark at r.t. for 2 hours. Data were collected at Ex/Em=360 nm/465 nm using a 
Tecan Infinite F200. Data exclusion was performed using the Q-test (reference S10). The specific 
equilibrium binding constant (Kd) was derived from the specific binding curve by fitting the data to 
a sigmoid equation using Excel software. 
 
Z’-factor 

In the Z’-factor signal stability test, 8 data points were included in each high-signal (10 µM 3, 
positive control to determine nonspecific binding) or low-signal (DMSO, negative vehicle control to 
determine total binding) group, and the Z’-factor value was calculated by using equation S2 
(reference S12), 
 

Z’ = 1 - [(3σ+ + 3σ-)/(M+ – M-)] -------- (S2) 
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where σ+ is the standard deviation of the positive control (10 µM 3) group, σ- is the standard 
deviation of the negative control (DMSO) group, M+ is the mean of the positive control (10 µM 3) 
group, and M- is the mean of the negative control (DMSO) group.  
 
Statistical analysis 
 Results are expressed as the mean ± standard deviation of at least three independent 
experiments. 
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2. Figure S1. 
 

 
Figure S1. Chemical structures of the compounds used in Figure 3. 

 
 
3. Figure S2. 

 

Figure S2. Relative absorbance and fluorescence spectra of 10 in 0.1 N NaOH (A) and MeOH (B). 
The spectra were obtained at Ex 396 nm in 0.1 N NaOH and Ex 352 nm in MeOH. 
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4. Figure S3. 
 

 

Figure S3. Time comparison of Z’-factors obtained using 100 nM 10 and 10 µM 3 with 0.5 µM 
hRXRα-LBD. n = 3, mean ± SD. 
 

 
5. Figure S4. 
 

  

Figure S4. Fluorescence intensity curves of the test compounds in the assay using 10. Fluorescence 
intensity was obtained by subtraction of the fluorescence of hRXRα-LBD with the test compound in 
the absence of 10 from that in the presence of 10. This assay was performed using a 384-well plate 
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(4 wells/sample). Final concentrations of 10 and hRXRα-LBD were 0.1 µM and 0.5 µM, 
respectively. Each compound was added at 0.03125, 0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8 and 16 µM 
(final concentrations). The assay buffer contained 10 mM Hepes, 150 mM NaCl, 2 mM MgCl2, 5 
mM DTT (pH 7.9). DMSO final concentration was 1%. Fluorescence was measured at Ex 360 
nm/Em 465 nm. Data shown are mean ± SD (n = 4). The Ki value was obtained from the calculated 
sigmoidal curve and shown in Table S3. Chemical structures of the compounds used are shown in 
Figure S4. 
 
 
6. Figure S5. 
 

  
Figure S5. Chemical structures of the compounds used in Figure S4. 
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7. Figure S6. 
 

 
Figure S6. Relative fluorescence intensity curves of 9cis-retinoic acid (1), and RXR antagonists 
in the assay using 10. The y-axis is shown as the relative value to 10 µM 3, taken as 1 (positive 
control). Data shown are mean ± SD (n = 3). The Ki value was obtained from the calculated 
sigmoidal curve and shown in Table S3. For danthron, the compound precipitation over 8 µM is 
suspected. Chemical structures of the compounds used except 1 are shown in Figure S7.  
 
 

8. Figure S7. 
 

 

Figure S7. Chemical structures of RXR antagonists used in Figure S4. PA452, HX531, and 
danthron were referred to references 13, 14, and 15, respectively.  
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9. Chart S1. Protocol for Saturation Assay of 10 toward hRXRα-LBD. 
 

 
 
 CU-6PMN (10) Bexarotene (3) hRXRα-LBD 

A + - + 

B - - + 

C + + + 

D - + + 

 
  

384-well plate (4 wells/sample)

RXR-LBD (x 2 arbitrary 
concentration), 10 µL
Bexarotene (3) 40 µM, 5 µL
(with or w/o) (final concentration 10 µM)

CU-6PMN (10) 1.2 µM, 5 µL
(with or w/o) (final concentration 0.3 µM)

Incubation under light protection at RT 
for 2 hr

Fluorescence Intensity
Ex 360 nm/Em 465 nm

Calculation of mean of 
fluorescence Intensity

Calculation
(A – B) – (C – D)
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10. Chart S2. Assay Protocol for Test compounds. 
 

 
 
 CU-6PMN (10) sample hRXRα-LBD 

E + + + 

F - + + 

 
  

384-well plate (4 wells/sample)

RXR-LBD 1 µM,10 µL

Sample (x 4 arbitrary 
concentration), 5 µL

CU-6PMN (10) 0.4 µM, 5 µL

with: E
w/o: F

Incubation under light protection at RT 
for 2 hr

Fluorescence Intensity
Ex 360 nm/Em 465 nm

Calculation of mean of 
fluorescence Intensity

Subtraction F from E
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11. Table S1. 
 

Table S1. X-Ray diffraction statistics for hRXRα-LBD (224-462) complexed with 10 
 

Space group P21 
Unit cell parameters  
a (Å) 46.62 
b (Å) 99.39 
c (Å) 110.2 
α (degree) 90.0 
β (degree) 99.4 
γ (degree) 90.0 
X-ray source PF-AR 

NW12A 
Wavelength (Å) 1.00 
Resolution (Å) 46.0–2.65 

(2.72–2.65) 
No. of reflectionsa 193032 
No. of unique reflections 27286 
Completeness (%) 99.7 (95.8) 
I/sig(I) 10.7 (1.3) 
Rmerge

b 0.134 (0.716) 
CC1/2 0.993 (0.706) 
B of Wilson plot (Å)2 37.9 
Rc 0.226 
Rfree

d 0.274 
RMSD of geometry  

Bond length (Å) 0.003 
Bond angle (degree) 1.132 

Geometry  
Ramachandran outlier (%) 0.1 
Ramachandran favored (%) 99.9 

Average B factor (Å)2  
Protein atoms 54.0 
Ligand atoms  61.4 
Solvent atoms 44.8 

PDB code 6JNO 
 

a Sigma cutoff was set to none (F > 0σF). 
b Rmerge = ΣhΣi|Ii(h)-<I(h)>|/ Σh I(h), where Ii(h) is the ith measurement of reflection h, and <I(h)> is 
the mean value of the symmetry-related reflection intensities. Values in brackets are for the shell of 
the highest resolution.  
c R = Σ||Fo|-|Fc ||/ Σ|Fo |, where Fo and Fc are the observed and calculated structure factors used in 
the refinement, respectively. 
d Rfree is the R-factor calculated using 5% of the reflections chosen at random and omitted from the 
refinement. 
e n.d. means “not determined”. 
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12. Table S2. 
 
Table S2. Comparison of hRXRα-LBD binding affinity values obtained using 10 and [3H]1 

 Ki (nM) 

Fl (using 10) RI (using [3H]1) 

Bexarotene (3) 379 ± 79 201 

NEt-TMN 212 ± 34 22 

CBTF-PMN 733 ± 59 413 

NEt-3IB 182 ± 18 9 

NEt-4IB 567 ± 115 581 

NEt-SB 336 ± 143 39 

TBTCl 604 ± 128 649 

The Ki values using 10 and the Ki values using [3H]1 toward hRXRα-LBD were obtained from the 
calculated sigmoidal curve shown in Figure S3. 
 
 
13. Table S3. 
 
Table S3. Ki values of 9cis-retinoic acid (1), bexarotene (3), DHA, EPA, PA452, HX531, and 
danthron using 10 

 

Ki (nM) 

Fl (10, CU-6PMN) 

9cis-Retinoic acid (1) 583 ± 158 

Bexarotene (3) 379 ± 79 

DHA 6292 ± 658 

EPA 7632 ± 1797 

PA452 730 ± 170 

HX531 906 ± 68 

danthron N.D. 

The Ki values were obtained from the calculated sigmoidal curve shown in Figure 5B and Figure S6. 
n = 3, mean ± SD. N.D. means “not determinable”. 
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14. NMR Charts 
10: 1H NMR chart (DMSO-d6)  

 

10: 13C NMR chart (CDCl3) 
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11: 1H NMR chart (CDCl3)  

 

11: 13C NMR chart (CDCl3) 
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14: 1H NMR chart (CDCl3) 

 
14: 13C NMR chart (CDCl3) 
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15: 1H NMR chart (CDCl3) 

 

15: 13C NMR chart (CDCl3) 
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17: 1H NMR chart (CDCl3) 
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18: 1H NMR chart (CDCl3)  

 

18: 13C NMR chart (CDCl3) 
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19: 1H NMR chart (CDCl3)  

 
19: 13C NMR chart (CDCl3) 
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20: 1H NMR chart (CDCl3)  

 
20: 13C NMR chart (CDCl3) 
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22: 1H NMR chart (CDCl3) 

 

22: 13C NMR chart (CDCl3) 
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23: 1H NMR chart (CDCl3)  

 
23: 13C NMR chart (CDCl3) 
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24: 1H NMR chart (CDCl3)  

 
24: 13C NMR chart (CDCl3) 
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25: 1H NMR chart (CDCl3)  

 

25: 13C NMR chart (CDCl3) 
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26: 1H NMR chart (CDCl3)  

 

26: 13C NMR chart (CDCl3) 
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15. HPLC Charts 
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