RADIOCESIUM DISTRIBUTION IN RICE, WILD PLANTS, AND SOIL FOLLOWING THE FUKUSHIMA-DAIICHI NUCLEAR POWER PLANT ACCIDENT September 2019 Nittaya Wakai **Graduate School of Environmental and Life Science** (Doctor's Course) **OKAYAMA UNIVERSITY** # **CONTENTS** | ABSTRACT | V | |--|----------| | ACKNOWLEDGEMENTS | vii | | LIST OF TABLES | viii | | LIST OF FIGURES | ix | | CHAPTER 1. INTRODUCTION | 1 | | 1.1 Background | 1 | | 1.2 Aims and outline of the thesis | 1 | | CHAPTER 2. LITERATURE REVIEW | 5 | | 2.1 The FD1NPP accident | 5 | | 2.2 ¹³⁷ Cs distribution in soil ecosystems | 5 | | 2.3 ¹³⁷ Cs cycle in the landscape | 6 | | 2.4 Decontamination of the ¹³⁷ Cs-contaminated land following the FD1NPP |) | | accident | 7 | | 2.5 ¹³⁷ Cs uptake by plants | | | 2.6 Cations in the soil affecting ¹³⁷ Cs distribution in rice plant parts | 8 | | 2.7 Rice plant physiology controlling ¹³⁷ Cs accumulation | 9 | | 2.8 Radiocesium properties | 10 | | 2.9 Radiocesium enters the environment | 10 | | 2.10 Effects of radiocesium to human health | 11 | | 2.11 Summary and knowledge gaps | 11 | | CHAPTER 3. FACTORS AFFECTING ¹³⁷ Cs CONCENTRATION IN WILI |) PLANTS | | AND SOILS OF DIFFERENT LAND USE IN IITATE-VILLAGE AF | TER THE | | FUKUSHIMA NUCI FAR POWER ACCIDENT | 13 | | 3.1 Introduction | |--| | 3.2 Materials and method14 | | 3.2.1 Sampling of soils and wild plants14 | | 3.2.2 Locations and description of sampling points | | 3.2.3 Samples preparation | | 3.2.4 Soil analysis | | 3.2.5 Radioactivity measurement for soil and wild plant | | 3.3 Results and discussion | | 3.3.1 ¹³⁷ Cs concentration in soils with different land use types | | 3.3.2 Soil properties affecting ¹³⁷ Cs uptake by wild plants19 | | 3.3.3 The relationship between plant species and ¹³⁷ Cs uptake21 | | 3.3.4 ¹³⁷ Cs concentration and TF of wild plant in an extremely contaminated soil24 | | 3.4 Conclusion | | CHAPTER 4. RADIOCESIUM CONCENTRATION IN STEMS, LEAVES, AND | | PANICLES OF RICE GROWN IN A SANDY SOIL REPLACEMENT PADDY FIELD | | TREATED WITH DIFFERENT RATES OF CATTLE MANURE COMPOST IN | | KAWAMATA, FUKUSHIMA26 | | 4.1 Introduction | | 4.2 Materials and method | | 4.2.1 Experimental field and treatments27 | | 4.2.2 The chemical fertilizer and irrigation | | 4.2.3 Cattle manure compost and ¹³⁷ Cs | | 4.2.4 Soil and rice sampling29 | | 4.2.5 Rice yield component measurement | | | 29 | |--|----------------| | 4.2.7 Rice analysis | 30 | | 4.2.8 Radioactivity measurement | 30 | | 4.2.9 Data calculations | 30 | | 4.2.10 Statistical analysis | 31 | | 4.3 Results and discussion. | 31 | | 4.3.1 Effect of cattle manure compost application on soil properties | 31 | | 4.3.2 Effect of compost application on ¹³⁷ Cs concentration in soils | 33 | | 4.3.3 Effect of compost application rates on rice yields | 35 | | 4.3.4 Effect of compost application rates on ¹³⁷ Cs in rice plant parts | 36 | | 4.3.5 Distributions of ¹³⁷ Cs, K, and N in rice plant parts | 38 | | 4.4 Conclusions | 42 | | 4.2.6 Soil analysis. 29 4.2.7 Rice analysis. 30 4.2.8 Radioactivity measurement. 30 4.2.9 Data calculations. 30 4.2.10 Statistical analysis. 31 4.3 Results and discussion. 31 4.3.1 Effect of cattle manure compost application on soil properties. 31 4.3.2 Effect of compost application on ¹³⁷ Cs concentration in soils. 33 4.3.3 Effect of compost application rates on rice yields. 35 4.3.4 Effect of compost application rates on ¹³⁷ Cs in rice plant parts. 36 4.3.5 Distributions of ¹³⁷ Cs, K, and N in rice plant parts. 38 4.4 Conclusions. 42 HAPTER 5. ADSORPTION AND DESORPTION OF STABLE CESIUM OF INERAL SOILS. 43 5.1 Introduction. 43 5.2.1 Soil samples. 43 5.2.2 Extraction experiments. 44 5.2.3 Chemical solution preparation. 44 5.2.4 Measurement of Cs concentration. 44 5.2.5 The Cs adsorption experiments. 45 5.3 Results and discussion. 46 5.3.1 Effect of the contact-time. 46 | | | | | | MINERAL SOILS | 43 | | | | | 5.1 Introduction | 43 | | 5.1 Introduction | 43 | | 5.1 Introduction | 43 | | 5.1 Introduction 5.2 Materials and method 5.2.1 Soil samples 5.2.2 Extraction experiments. | 43
43
43 | | 5.1 Introduction 5.2 Materials and method 5.2.1 Soil samples 5.2.2 Extraction experiments 5.2.3 Chemical solution preparation | 43
43
44 | | 5.1 Introduction 5.2 Materials and method 5.2.1 Soil samples 5.2.2 Extraction experiments 5.2.3 Chemical solution preparation 5.2.4 Measurement of Cs concentration. | 43434444 | | 5.1 Introduction 5.2 Materials and method 5.2.1 Soil samples 5.2.2 Extraction experiments 5.2.3 Chemical solution preparation 5.2.4 Measurement of Cs concentration 5.2.5 The Cs adsorption experiments | 4343444444 | | 5.1 Introduction 5.2 Materials and method 5.2.1 Soil samples 5.2.2 Extraction experiments 5.2.3 Chemical solution preparation 5.2.4 Measurement of Cs concentration 5.2.5 The Cs adsorption experiments 5.3 Results and discussion | 434344444445 | | 5.3.3 Effect of competitive ion | 48 | |--|----| | 5.3.4 Effect of organic materials amendment on Cs adsorption | 48 | | 5.4 Conclusions | 50 | | CHAPTER 6. GENERAL DISCUSSIONS AND CONCLUSION | 51 | | 6.1 Factors affecting ¹³⁷ Cs adsorption in soils | 51 | | 6.2 ¹³⁷ Cs uptake by plants | 51 | | 6.3 Reduction of ¹³⁷ Cs in soils and rice | 52 | | 6.4 Conclusions | 53 | | REFERENCES | 54 | ### **ABSTRACT** Nittaya Wakai, 2019. Radiocesium distribution in rice, wild plants, and soil following the Fukushima-Daiichi nuclear power accident. Doctoral Thesis, Okayama University, Japan. The accidental damage of the Fukushima-Daiichi nuclear power plant in March 2011 had released a large amount of radionuclides to the environment. One year after the accident, Yamashita et al. (2014) investigated concentrations of ¹³⁷Cs (half-life: 30 years) in hundred species of wild plants in agricultural lands in Iitate-village, indicating that wild plants were contaminated with ¹³⁷Cs. However, they did not identify factors affecting those contamination. On the other hand, removal of the soil surface seems to be an effective method for minimizing ¹³⁷Cs in agricultural land, but this reduces soil fertility. There are no studies available on soil improvement by cattle manure application. The aims of this research were to i) determine the ¹³⁷Cs contamination degree of soil and wild plants in Iitate and the neighboring villages with different land use types, ii) identify factors affecting ¹³⁷Cs concentration in soil and wild plants and transfer from soil to wild plants, and iii) evaluate effects of cattle manure compost application at various rates on rice yields and ¹³⁷Cs distribution in rice parts. For the first and second aims, we collected soil and wild plant samples from three different land use types, including agricultural land, roadside, and a mountain in litate-village and the neighboring areas in 2014. Concentrations of ¹³⁷Cs in agricultural soil ranged between 11 and 14 kBq kg⁻¹, while that in the roadside soil with high clay content was the highest (261 kBq kg⁻¹) and that in the mountain soil with relatively high organic matter showed the lowest (6 kBq kg⁻¹). Concentrations and transfer factors of ¹³⁷Cs were not significantly different among wild plant species grown in the same soil, but that differed for the same species grown in different soils. Our result suggested that the potential of ¹³⁷Cs uptake of plants was controlled by soil factors regardless of plant species. Exchangeable K reduced ¹³⁷Cs uptake by wild plants. Although this is well known for crops, we found that the same mechanism would occur for wild plants. For the third aim, an experimental field consisted of 4 plots receiving different rates of cattle manure compost (0, 10, 20, and 40 t ha⁻¹) and rice (Akitakomachi) was grown in 2015. As a result, rice yields increased with increasing rates of compost. Compost application increased exchangeable K, resulting in reduced ¹³⁷Cs concentration in rice. In the treatment with compost application rate of 20 t ha⁻¹, ¹³⁷Cs concentration and their transfer factors in rice parts were the lowest level. In this plot, exchangeable K in soil was the greatest. Concentrations of ¹³⁷Cs in stems were greater than in leaves and those in panicles were below the detectable level. In plots with 10 and 20 t ha⁻¹ of compost, ratios of ¹³⁷Cs/K were greater in stems than in leaves of rice and those were related to concentrations of Ca and Mg in the soil. Those results indicated that exchangeable K, Ca and Mg derived from cattle manure compost affected the uptake and distribution of ¹³⁷Cs in rice. In summary, we found that i) ¹³⁷Cs concentration
was higher in the roadside soil than those in agriculture and mountain soils, ii) ¹³⁷Cs uptake by wild plants was affected by soil factors rather than plant species, and iii) decrease of ¹³⁷Cs in rice parts resulted from inputs of K, Mg and Ca derived from cattle manure. Information on ¹³⁷Cs contamination in soil and wild plants with different land use types will be useful for recovering ¹³⁷Cs contaminated soil in non-agricultural areas. Cattle manure compost application is effective for reducing ¹³⁷Cs uptake by rice in addition to soil fertility improvement. Key words: cattle manure compost, ¹³⁷Cs, land use, rice, soil properties, wild plants ### **ACKNOWLEDGEMENTS** This thesis was made with support by many people. I would like to express my deepest appreciate for all. First my supervisor, Prof. Morihiro Maeda, who spent much hard time guiding the research and writing throughout my Ph.D. course. Beside my supervisor, I am so lucky to have been a student under the guidance and help of the best research team, Prof. Yoko Yamamoto, Dr. Jun Yamashita, and Dr. Takashi Enomoto, Institute of Plant Science and Resources, Okayama University, Prof. Toshiro Ono and Prof. Tadashi Hanafusa, Neutron Therapy Research Center, Okayama University, and Prof. Kuniyuki Saitoh, Graduate School of Environmental and Life Science Okayama University. I am grateful to Prof. Mori Yasushi and Prof. Moroizumi Toshitsugu for invaluable advises to improve the thesis. Thank you to all students of Maeda Sensei's laboratory; because of their help I had good experiences at Okayama University. It would have been impossible to complete this thesis without the encouragement and support as all the members of my family both in Thailand and Japan. My husband Hirozo Wakai and younger sister Prakobkit Dangthaisong gave their all heart and energy to supporting me mentally and financially. My father and mother Thoey and Noknoi Dangthaisong who gave me the best life and education. My lovely children, Hirobumi, Mio, and Hiromichi, are my motivation for study and living. # LIST OF TABLES | Table 3.1 ¹³⁷ Cs concentration and property of soils of different land use types | 20 | |---|----------| | Table 3.2 ¹³⁷ Cs concentration in wild plants and their respective soils, and the TF va | ılues22 | | Table 4.1 Chemical components of cattle manure compost. | 28 | | Table 4.2 Effect of compost application rates on soil properties at harvest | 32 | | Table 4.3 Effect of compost application rates on CEC, exchangeable K, Mg, Ca are | nd Na in | | soil at harvest | 33 | | Table 4.4 Rice yield related traits | 35 | | Table 4.5 Grain yield and components | 35 | | Table 4.6 Concentration of ¹³⁷ Cs in rice plant parts and transfer factor (TF) | 36 | | Table 5.1 Initial soil properties of the soils. | 44 | | Table 5.2 Chemical components of bamboo fresh powder and charcoal | 44 | # LIST OF FIGURES | Figure 1.1 Organization of the thesis. | |--| | Figure 3.1 Picture of the selected plants | | Figure 3.2 Study locations and sampling points | | Figure 3.3 Relationships between ¹³⁷ Cs concentration in wild plants and soils23 | | Figure 3.4 Relationships between TF of wild plants and exchangeable-K, NH ₄ ⁺ , and SOM | | in the soil23 | | Figure 4.1 Concentrations of ¹³⁴ Cs and ¹³⁷ Cs in the soil received different rates of | | compost34 | | Figure 4.2 The Relationship between ¹³⁷ Cs and exchangeable K in top and sub soil34 | | Figure 4.3 The relationship between ¹³⁷ Cs transfer factor to aboveground parts of rice | | plants and exchangeable K in the soils | | Figure 4.4 Concentrations of total- K, total- N and ¹³⁷ Cs in rice plant parts38 | | Figure 4.5 The ¹³⁷ Cs/K ratios of stems, leaves, and panicles of rice | | Figure 4.6 The relationship between ¹³⁷ Cs/K ratio of rice leaves and exchangeable K, Mg, | | and Ca in soil41 | | Figure 4.7 The relationship between exchangeable K in the soil and ¹³⁷ Cs/K ratio of stems | | and leaves41 | | Figure 5.1 The effect of shaking time on Cs adsorption for soils | | Figure 5.2 The effect of concentration of Cs on Cs adsorption for soils | | Figure 5.3 The effect of K concentration in solution on Cs adsorption for soil | | Figure 5.4 Effect of organic materials amendment in soil on Cs adsorption49 | ### **CHAPTER 1. INTRODUCTION** ## 1.1 Background Immediately after the Fukushima-Daiichi nuclear power plant (FD1N 1 PP) accident in March 2011, some areas of Fukushima prefecture were evacuated due to radioactive cesium (137Cs) contamination. Since then the agricultural fields have been left fallow. One year later, to repair this situation and allow the people to return, minimizing 137Cs in the fields by removing the contaminated soil and plants from the fields was recommended (Fukushima Environmental Safety Center, 2015); however, it was difficult to do for all fields. Information on the distribution of 137Cs in soils and plants in the fields for different uses might be useful for managing the decontamination work. Previously, the 137Cs contamination of almost 100 species of wild plants in agricultural fields in litate-Village, Fukushima, had been reported (Yamashita et al., 2014). However, the information on the factors affecting this contamination had not been defined. In addition, the strategies for recovering the agricultural land (paddy field) for rice cropping have been recommended (MAFF, 2012). Soil surface removal seems to be an effective method to reduce ¹³⁷Cs in paddy fields, but this causes the loss of soil fertility. Application of organic matter effectively improved soil fertility (Nishiwaki et al., 2017), but the effect on ¹³⁷Cs distribution in rice plants has not been reported by previous studies. ### 1.2 Aims and outline of the thesis The contamination of ¹³⁷Cs in land resources is a critical issue of concern after the FD1NPP accident. Wide areas of northeastern region of Japan had been found to have ¹³⁷Cs contamination in soil and plants. Information about the degrees of contamination in soil and plants for different types of land use, as well as the factors affecting the ¹³⁷Cs distribution in soil wild plant ecosystems, is necessary for future decontamination works and research. On the other hand, studies on strategies for maintaining soil productivity and prevention of ¹³⁷Cs contamination of food crops are crucial. Figure 1.1 Organization of the thesis The objectives of the present research were to: - i) estimate the degree of ¹³⁷Cs contamination in soil and wild plants in the different land use types and to identify the factors affecting ¹³⁷Cs distribution in soil and wild plant ecosystems (Chapter 3); - ii) reduction of ¹³⁷Cs in soil and rice through soil management (Chapter 4); and - iii) examine the factors affecting cesium adsorption in the soils from agricultural fields of litate-Village (Chapter 5). Chapter 2 reviews the release of ¹³⁷Cs into the environment and its distribution in the fields. In this chapter, we introduced literature, that is related to our study. After the FD1NPP accident, the distribution of ¹³⁷Cs in the environment was extensively reviewed, mainly in the agricultural fields. However, contamination in other types of land uses have not been reported frequently. After ¹³⁷Cs is deposited, it can be fixed in soil layers or adsorbed onto organic matter. Re-distribution of these ¹³⁷Cs has been controlled by a number of factors. Mechanisms of ¹³⁷Cs uptake by plants have been studied widely, but the information about the effects of combined factors is limited. Decontamination of the ¹³⁷Cs contaminating agricultural fields for rice cultivation has been promoted, but the secondary impact has not been extensively studied. **Chapter 3** presents the results of the field survey. We found that ¹³⁷Cs distributions in the soil of different land uses were significantly different. The distribution of ¹³⁷Cs in these lands had been affected by a number of factors. Plants grown in contaminated soils play an important role as indicators of ¹³⁷Cs level in their respective soils. We found that different wild plants grown in same soil showed the same ¹³⁷Cs concentration and transfer factor (TF) level, in contrast those of the same species grown in different soils, suggesting that there is a potential for ¹³⁷Cs uptake by wild plants to be affected by soil factors regardless of plant species. Chapter 4 presents the strategies for reducing ¹³⁷Cs in rice plants grown in paddy fields after the removal of surface soil. Cattle manure compost was used to improve soil fertility after removal of the surface soil. We found that application of cattle manure compost increased in rice yields and successfully reduced ¹³⁷Cs in rice plant parts. ¹³⁷Cs distribution in rice plants has been monitored and expressed as concentrations in rice plant parts. ¹³⁷Cs is transported in rice plants via the K transporter; as a result, we found the same trend for ¹³⁷Cs and K concentration in stems > leaves > panicles. The ¹³⁷Cs/K ratio in rice parts was used as an indicator of their translocation. Different ¹³⁷Cs/K ratios indicated the different translocation rates between ¹³⁷Cs and K inside rice plants. We found that the ¹³⁷Cs/K ratio in stems was higher than in leaves of rice grown in soil with relatively high Ca and Mg; in contrast, it was higher in leaves than in stems in soil with lower Ca and Mg, indicating that ¹³⁷Cs transport to upper parts of rice plants is affected by Ca and Mg in the soil. Chapter 5 presents the results of extraction experiments that we conducted in the laboratory using stable cesium instead of radioactive cesium to examine the effects of contact times, concentrations, and competitive ions on cesium adsorption in the
mineral soils. In addition, we examined the effects of soil amendment on stable cesium adsorption. Chapter 6 discusses the factors affecting ¹³⁷Cs transfer in soil and plant ecosystems. After ¹³⁷Cs is deposited on the ground, re-distribution occurred naturally. The potentials of ¹³⁷Cs transportation in plants differed depending on soil properties and concentration of ¹³⁷Cs. In rice, ¹³⁷Cs transport between organs is controlled by both soil cation conditions and plant physiology. ### **CHAPTER 2. LITERATURE REVIEW** ### 2.1 The FD1NPP accident The accidental damage to the FD1NPP in March 2011 released a large amount of radionuclides including; ¹³¹I, ¹³²I, ¹³²Te, ¹³⁴Cs, ¹³⁷Cs, ¹⁴⁰Ba, ^{110m}Ag, and ^{129m}Te into the environment (Chino et al., 2011, WHO, 2013). The total release of radionuclides from the FD1NPP accident was estimated at 770,000 teraBq. That was approximately 15% of those from the Chernobyl accident in 1986 (Nakashima, 2018). The radionuclides were estimated for ¹³¹I (half-life: 8 days) 21%, for ¹³⁴Cs (half-life: 2 years) 2.3%, for ¹³⁷Cs (half-life: 30 years) 1.9 % (Nakashima, 2018, MEXT, 2011). Radionuclides entering the environment via direct deposition of fine particles (dry deposition) and fallout with rainfall (wet deposition) (IRSN, 2012). After the accident, the impact of ¹³⁷Cs in the land resources is a critical issue because its half-life is long and it can enter human foods. After the accident, Japanese authorities prohibited rice cultivation in the paddy soil contaminated with ¹³⁷Cs higher than 5,000 Bq kg⁻¹ (30 km radius zone from FD1NPP), because a transfer factor (TF) level of 0.1 can produce a concentration of ¹³⁷Cs in rice products of 500 Bq kg⁻¹, the maximum level permited for Japan foods (Saito, 2012). The Ministry of Health, Labor and Welfare (MHLW) established a provisional level of 500 Bq kg⁻¹ for radiocesium in cereal, vegetables, meat, and fishery products on 17 March 2011. However, on 1 April 2012, a new maximum limit of 100 Bq kg-1 in general foods, excluding infant food, milk, water and beverages was established (Nihei et al., 2015). # 2.2 137Cs distribution in soil ecosystems Due to the several explosions of FD1NPP, radionuclides including ¹³⁷Cs were dispersed into the atmosphere before falling to the ground. ¹³⁷Cs was deposited on the ground through both dry particles and wet fallout with rain. Patterns and rates of deposition differ depend on meteorological conditions (Chino et al., 2011). Davis (1963) reported that ¹³⁷Cs fallout with rainfall is more widespread than dry deposition. After ¹³⁷Cs is deposited, it is strongly adsorbed on soil particles, limiting its movement by chemical and biological processes. Most ¹³⁷Cs movement in the environment is a physical process (Ritchie and McHenry, 1990). This property of ¹³⁷Cs can be used as a tracer for measuring soil erosion. Soil erosion and deposition of eroded soil particles in fields, flood-plains, and water bodies are major environmental concerns around the world. Although soil erosion is a natural process, many human activities have increased the rates of soil erosion. Soil erosion reduces soil productivity, scars the landscape, and causes downstream damage (Ritchie and McHenry, 1990). Matsuda et al. (2015) reported that ¹³⁷Cs migration downward into the soil layer after the FD1NPP accident was estimated at 3 cm per year. # 2.3 ¹³⁷Cs cycle in the landscape Once ¹³⁷Cs is deposited on the land, its remains for a long time. ¹³⁷Cs is deposited in the soil through direct deposition from the atmosphere, wash-off from vegetation, turnover from vegetation, and redeposition of eroded soil particles. Movement of ¹³⁷Cs in chemical and biological processes is limited, and the major factors of ¹³⁷Cs movement in the soil are physical processes such as water and erosion (Ritchie and McHenry, 1990). Transport of ¹³⁷Cs across the landscape is due to vegetation, soil, and water. ¹³⁷Cs is distributed on vegetation via adsorption and absorption. The adsorbed ¹³⁷Cs on vegetation can be washed into the soil (Davis, 1963; Dahlman et al., 1975). The ¹³⁷Cs in plants is returned to the soil through vegetation decomposition. Uptake of ¹³⁷Cs by vegetation from soils (Davis, 1963; Dahlman et al., 1975) or water (Eyman and Kevern, 1975; Garten et al., 1975) is less important than direct absorption from direct deposition on foliage (Dahlman et al., 1975). Removal of ¹³⁷Cs from the landscape with harvested vegetation has a small effect (Brown et al., 1981). # 2.4 Decontamination of ¹³⁷Cs-contaminated land following the FD1NPP accident Decontamination of the ¹³⁷Cs contaminated agricultural land was started in 2012. Three methods were recommended: i) removal of the surface soil, ii) separation of the fine particles, and iii) reverse tillage (MAFF, 2012). Removal of the surface soil seems to be the most effective method. According to the study of Shiozawa et al. (2011) who reported that 99% of the radiocesium was adsorbed onto a 0-7 cm layer of paddy soil in Fukushima on 24 May 2011. Similarly, Kato et al. (2012) had found that 96% of total radiocesium was adsorbed onto a 0-5 cm layer. The bases of these studies emphasized that removal of the top 15 cm layer could remove more than 80% of the radiocesium from the land (MAFF, 2013). # 2.5 ¹³⁷C uptake by plants Plant uptake of ¹³⁷Cs from soil is commonly expressed as "soil to plant transfer factor, TF" and calculated as: TF = $$\frac{\text{Concentration of }^{137}\text{Cs in plant (Bq kg}^{-1} \text{ weight)}}{\text{Concentration of }^{137}\text{Cs in soil (Bq kg}^{-1} \text{ weight)}}$$ It is generally assumed that the concentration of ¹³⁷Cs in a plant linearly related to its concentration in the rooting zone of the soil (Ehlken and Kirchner, 2002). Because the chemical properties of radiocesium (¹³⁷Cs) are similar to those of stable cesium (Cs) (Tsukada, 2002), the mechanism of stable Cs transport in soil and plant system could be explained by that for ¹³⁷Cs. It is well known that the mechanism of cesium uptake by plant roots is similar to that of potassium (K) (White and Broadley, 2000). Cesium is not an essential element for plants, but plants uptake cesium when the soil is deficient in potassium, through the K transporter (Avery, 1995). Distribution of Cs in plants differs among the parts (root>stem>leave>grain) and is similar with that of K (Tsukada et al., 2002a, b). An inhibiting effect of K on Cs adsorption has been reported (Smolder and Tsukada, 2011). # 2.6 Cations in the soil affecting ¹³⁷Cs distribution in rice plant parts Although cesium (Cs) and potassium (K) ions are similar chemically, but they have different physical characteristics. The ionic radius of Cs is 1.69 nm, which fits well with the size of the clay layer surfaces; therefore, adsorption of Cs in soil is stronger than that of K (ionic radius 1.33 nm) (Johanson et al., 2004). After the FD1NPP accident, studies of soil management methods for reducing ¹³⁷Cs uptake by rice have been widely performed (Sato et al., 2012, Kato et al., 2015, Saito et al., 2015). Saito et al. (2012) reported that the radiocesium concentration of brown rice was decreased by increasing exchangeable K in the soil. Kato et al. (2015) recommended that soil with an exchangeable K concentration higher than 0.50 cmol₆ kg⁻¹ is the most effective for reducing ¹³⁷Cs uptake by lowland rice. However, the effect of other cations on ¹³⁷Cs uptake and distribution in rice plant parts is still unknown. Previously, some studies had reported that K concentration regimes affect the activity of the K transporter (Zhu et al. 2000). Sodium (Na) and hydrogen (H) ions inhibit K adsorption and transport mechanisms (Van et al., 1981; White, 1999). Calcium (Ca) blocks the H and Na adsorption sites in the plasma membrane of root cells, resulting in enhanced K uptake by plants (Epstein, 1961; Viets, 1999). Magnesium (Mg) plays a similar role as Ca (Epstein, 1961). According to Heredia et al. (2002), growing plants with sufficient K but low Ca enhance Cs uptake. Overstreet et al. (1952) found that Ca plays a role in both competition and stimulation effects for K adsorption. The depressing effect of Ca on K adsorption occurs through the competition between Ca and K for binding with the metabolic compounds. The stimulation effect of Ca occurs when the K in medium is very low. This finding should be related to the transportation and accumulation of ¹³⁷Cs in plant parts. In addition, Smolder et al. (1997) found that only K in medium-solution had a poor effect on reducing Cs uptake by plants (spinach), but significantly reduced Cs uptake when the interaction was with Ca and Mg. Based on these reviews, not only K but also other cations affect ¹³⁷Cs uptake and distribution in rice plant parts. # 2.7 Rice plant physiology controlling ¹³⁷Cs accumulation The ¹³⁷Cs in soil solution enters the root cells and translocate in plant parts via the K transport systems, it delivers to xylems through a symplastic pathway (White and Broadley, 2000). The relationship between Cs and K fluxes into the root cells is controlled by the abundance and activity of transport proteins catalyzing K, which is present in the plasma membrane of root cells. After the Cs and/or K loading in xylems they are transport upward, which K is easier loading in the vacuoles than Cs (Van et al., 1981). Plant shoot vacuoles limits for Cs accumulation, the surpluses have been loading into the phloem for recirculation for root cells (Buysse et al., 1995). The function of vacuoles is different in the different types of tissues. The physiologically relevant functions, such as turgor control, ion selectivity, and cellular signaling have been associated with the lytic vacuoles (LV), which generally present in the vegetative tissues. The biosynthetic functions, such as storage of nutrients occur in the protein storage vacuoles (PSVs) (Marty, 1999). According to Isayenkov et al. (2011) the K-selective cation channels present at the
tonoplast of the vacuolar membrane of all plants, however different in its size for different organs. Rice (*Oryza sativa*) has been demonstrated that different types of K-selective cation channels, so call K-transporter encoding proteins (TPK). Different TPK (TPKa and TPKb) is present in different types of vacuole. There is different size for TPKa and TPKb, TPKa is larger than TPKb. The TPKa presents in the tonoplast of the lytic vacuole (LV), and the TPKb is in the tonoplast of the protein storage vacuoles (PSVs). There is no studied about the effect of these K-transporter proteins on the ¹³⁷Cs selective of rice parts, but this rice physiological characteristic might be involved in the different of accumulation rate between K and Cs in different parts of rice. ## 2.8 Radiocesium properties Cesium (or Caesium) means blue in Latin. The symbol is Cs, atomic number: 55, atomic weight: 132.905, melting point: 28.44°C, boiling point: 671°C, and density: 1.93 g cm⁻³. Phase at room temperature: solid, element classification: metal, period number: 6, group number: 1, group name: alkali metals. Cesium was discovered by Robert Wilhelm Bunsen and Gustav Robert Kirchhoff, German chemists, in 1860 through the spectroscopic analysis of Durkheim mineral water. Cesium has a number of isotopes from 112 Cs to 151 Cs, but among these isotopes only 133 Cs is stable in nature. Cesium is chemically similar to potassium and rubidium. 134 Cs and 137 Cs are not found in nature, they are emitted during the uranium fission process. They are dangerous to living cells as emissions of β and γ radiation and have a relatively long half-life (half-life: 2.06 years for 134 Cs and 30 years for 137 Cs). ### 2.9 Radiocesium enters the environment The primary source of radionuclides in the environment was the testing of nuclear weapons. The public has been exposed to these radionuclides for the past three decades or longer, but the exposure has substantially declined in the past two decades. In recent years, the major source of radionuclides was from nuclear accidents. On 28 March 1979, a very serious accident of the Three Mile Island nuclear power plant in the USA caused the release of approximately 370 PBq of ¹³³Xe (half-life: 5.3 days) and 550 GBq of ¹³¹I (half-life: 8 days). Health damage due to radiation exposure has not been reported. On 26 April 1986, the most serious nuclear accident in history occurred at the Chernobyl nuclear power plant of Ukraine, and this accident released the largest amounts of long-lived-radionuclides, including ¹³¹I (1,760 PBq), ¹³⁴Cs (47 PBq), and ¹³⁷Cs (85 PBq) into the environment. On 11 March 2011, an accident at the Fukushima-Daiichi nuclear power plant of Japan occurred. The accidental damage to nuclear power plants released large amounts of radionuclides into the environment (Yamada, 2012). ### 2.10 Effects of radiocesium to human health Cesium (137 Cs) can be stored in the flesh of fish and animals. The emitted radiation (γ and β) was found to stop cell division, and this could also be used therapeutically to stop cancer. On the other hand, radiation applied locally was found to cause wounds, which are difficult to heal, and to induce cancer. The biological effect of very large whole-body doses is radiation sickness and early death, while large organ doses lead to local cell destruction and, possibly, organ death. The effects at lower doses are cell changes (decreased surviving fraction, decreased rate of division, chromosomal aberrations, etc.). The induction of cancer may take years to observe, and genetic changes may not be discovered until after several generations. Once ¹³⁷Cs is distributed in the environment, it will remain hazardous for many decades. # 2.11 Summary and knowledge gaps After the Chernobyl nuclear accident, the mechanism of ¹³⁷Cs uptake by plants has been widely studied. In plants, ¹³⁷Cs uptake and transport between plant organs through the K transporter (Avery, 1995). Potassium (K) has an inhibitory effect on ¹³⁷Cs uptake by plant (Zhu and Smolders, 2000; Smolders et al., 1997; White, 1999; Hampton et al., 2005). The effect of calcium (Ca) on K transport (Epstien, 1961) and effect of N on ¹³⁷Cs uptake (Evan and Dekker, 1969) have been reported. However, most previous studies were done on the effect of a single factor. In the present study, we found that ¹³⁷Cs uptake by rice and wild plants was affected by a combination of factors. On the other hand, ¹³⁷Cs distribution in fields with different land use types has not been studied frequently. We found that the ¹³⁷Cs concentration of soil from roadside was higher than those in agricultural fields and mountain soil. Re-distribution of ¹³⁷Cs occurs through the movement of ¹³⁷Cs-fixed soil particles, which are affected by rain and wind. Factors affecting ¹³⁷Cs distribution in the soil system had not been studied yet. Since the FD1NPP accident, methods of reducing ¹³⁷Cs in rice have been widely studied. Minimizing ¹³⁷Cs in paddy fields through removing the surface soil was recommended. However, that caused a loss of soil fertility. Using a potassium fertilizer has successfully reduced ¹³⁷Cs uptake by rice (Saito et al., 2012; Kato et al., 2015; Saito et al., 2015). However, there are no available studies on soil improvement by application of cattle manure compost. The present study found that application of cattle manure compost increased soil nutrients including exchangeable K, Ca, and Mg, resulting in increased rice production and reduced ¹³⁷Cs concentration in rice plants. # CHAPTER 3. FACTORS AFFECTING ¹³⁷Cs CONCENTRATION IN WILD PLANTS AND SOILS OF DIFFERENT LAND USE IN IITATE-VILLAGE AFTER THE FUKUSHIMA NUCLEAR POWER ACCIDENT ### 3.1 Introduction On 11 March 2011, a major earthquake following with a huge tsunami hit a wide area on the northeast coast of Japan. The event caused the FD1NPP to lose its reactor cooling systems, resulting in several explosions in four units of the plant. Due to this accident, a plume containing large amounts of radionuclides, including radioactive cesium (¹³⁷Cs), dispersed into the atmosphere (Morino et al., 2011) and then deposited on the grounds. ¹³⁷Cs has a long half-life (30 years) and is highly soluble in water. Cesium can enter the human body through air, soil, water, and foods (Avci, 2010). Deposition of ¹³⁷Cs on the grounds was spatially heterogenous (Tanaka et al., 2013), which was caused by several factors including the length of emission time (Ohno et al., 2012), meteorological conditions, and the topography of the lands (Kinoshita et al., 2011). The ¹³⁷Cs can be fixed in soil layers after deposition and it can then be redistributed through the movement of soil water (Sutherland,1994). The ¹³⁷Cs can be taken up by plants through soil water solution. The potential of ¹³⁷Cs uptake for plants differ, depending on the plant species and the amount of ¹³⁷Cs available in the soil. The index of ¹³⁷Cs transferred from the soil to the plants is referred to as the transfer factor (TF) and is calculated as the ratio of the ¹³⁷Cs concentration in a plant to ¹³⁷Cs concentration in soil (Frissel et al., 2002). Higher TF values indicate greater ¹³⁷Cs uptake from soil by the plant. Plants can be both indicators (Koranda and Robison, 2002) and extractors (Lasat et al., 1997) of ¹³⁷Cs in contaminated land. Wild plants growing in agricultural areas during ¹³⁷Cs emission can be both a sink and a source of ¹³⁷Cs within an ecosystems (Murakami et al., 2014; Ishii et al., 2017). After the FD1NPP accident, Yamashita et al. (2014) reported ¹³⁷Cs accumulation in wild plants and reported on the ¹³⁷Cs uptake of 99 species of wild plants in Iitate-village and found that the ¹³⁷Cs transfer factor of wild plants differed depending on the species. However, they did not mention the effect of soil conditions. In general, ¹³⁷Cs uptake by plants is affected by both soil conditions and plant physiology (Johanson, et al., 2004). Understanding the transportation of ¹³⁷Cs in soil and plant systems is necessary for future management of contaminated land. The objectives of the present study were to examine the degree of contamination in the soils under different land use types after the FD1NPP accident and to identify the factors affecting ¹³⁷Cs transfer in soils and wild plants. ### 3.2 Materials and method ### 3.2.1 Sampling of soils and wild plants Six different wild plant species were collected. They expressed as their scientific name followed by their abbreviation and Japanese name in parentheses. Picture of selected plants are shown in Figure 1. - 1) Artemisia indica Willd. var. maximowiczii (Nakai) H. Hara. (Ar. indica; Yomogi) - 2) Athyrium deltoidofrons Makino. (At. deltoidofrons; Satomeshida) - 3) Athyrium yokoscense (Franch. Et Sav. (Christ). (At. yokoscense; Hebinonegoza) - 4) Dryopteris tokyoensis (Makino) C.Chr. (D. tokyoensis; Tanihego) - 5) Sedum sarmentosum Bunge. (Se. sarmentosum; Tsurumannengusa) - 6) Solidago altissima L. (So. altissima; Seitaka-awadachiso) Five of them showed high ¹³⁷Cs uptake values as reported by Yamashita et al. (2014). The plant samples were randomly selected and collected by severing the aboveground parts (n = 3). Soil samples close to the selected plants were collected using a soil sampling scoop to a depth of 5 cm. Figure 3.1 Picture of the selected plants ## 3.2.2 Locations and description of sampling points Figure 3.2 shows the study locations. The sampling points are numbered within each location followed by an alphabetical code for the land use types. The plant name is given as an abbreviation of the scientific name. Location 1: *Ar. indica* and *So. altissima* were sampled in a paddy field (1P) and upland field (1U). Three soil samples from each field were collected. In addition, we collected *Se. sarmentosum* and three soil samples at the roadside (1R), which is located approximately 1 km away from 1P and 1U. Location 2: At. deltoidofrons, D. tokyoensis, and
So. altissima were collected in a paddy field (2P). At. yokoscense in two areas along a canal ditch (2C). Three soil samples were collected at each plant sampling point. Location 3: *At. yokoscense* and three soil samples were collected at the base of a mountain (3M). For sites 1P and 1U, soils and plants were collected in August 2014. For sites 1R, 2P, 2C, and 3M, the samples were collected in October 2014. The fresh soil and plant samples were kept separately in polyethylene bags for transport to the laboratory. ## 3.2.3 Samples preparation From each soil sample, the moisture soil was used for inorganic nitrogen analyses. The rest was air dried at room temperature for one week, and then sieved through a 2 mm mesh before the chemical and physical property analyses and radioactivity measurements. The results are given on the oven dried (105 °C for 48 hrs) weight basis. Plant samples were oven dried at 60°C for five days and then kept in a desiccator until use. The dried samples were ground to the powder with a Waring blender (J-spec Blender 7011JBB, Waring Commercial, Torrington, USA) using a 250 mL jar set (BC250) before radioactivity measurements. Figure 3.2 Study locations and sampling points (Source: google map (2018)) # 3.2.4 Soil analysis Soil texture fractionation was done by the pipet method (Nakai 1997). Inorganic nitrogen (NO₃⁻ and NH₄⁺) in the moist soils was extracted with 2 *M* KCl at the ratio of 1:10 (soil: solution). We filtered the supernatant through a 0.2 μm membrane before analyzing it with the continuous flow analyzer (QuAAtro-HR, BL-TEC Autoanalyzer, Osaka, Japan). We determined the soil cation exchange capacity (CEC) and exchangeable potassium (K) using Kamewada's method (Kamewada, 1997), and measured the total carbon (TC) and total nitrogen (TN) with a CN coder (MT-700 Mark II, Yanaco, Kyoto, Japan). Soil organic matter (SOM) was calculated with the formula TC × 1.724 (Périé et al., 2008; Jiménez et al., 1992). ## 3.2.5 Radioactivity measurement for soil and wild plant To measure ¹³⁷Cs radioactivity in the soil and plant samples, we used a Ge semiconductor detector (GMX 15200P, Seiko EG&G, Tokyo Japan). Samples were prepared for radioactivity measurement by adding a dried sample of each to a plastic container (U8 container, 48 mm in diameter and 58 mm high, Umano Kagaku Youki Co. Ltd., Osaka, Japan) to more than 10 mm deep. Each sample container was wrapped in a polyethylene bag before placing it into the Ge semiconductor. Measuring time was 30 minutes for each sample. Data analysis was performed using Gamma Studio Software (Seiko EG & G). The detection efficiency of the Ge detector was determined using the nine nuclides mixed activity standard including ¹³⁷Cs (Japan Radioisotope Association, Tokyo, Japan). The soil to plant transfer factor (TF) was calculated with the following equation. TF = $$\frac{^{137}\text{Cs concentration in plant (Bq kg}^{-1})}{^{137}\text{Cs concentration in soil (Bq kg}^{-1})}$$ ### 3.3 Results and discussion # 3.3.1 ¹³⁷Cs concentration in soils with different land use types Table 3.1 shows that ¹³⁷Cs concentration in soil was highest in 1R and lowest in 3M, whereas that in agricultural lands was in the range of 10 to 14 kBq kg⁻¹. Different ¹³⁷Cs concentration in these soils was presumably because the effect of combination factors involving soil properties and the slope of the landscape. The highest level of ¹³⁷Cs in the soil of 1R was possibly due to the high ¹³⁷Cs-fixed clay particles accumulating on the roadside. Tanaka et al. (2013) reported that ¹³⁷Cs was emitted from the FD1NPP as water-soluble fractions. After deposition, the ¹³⁷Cs became fixed in clay particles. Sutherland (1994) reported that ¹³⁷Cs fixation in soil particles was irreversible, and redistribution of ¹³⁷Cs fixed particles occurred naturally through soil erosion. Similarly, Richie and McHenry (1990) reviewed that ¹³⁷Cs adsorbed on soil particle is strong and limiting its movement by chemical and biological, and this property was used as the tracer for measuring soil erosion and sedimentation. Our result can be explained that the ¹³⁷Cs-eroded particles had deposited at the roadside. In contrast, soil from 3M had a high clay but exhibited the lowest concentration of ¹³⁷Cs. This was presumably due to the soil containing high SOM and was located on the slope landscape. According to Rigol et al. (2002), ¹³⁷Cs adsorbs to SOM as a weak interaction, resulting in enhanced removal through leaching. Koarashi et al. (2016) found that after the FD1NPP accident, the major portions of ¹³⁷Cs were retained in the organic layers of forest soil. The lowering of ¹³⁷Cs in this was affected by the combination of a weak adsorption of ¹³⁷Cs on SOM and leaching. The ¹³⁷Cs concentration in agricultural lands (1P, 1U, 2P, and 2C) should reflect the initial amount of deposition, as these lands were less affected by leaching through rain water. # 3.3.2 Soil properties affecting ¹³⁷Cs uptake by wild plants The ¹³⁷Cs concentration in the plants was positively correlated with that in the soil. In contrast, the transfer factor (TF) value of the plants did not follow the same trend (Figure 3.3), indicating that the availability of ¹³⁷Cs to plants was affected by other soil factors. In the present study, however, the TF of wild plants grown in soil with high exchangeable K tended to have low TF values (Table 3.2 and Figure 3.4). Table 3.2(a) shows that ¹³⁷Cs was not detected in either *Ar. indica* or *So. altissima*. from 1P and 1U, in which soils contained 1.3 and 2.0 cmol_c kg⁻¹ of exchangeable K, respectively. It is well known that exchangeable K strongly affects ¹³⁷Cs uptake by plants (Smolders et al., 1997; Zhu and Smolders, 2000). According to Frissel et al. (2002) soil media with exchangeable K lower than $0.5~\rm cmol_c$ kg⁻¹ allow high $^{137}\rm Cs$ uptake by plants. However, the present study results showed that plant did not uptake $^{137}\rm Cs$ in soil containing high K content. **Table 3.1** ¹³⁷Cs concentration and property of soils of different land use types. | Sampling points | Land use types | Number of plant species | Number of soil samples | ¹³⁷ Cs [#] kBq kg ⁻¹ | SOM [‡] | CEC [‡] cmol _c kg ⁻¹ | Clay* | |-----------------|----------------|-------------------------|------------------------------|---|--------------------|---|-------| | Perme | J P C | (n) | 5011 5 11 111 1 1 2 5 | | , 0 | omes, ng | | | 1P | Paddy | 2 | 3 | 12.06 ± 6.76 | 10.8 ± 0.4* a | $17.5 \pm 0.8 \text{ a}$ | 4.7 | | 1R | Roadside | 1 | 3 | 260.58 | $4.9 \pm 0.7 \; c$ | 6.1 ± 0.2 c | 10.5 | | 1U | Upland | 2 | 3 | 10.68 ± 0.02 | $7.7\pm0.3\;b$ | $16.0\pm0.4\;b$ | 1.3 | | 2C | Canal ditch | 1 (2 points) | 6 | 14.64 ± 1.33 | 6.4 ± 2.0 bc | $7.7\pm0.9~d$ | 4.5 | | 2P | Paddy | 3 | 9 | 13.82 ± 4.62 | $7.0\pm2.81~bc$ | $8.7\pm2.0\ d$ | 3.1 | | 3M | Mountain | 1 | 3 | 6.35 | $8.5 \pm 1.37 \ b$ | 11.1 ± 0.7 c | 10.8 | ^{*} Mean \pm SD, # Measured with n = (n), † Measured with n = number of soil samples, ^{*}Measured with n = 1, Values in the same column followed by the same alphabet are not significantly different (P>0.05) by Tukey's test. # 3.3.3 The relationship between plant species and ¹³⁷Cs uptake # (a) ¹³⁷Cs uptake by the same plant species in different soils Table 3.2(a) and (b) show that *So. altissima* and *At. yokoscense* grown in different soils exhibited different ¹³⁷Cs concentrations and TF values. For instance, *So. altissima*. in 2P exhibited a high ¹³⁷Cs concentration and TF value, differing from those for 1P and 1U. This is possibly because soil from 2P has relatively lower exchangeable K and higher NH₄⁺ than soil from 1P and 1U. According to Evans and Dekker (1969), applying NH₄⁺ to the soil with low exchangeable K resulted in high ¹³⁷Cs uptake by plants. Similarly, Lasat et al. (1997) reported that applying of NH₄⁺ to the ¹³⁷Cs contaminated soils caused the desorption of ¹³⁷Cs fixed to clay minerals, resulting in greater ¹³⁷Cs bio-availability for plants. Similarly, *At. yokoscense* from 3M exhibited higher ¹³⁷Cs concentrations and TF values by 1.5 - 2.7 times and 3 - 6 times, respectively, than those from 2C. This is probably because the soil from 3M has relatively higher inorganic nitrogen (NO₃-, NH₄+) and SOM content. Mineralization of nitrogen through SOM decomposition causes desorption of ¹³⁷Cs fixed to clay minerals, resulting in greater ¹³⁷Cs bio-availability for plants (Sanchez et al., 1999). In addition, among two 2C collection sites for *At. yokoscense*, we found that the ¹³⁷Cs concentration and TF value were apparently higher in *At. yokoscense* grown in soil with a higher SOM content. Table 3.2 ¹³⁷Cs concentration in wild plants and their respective soils, and the TF values. | Wild plants | Locations | Land use types | 137Cs in soils # | ¹³⁷ Cs in plants ## | TF | K** | NH ₄ ^{+*} * | SOM* | |-------------------|-----------|----------------|----------------------|--------------------------------|-------|------------------------------------|---------------------------------|--------------------------| | | | | kBq kg ⁻¹ | kBq kg ⁻¹ | | cmol _c kg ⁻¹ | mg kg ⁻¹ | % | | (a) | | | | | | | | | | Ar. indica | 1P | Paddy | 16.84 | ND^{\ddagger} | 0 | $1.3\pm0.1*b^{\dagger}$ | 1.8 ±1.1 ab | $10.8 \pm 0.5 a$ | | " | 1U | Upland | 10.67 | 0.04 ± 0.04 | 0.004 | 2.0 ±0.1 a | 2.0 ±0.1 ab | 7.6 ±0.4 ab | | So. altissima | 1P | Paddy | 7.29 | ND | 0 | 1.3 ±0.1 b | 1.8 ±1.1 ab | 10.8 ±0.5 a | | " | 1U | Upland | 10.70 | ND | 0 | $2.0 \pm 0.1 \ a$ | 2.0 ±0.1 ab | 7.6 ± 0.4 ab | | (b) | | | | | | | | | | At. yokoscense | 2C | Canal | 13.70 | 2.51 ±0.20 d | 0.18 | 0.7 ± 0.2 cd | 0.7 ± 0.1 bc | $7.3 \pm 3.1 \text{ ab}$ | | " | 2C | Canal | 15.58 | 1.37 ±0.31 d | 0.09 | $0.9 \pm 0.1 c$ | $0.5 \pm 0.1 \text{ bc}$ | 5.4 ±0.6 b | | " | 3M | Mountain | 6.35 | 3.71 ±2.98 c | 0.58 | $0.7
\pm 0.0 \text{ cd}$ | 3.4 ±0.1 ab | 8.5 ±1.6 a | | So. altissima* | 2P | Paddy | 12.92 | 2.76 ±0.32 d | 0.21 | 0.8 cd | 5.9 a | 4.9 b | | " | 2P | Paddy | 7.29 | 2.16 ±0.18 d | 0.30 | 1.0 c | 3.8 a | 4.4 b | | " | 2P | Paddy | 16.18 | 3.97 ±0.31 c | 0.25 | 0.7 cd | 1.7 b | 4.4 b | | (c) | | | | | | | | | | At. deltoidofrons | 2P | Paddy | 12.93 | $2.90 \pm 0.74 c$ | 0.22 | 1.2 ± 0.3 bc | 1.1 ±0.4 bc | $10.6 \pm 0.7 a$ | | D. tokyoensis | 2P | Paddy | 19.80 | 5.63 ±0.26 b | 0.28 | $0.7 \pm 0.1 \text{ cd}$ | $0.6\pm0.2bc$ | 5.8 ±0.4 b | | (d) | | | | | | | | | | Se. sarmentosum | 1R | Roadside | 260.58 | 21.90 ±1.76 a | 0.08 | 0.3 ±0.0 d | $0.8 \pm 0.2 \text{ c}$ | 4.9 ±0.8 b | [#] Measured with n = 1, ## Measured with n = 3, * Mean \pm SD, \ddagger Not detected)less than 3 Bq kg⁻¹), * Measured with n = 3, excepted for *So. altissima* in 2P (n = 1), \dagger Values in the same column followed by the same alphabet are not significantly different (P>0.05) by Tukey's test. **Figure 3.3** Relationships between ¹³⁷Cs concentration in wild plants and their respective soil)circles(and between TF values of wild plants and ¹³⁷Cs concentration in the soil)cross(. **Figure 3.4** Relationships between TF of wild plants and exchangeable-K, NH₄⁺, and SOM in the soil. # (b) 137Cs uptake by different plant species in the same soil At location 2 (2P and 2C), we collected four species of wild plants, one species of weed (*So. altissima*) and three species of ferns (*At. yokoscense, At. deltoidofrons*, and *D. tokyoensis*). We found that these plants exhibited similar ¹³⁷Cs concentrations and TF values (Table 3.2(b) and (c)). Our results, however, differed from Lasat et al. (1997) and Yamashita et al. (2014), who reported that potentially ¹³⁷Cs uptake of plants depends on their species. Lasat et al. (1997) qualified their results across monocot and dicot species, found that ¹³⁷Cs accumulation in dicot species was two to four times greater than that in monocots (grasses). In the present study, the investigated wild plants are weeds and ferns, this similarity in their respective physiologies might explain the lower variation in ¹³⁷Cs concentrations and TF values among the species. # 3.3.4 137Cs concentration and TF of wild plant in an extremely contaminated soil We collected *Se. sarmentosum* in 1R, where the soil has an extremely high 137 Cs concentration (260 kBq kg⁻¹). Our results in Table 3.2(d) shows that the 137 Cs concentration in this plant was extremely high (21 kBq kg⁻¹), while the TF value was relatively low (0.085). This result differed from Yamashita et al. (2014), who reported that *Se. sarmentosum* displayed a high potential uptake of 137 Cs (TF = 0.4). The present result suggested that the TF value may not be enough for interpreting the potential for ¹³⁷Cs uptake by the plants in an extremely contaminated soil. ### 3.4 Conclusions The ¹³⁷Cs concentration in the roadside soil was significantly higher than in the agricultural and mountain soil samples. These differences were affected by a combination of factors, which can be summarized as: (1) land use type and/or the topography affected ¹³⁷Cs transportation through the leaching process; and (2) soil properties involve clay content and soil organic matter (SOM) affected ¹³⁷Cs adsorption or desorption. The ¹³⁷Cs concentrations and TF values for the same species of plant grown in different soils were significantly different; in contrast, they were similar in different plant species grown in the same soil. These results indicate that a plant's ¹³⁷Cs uptake potential is affected by soil factors, regardless of the plant species. The soil factors involved were: (1) increasing and decreasing ¹³⁷Cs bio-availability, which is affected by the soil's clay and SOM content; and (2) the presence of competitive or cooperative ions, where exchangeable K effectively reduces ¹³⁷Cs uptake by the plant and NH₄⁺ increases it. In the present study, however, the soil-to-plant transfer factor value may not enough for interpreting the potential for transferring ¹³⁷Cs in the extremely contaminated soil. # CHAPTER 4. RADIOCESIUM CONCENTRATION IN STEMS, LEAVES, AND PANICLES OF RICE GROWN IN A SANDY SOIL REPLACEMENT PADDY FIELD TREATED WITH DIFFERENT RATES OF CATTLE MANURE COMPOST IN KAWAMATA, FUKUSHIMA ## 4.1 Introduction On 11 March 2011, a huge tsunami triggered by great earthquake hit wide areas of northeast Japan. Due to this event, the FD1NPP was damaged, causing large amounts of radionuclides including 137 Cs (half-life: 30 years, emission of β and γ rays during its decay) to be released to the atmosphere subsequently deposited on the ground (MEXT, 2011). The 137 Cs can enter the human body through contaminated foods (Avci, 2010). Food crops produced in ¹³⁷Cs contaminated land are the main pathway for ¹³⁷Cs ingestion in human (Zhu and Smolders, 2010). After the FD1NPP accident, the Ministry of Agriculture, Forestry, and Fisheries (MAFF) proposed three methods for recovering the contaminated agricultural lands (MAFF, 2012): (1) removal of top soil, (2) mixing the soil with water and separating fine particles, and (3) reverse tillage. Removal of top soil seems to be an effective method, as the major portion of ¹³⁷Cs is fixed in the top soil layer (Nakanishi et al., 2013; Shiozawa et al., 2011; Tanaka et al., 2012). In our study area, Kawamata-town, Yamanichi et al. (2015) reported that ¹³⁷Cs was fixed in the top 1 cm of the soil. Based on the above articles, removing the top 0-15 cm layer is estimated to remove more than 80% of the ¹³⁷Cs from the land (MAFF, 2013). However, it is impossible to remove 100% of ¹³⁷Cs from the soil, since some small amount may have been absorbed in the deeper layers. According to Ohse et al. (2015). after removal of the 0-10 cm soil layer, approximately 25% of the original cesium remained in the deeper layers. Therefore, reduction of ¹³⁷Cs uptake by crops through soil management is necessary. For agricultural lands, removing surface soil is an effective method to reduce ¹³⁷Cs content in the soil, but this may result in a loss of soil fertility. Improving the soil after the removal is thus necessary. Application of organic matter such as rice straw and cattle manure compost are possible options because of their low cost and high potential for soil improvement. According to Nishiwaki et al. (2017) using rice straw and cattle manure compost to recover soil productivity after removal of surface soil, successfully increased rice production. However, the authors found that application of manure compost caused radiocesium increases in the soil, because the manure compost was also contaminated by radiocesium (Nishiwaki et al., 2017). Cattle manure compost is low cost fertilizer with high plant nutrients, particularly potassium (K) (Eghball et al., 2002; Qian et al., 2005). It is well known that potassium effectively reduces ¹³⁷Cs uptake by plants (Smolders et al., 1997). To obtain more information concerning the effects of cattle manure compost application on ¹³⁷Cs in soil and rice, we conducted a field experiment. The experimental paddy field had been decontaminated by removing the soil surface followed by replacement with sandy soil. Cattle manure compost was subsequently applied before rice planting. The objectives of this study were to determine the effects of various rates of cattle manure compost application on rice yields and on ¹³⁷Cs distribution in stems, leaves, and panicles of rice plants. #### 4.2 Materials and method #### 4.2.1 Experimental field and treatments The experimental field located in Kawamata-town, approximately 50 km northwest of the FD1NPP. The field is bordered by a water way on the north side and a water drainage canal on the south side. The field has an area of 0.48 hectare (ha) and is divided into four plots, each measuring 15 x 80 m. Before the experiments, surface soil had been removed and then replaced with sandy soil. In each plot, cattle manure compost was applied at 0 (control), 10, 20 and 40 t ha⁻¹, and tillage was done before planting rice (*Oryza sativa* L., cv. Akitakomachi). Twenty-three days old rice seedlings were transplanted with a spacing of 18 x 25 cm on 27 May and harvested in October 2015. ## 4.2.2 The chemical fertilizer and irrigation The chemical fertilizers, KCl ($K = 40 \text{ kg ha}^{-1}$) and N-P-K (N = 65, P = 87, K = 65 (kg ha⁻¹)) were added for all plots. The field was irrigated with an irrigation system. After the transplant of rice, the field had been water logged until harvest. ## 4.2.3 Cattle manure compost and ¹³⁷Cs The cattle manure compost was made from the milk-cow manure mixed with rice husk and fermented over 6 months. The ¹³⁷Cs concentration of compost was less than 400 Bq kg⁻¹. Chemical components of compost are shown in Table 4.1. **Table 4.1** Chemical components of cattle manure compost. | Analyzed factors | Dried weight bases | |-----------------------------------|--------------------| | Total-N (%) | 1.2 | | Total-C (%) | 39.7 | | P ₂ O ₅ (%) | 0.86 | | CaO (%) | 1.3 | | MgO (%) | 0.6 | | K ₂ O (%) | 3.13 | | Ash (%) | 24.6 | Data was provided by Fukushima Prefecture. #### 4.2.4 Soil and rice sampling We collected soil and rice samples at harvest on 5 October 2015. In each plot, we collected soil samples at three points with two layers (0-5 and 5-10 cm) using soil core. Rice samples were collected from three points in each plot, and at each sampling point we cut the aboveground parts of rice plants in a 1 m² sector. Rice samples were separated into three parts: stem, leave, and panicle. All samples were oven dried at 75°C for three days. The dried rice was ground into powder before the chemical analyses and ¹³⁷Cs measurement. ## 4.2.5 Rice yield component measurement At the harvest, 12 hills (in average) at each sampling point were collected. Grain yield was measured by brown rice weight. The ripened grains were selected by sieving through 1.8 mm mesh. Thousand-grams
weights were measured for brown rice at 14.5% moisture content. #### 4.2.6 Soil analysis Fresh soil samples were used for inorganic nitrogen analyses. The remaining soils were air dried at room temperature for one week before being sieved through a 2 mm mesh. The dried soils were used for physical and chemical analyses and ¹³⁷Cs measurement. Inorganic nitrogen (NO₃⁻ and NH₄⁺) in fresh soil was extracted with 2 *M* KCl at a ratio of 1:10 (soil: solution) and their concentrations were measured with a continuous flow analyzer (BL-TEC Autoanalyzer, QuAAtro-HR). Exchangeable K, Mg, Ca, and Na in dried soil were extracted with 1 *M* CH₃COONH₄ at a ratio of 1:20 (soil: solution) and their concentrations were measured with an atomic absorption spectrophotometer (Z-5300 Polarized Zeeman Atomic Absorption Spectrophotometer). Cation exchange capacity (CEC) measurement was based on the semi-micro Schollenberger method (Kamewada, 1997). Total carbon (TC) and nitrogen (TN) were measured with a CN coder (MT-700 Mark II, Yanaco, Kyoto, Japan). Soil pH and EC were measured at a ratio of 1:5 (soil: water) with pH/ion meter (Horiba F-23, Japan) and conductivity meter (Horiba DS-14, Japan), respectively. Soil texture classification was determined by the pipet method (Nakai, 1997). #### 4.2.7 Rice analysis Rice samples were digested by the Kjeldahl method (Horneck et al., 1998). After digestion, K concentration was measured with an atomic absorption spectrophotometer (Shimadzu AA-6800F, Japan). ## 4.2.8 Radioactivity measurement Concentrations of ¹³⁷Cs in soil and rice were measured with a Ge semiconductor (GMX 15200P, Seiko EG&G, Tokyo Japan). Soil samples for the radioactivity measurement were prepared by adding 70 g of dried soil into plastic containers (U8 containers 47 mm in diameter and 60 mm in height); the samples measured 35 mm deep and 1.1 g cm⁻³ in density. Rice samples (approximately 14 to 42 g DW) of each part were added to the containers. Each U8 container was sealed in a polyethylene bag before being placed into a Ge semiconductor. The times of measurement were 30 minutes for soil and 24 hours for rice samples. #### 4.2.9 Data calculations The data were used to calculate as the following quantities: (1) Harvest index (HI) (Bueno et al., 2009; Yang et al., 2010): $$HI = \frac{Grain \ weight \ (DW)}{Total \ rice \ weight \ (DW)}$$ (2) The ¹³⁷Cs transfer factor (TF) from soil to rice part (Smolders et al., 1997): $$TF = \frac{^{137}Cs \text{ in rice part (Bq kg}^{-1})}{^{137}Cs \text{ in soil (Bq kg}^{-1}) *}$$ where, * an average of 0-5 and 5-10 cm soil layers. (3) The TF to above ground parts: TF to above ground = $$\frac{\sum_{i=1}^{n} m_i \times c_i}{\sum_{i=1}^{n} m_i} / \text{137Cs in soil}$$ where n = the number of rice parts: stems, leaves, and panicles $m = \text{mass weight of each part (g m}^{-2}, DW)$ $c = \text{concentration of }^{137}\text{Cs in each part (Bq kg}^{-1})$ (4) The ¹³⁷Cs/K ratio in each rice part: $$^{137}\text{Cs/K ratio} = \frac{^{137}\text{Cs (Bq kg}^{-1}) \times 2.35 \times 10^{-13} \text{ (cmol}_c \text{ Bq}^{-1})}{\text{K (cmol}_c \text{ kg}^{-1})}$$ *(Kondo et al., 2015; Staunton et al., 2002) #### 4.2.10 Statistical analysis The effect of compost application on soil nutrients was tested by Tukey multiple comparisons test using the R Statistical Software package (R i386 3.2.0). One-way analysis of variance of rice yields and rice components was done using Microsoft Excel. #### 4.3 Results and discussion ## 4.3.1 Effect of cattle manure compost application on soil properties Soil properties in the experimental plots at harvest are shown in Table 4.2. Soil pH, EC, and bulk density did not change due to compost application. In contrast, clay content was significantly increased by the compost application (P<0.05). Total carbon (TC) and total nitrogen (TN) were significantly increased by applying 20 t ha⁻¹ of compost (P<0.05). Ammonium (NH_4^+) in soils did not differ among plots and accounted for 0.02 to 0.0.06 % of TN, while nitrate (NO_3^-) was not detected in the majority soils. **Table 4.2** Effect of compost application rates on soil properties at harvest. | Treatment | Bulk | Clay | "II | EC | $\mathrm{NH_4}^+$ | NO ₃ - | Т-С | T-N | SOM | |--------------------|-------------|------|-------|-------------------------|---------------------|---------------------|--------------------|-------------|---------| | t ha ⁻¹ | density | | pН | | | | | | | | | $Mg m^{-3}$ | % | | $\mu S \text{ cm}^{-1}$ | mg kg ⁻¹ | mg kg ⁻¹ | g kg ⁻¹ | $g kg^{-1}$ | % | | | | | | top soil | (0-5 cm) | | | | | | 0 | 1.3 a | 5 b | 5.3 a | 29.5 a | 0.56 a | ND | 10.8 b | 0.98 b | 1.86 b | | 10 | 1.3 a | 11 a | 5.4 a | 31.2 a | 0.63 a | 0.26 | 17.0 ab | 1.38 ab | 2.92 ab | | 20 | 1.2 a | 10 a | 5.4 a | 26.6 a | 0.68 a | 0.57 | 22.7 a | 1.74 a | 3.90 a | | 40 | 1.3 a | 9 a | 5.7 a | 29.4 a | 0.39 a | ND | 19.7 a | 1.49 ab | 3.39 a | | | | | | sub soil | (5-10 cm) | | | | | | 0 | 1.4 a | 4 b | 5.6 a | 33.9 a | 0.41 a | ND | 10.6 b | 0.93 b | 1.81 b | | 10 | 1.3 a | 10 a | 5.5 a | 36.6 a | 0.42 a | ND | 14.1 ab | 1.19 ab | 2.43 ab | | 20 | 1.2 a | 9 a | 5.6 a | 34.8 a | 0.36 a | ND | 21.7 a | 1.61 a | 3.72 a | | 40 | 1.3 a | 9 a | 5.7 a | 22.4 a | 0.25 a | ND | 17.5 a | 1.32 ab | 3.01 a | SOM = Soil organic matter, ND = Not detected, Values in a column followed by the same letter are not significantly different at (P>0.05) based on Tukey's test. Soil cation exchange capacity (CEC) did not significantly differ among plots and layers (P>0.05) (Table 4.3). Exchangeable K, Mg, and Ca were significantly increased by applying 20 t ha⁻¹ of compost (P<0.05). However, Na did not differ between plots (P>0.05). Somewhat unexpectedly, soil nutrients in the 40 t ha⁻¹ plot seemed to decrease as compared to those of the 20 t ha⁻¹ plot. Among three sampling points in the 40 t ha⁻¹ plot, the south side of the plot showed a significantly lower concentration of soil nutrients; for example, TC and TN were lower than those in the center and the north side (P<0.05). This may possibly have been caused by soil erosion. **Table 4.3** Effect of compost application rates on CEC, exchangeable K, Mg, Ca, and Na in soil at harvest. | Treatment | CEC | K | Mg | Ca | Na | | |--------------------|--------------------|---------|---------------------------------|---------|--------|--| | t ha ⁻¹ | | | | | | | | _ | | cmo | l _c kg ⁻¹ | | | | | | | top so | il (0-5 cm) | | | | | 0 | 16.24 a | 0.15 b | 0.82 b | 6.35 b | 0.28 a | | | 10 | 15.78 a | 0.39 ab | 0.95 a | 7.48 ab | 0.32 a | | | 20 | 19.02 a | 0.47 a | 0.94 ab | 7.86 a | 0.28 a | | | 40 | 14.60 a | 0.40 ab | 0.88 ab | 6.81 ab | 0.28 a | | | | sub soil (5-10 cm) | | | | | | | 0 | 14.24 a | 0.18 b | 0.80 b | 6.47 b | 0.34 a | | | 10 | 23.33 a | 0.42 ab | 0.97 ab | 7.46 ab | 0.32 a | | | 20 | 15.39 a | 0.55 a | 1.09 a | 8.31 a | 0.31 a | | | 40 | 21.49 a | 0.43 ab | 0.88 ab | 6.65 ab | 0.27 a | | Values in a column followed by the different letters are significantly different at (P<0.05) based on Tukey's test. ## 4.3.2 Effect of compost application on ¹³⁷Cs concentration in soils In all plots, ¹³⁷Cs remained in the soil after removing the soil surface (Figure 4.1). The concentration of ¹³⁷Cs varied widely within each plot, with a coefficient of variation of 14 to 50%, and did not differ between the top and sub layers. The concentration of 137 Cs in soils tended to increase with increasing composting rates and was positively correlated with soil exchangeable K ($r^2 = 0.79$) (Figure 4.2). The 137 Cs concentration in the 20 t ha⁻¹ plot was higher than in other plots, and a similar trend was observed with soil nutrients. This was probably due to 137 Cs remaining in the soil after removal of the soil surface and combination with the compost being contaminated by 137 Cs ($< 400 \text{ Bq kg}^{-1}$). **Figure 4.1** Concentrations of 134 Cs and 137 Cs in the soil (an average of the 0-5 and 5-10 cm layers) that received different rates of compost (t ha⁻¹). (Error bars are SD; n = 3). **Figure 4.2** The Relationship between 137 Cs and exchangeable K in top soil, 0-5 cm (solid circles) and sub soil, 5-10 cm (open circles) (Error bars are SD; n = 3). ## 4.3.3 Effect of compost application rates on rice yields Rice yield related traits are shown in Table 4.4. Total mass of rice increased by 2, 22, and 34 %, and unhulled grains weight increased by 1.6, 19, and 31 % by applied 10, 20 and 40 t ha⁻¹ of compost, respectively. Harvest index (HI) and grain to straw ratios were not significantly different between plots but tended to decrease in the 40 t ha⁻¹ plot (P>0.05). **Table 4.4** Rice yield related traits. | Treatment | Total dry mass | Unhulled grain | Straws | HI | Grain/Straw | |--------------------|--------------------------|------------------------|-----------------|---------------------|--------------------| | | | | | | ratio | | t ha ⁻¹ | g m ⁻² | $g m^{-2}$ | $g m^{-2}$ | | | | 0 | 1116 ± 156 a | $568 \pm 86 \text{ a}$ | 547 ± 71 a | 0.509 ± 0.007 a | 1.04 ± 0.029 a | | 10 | $1139\pm89\;a$ | $577\pm34~a$ | 561 ± 60 a | 0.508 ± 0.021 a | $1.04\pm0.084~a$ | | 20 | $1359\pm343~a$ | $681 \pm 139 a$ | $678\pm205~a$ | 0.505 ± 0.026 a | 1.03 ± 0.107 a | | 40 | $1499 \pm 355 \text{ a}$ | 745 ± 185 a | $753 \pm 185 a$ | 0.497 ± 0.038 a | 0.99 ± 0.154 a | Mean \pm SD; (n = 3). Values in a column followed by the same letter are not significantly different (P > 0.05) based on one-way analysis of variance. **Table 4.5** Grain yield and components. | Treatments | No. of | No. of spiklets | Ripened | 1000 gains | Grain yield | |--------------------|------------------------|-----------------------|---------------------|---------------------|-------------------| | t ha ⁻¹ | panicles | | grains | weight | | | | m^{-2} | panicle ⁻¹ | % | g | g m ⁻² | | 0 | $371 \pm 57 \text{ a}$ | $61 \pm 4 a$ | $86.7 \pm 2.3 \ a$ | $23.1 \pm 0.3 \ bc$ | 453 ± 64 a | | 10 | $366\pm24~a$
| $64 \pm 3 a$ | $85.0\pm2.7~a$ | $22.9 \pm 0.2 \; c$ | $458\pm39~a$ | | 20 | $417\pm42\ a$ | $64 \pm 8 a$ | $85.7 \pm 1.4 a$ | $23.4 \pm 0.2 \ ab$ | $593 \pm 36 a$ | | 40 | $438\pm13~a$ | $67 \pm 4 a$ | $86.9 \pm 1.0 \; a$ | $23.7 \pm 0.2 \; a$ | $601\pm149~a$ | Mean \pm SD; (n = 3). Values in a column followed by the same letter are not significantly different based on oneway analysis of variance. Rice grain yields and components are listed in Table 4.5 Panicle number, spikelet per panicle, and percentage of ripened grains were not significantly different between plots (P>0.05). However, the 1000-grains weight of rice in the 40 t ha⁻¹ was significantly higher than those in other plots (P<0.05). # 4.3.4 Effect of compost application rates on ¹³⁷Cs in rice plant parts The concentration and transfer factor (TF) of ¹³⁷Cs in rice parts are listed in Table 4.6. The concentration of ¹³⁷Cs in all rice parts was much lower than the Japanese standard (100 Bq kg⁻¹) (Ministry of Health, Labour and Welfare, 2013). **Table 4.6** Concentration of ¹³⁷Cs in rice plant parts and transfer factor (TF). | Treatments | Stems | Leaves | Panicles | TF of | TF of | TF of | |--------------------|---------------------|---------------------|---------------------|-------|--------|-------------| | t ha ⁻¹ | Bq kg ⁻¹ | Bq kg ⁻¹ | Bq kg ⁻¹ | stems | leaves | aboveground | | | | | | | | parts | | 0 | 21 | 14 | ND | 0.050 | 0.034 | 0.022 | | 10 | 35 | 6 | ND | 0.051 | 0.009 | 0.020 | | 20 | 24 | 5 | ND | 0.024 | 0.005 | 0.009 | | 40 | 18 | 9 | ND | 0.026 | 0.013 | 0.011 | The 137 Cs concentration in rice parts was measured with n = 1, ND = Not detected. Transfer factor (TF) of 137 Cs from soil to aboveground parts was decreased by cattle manure compost application. The TF value was lowest in the plot with 20 t ha⁻¹ of compost (TF = 0.009), this was 2.4 times lower than that of the control plot. We found that TF values in aboveground parts of rice plants were negatively correlated with exchangeable K in the soil ($r^2 = 0.64$) (Figure 4.3). **Figure 4.3** The relationship between 137 Cs transfer factor to aboveground parts of rice plants and exchangeable K in the soils (an average of 0-5 and 5-10 cm soil layers), (n = 1). The ¹³⁷Cs transfer factor (TF) value of stems was higher than that of leaves, indicating that ¹³⁷Cs accumulation in stems was greater than that in leaves. In the present study, ¹³⁷Cs was not detected in rice panicles. This result differed from those of other researchers. Endo et al. (2013), who studied about a heavily contaminated paddy field in Minami-Soma town in 2011, found that TF of ¹³⁷Cs of rice panicles ranged from 0.019 to 0.026. Uchida et al (2006). reported that TF of ¹³⁷Cs of brown rice in Japan before the FD1NPP accident was in the range of 0.001- 0.03. Application of potassium (K) effectively reduces ¹³⁷Cs uptake by rice roots and accumulation in rice grains (Saito et al., 2012; Kato et al., 2015; Saito et al., 2015). Saito et al. (2012) reported that radiocesium concentration of brown rice decreased by the increasing of exchangeable K in soil. Kato et al. (2015) recommended that exchangeable K in soil should be higher than 0.50 cmol kg⁻¹. Saito et al. (2015) found that application of potassium fertilizer on the early growth stage effectively reduced ¹³⁷Cs concentration in rice grain. According to Nobori et al. (2014), rice grown in K-deficient culture solution showed 6.7 times more ¹³⁷Cs translocation from leaves to the panicle than those in the K- sufficient solution. Appropriate soil K content during the growth stage of rice reduced ¹³⁷Cs transportation and accumulation in rice panicle (Nobori et al., 2014). Our results could be explained that exchangeable K derived from the cattle manure compost effectively reduced ¹³⁷Cs uptake and accumulation in leave and panicle of the rice plants. # 4.3.5 Distributions of ¹³⁷Cs, K, and N in rice plant parts Concentrations of ¹³⁷Cs, K, and N in each rice plant part are shown in Figure 4.4 Distributions of ¹³⁷Cs and K in the rice plant parts were similar and differed from those for N. Both ¹³⁷Cs and K in stems was higher than in leaves and panicles, suggesting that ¹³⁷Cs transport in the rice plants was associated with K transporter. Figure 4.4 Concentrations of total- K, total- N and 137 Cs in rice plant parts (n = 1). **Figure 4.5** The 137 Cs/K ratios of stems, leaves, and panicles of rice (n = 1), ND = Not detected. The mechanism regulating ¹³⁷Cs distribution in plant organs is closely related to the K transport (White et al., 2004; Maathuis et al., 1996; Cline et al., 1960). However, the translocation and accumulation of ¹³⁷Cs and K in plant parts were not exactly the same in our experiment. This can be explained by their different physical characteristic such as the ionic radiuses (1.69 nm for Cs and 1.33 nm for K) (Johanson et al., 2004). Different of ¹³⁷Cs and K accumulation in rice parts has been previously reported (Kondo et al., 2015; Nobori et al., 2014). Rice parts with higher ¹³⁷Cs/K indicate greater ¹³⁷Cs accumulation or greater K transportation. In the present study, the ¹³⁷Cs/K ratio was higher in stems than in leaves in 10 and 20 t ha⁻¹ plots (Figure 4.5). Our results agreed with those of Kondo et al. (2015), who reported that the ¹³³Cs/K ratio in roots was higher than in aboveground parts of rice. Similarly, Tsukada et al. (2002) reported that the stable-Cs/K ratio decreased in the younger leaf blade positions of rice plant, indicated that Cs was lower translocated to younger leaves than K. In contrast, the ¹³⁷Cs/K ratios of rice plants in the 0 and 40 t ha⁻¹ plots were higher in leaves than that in stems; these plots were low in Mg and Ca compared to the 10 and 20 t ha⁻¹ plots. This result suggests that soil with low Mg and Ca might affect K uptake, resulting in a permision of ¹³⁷Cs translocation between rice organs. The K transport mechanism in plant cells is regulated by cations including K, Ca, Mg, Na in soil solution(Smolders et al., 1997; Epstein, 1961; Viets, 1994; Heredia et al., 2002; Overstreet et al., 1952). In the present study, the ¹³⁷Cs/K ratio of leaves was negatively correlated with exchangeable K, Mg, and Ca in the soil (Figure 4.6), suggesting that K, Mg and Ca affected ¹³⁷Cs translocation inside the rice plants. However, those correlations were not apparented in stems (Figure 4.7). The differences in ¹³⁷Cs/K ratio in rice plant parts indicated that their was discrimination in the rate of ¹³⁷Cs versus K transportation³⁾ and that was affected by both external nutrient conditions and rice plant physiology (Van et al., 1981; White, 1999; White et al., 2003; Hamton et al., 2005; Buysse et al., 1995). In addition, regardless of soil nutrient condition, it is important to study rice plant physiological mechanism controlling ¹³⁷Cs distribution and accumulation in different rice parts. **Figure 4.6** The relationship between 137 Cs/K ratio of rice leaves and exchangeable (circles), Mg (triangles) and Ca (diamonds) in soil (n = 1). **Figure 4.7** The relationship between exchangeable K in the soil (an average of 0-5 and 5-10 cm soil layers) and 137 Cs/K ratio of stems (open circles), and leaves (solid circles) (n = 1). #### 4.4 Conclusion Application of cattle manure compost induced the increase of rice yields. Concentrations of ¹³⁷Cs in rice plant parts were decreased by application of cattle manure compost. The lowest ¹³⁷Cs was found in rice grown in the 20 t ha⁻¹ plot (2.4 times lower than control soil) probably because of the increase of soil K (exchangeable K). The ¹³⁷Cs in rice plant parts was decreased: stems > leaves and was not detected in the panicles of rice plants in all plots. Distribution of ¹³⁷Cs in rice plant parts was similar to that of K. Different of ¹³⁷Cs /K ratio in rice plant parts indicated the different accumulation rate of ¹³⁷Cs and K. The ¹³⁷Cs/K ratio in stems was higher than that in leaves in the soil with higher Mg and Ca, indicating that Mg and Ca in soil regulated ¹³⁷Cs translocation between rice plant parts. For future research, an important goal will be to understand the mechanism of ¹³⁷Cs transportation and accumulation between rice parts. The effects of Mg and Ca on ¹³⁷Cs distribution in rice plants should be more researched. # CHAPTER 5. ADSORPTION AND DESORPTION OF STABLE CESIUM IN MINERAL SOILS FROM HTATE-VILLAGE #### 5.1 Introduction After the FD1NPP accident, the government designed some areas to be an evacuation zone, Iitate-Village was included. The population was moved out and the agricultural land had not been cultivated since 2011. To recover this situation, decontamination of agricultural land would be the first step. Information on the distribution of ¹³⁷Cs in the agricultural land and factors affecting ¹³⁷Cs adsorption in soil will be useful for further research and decontamination works. In this study, we investigated in agricultural land in Iitate-village. The soil samples were collected from the paddy field and upland field in August 2014. Stable cesium (CsCl) was used for extraction experiment in the laboratory. The objective of this study was to determine factors affecting Cs adsorption and desorption for mineral soils of Iitate-village. #### 5.2 Materials and method #### 5.2.1 Soil samples The soil samples were collected using a scope to the depth of 0-5 cm in paddy field and upland field in Iitate-Village in August 2014. The fields had no cultivated since the accident in 2011. The collected flesh soils were kept in polyethylene bags to carried for laboratory. Soils were dried at room temperature for one week, then ground and sieved through 2 mm mesh screen. The samples were kept dried in polyethylene bags until used. For all experiments, the soils from both paddy and upland fields were used and the extraction experiments were done with two replications. **Table 5.1** Initial properties of soils. | Sample | Clay | Exchangeable K | CEC | NH ₄ ⁺ | |-------------|------
-----------------------|-----------------------|------------------------------| | | (%) | cmol kg ⁻¹ | cmol kg ⁻¹ | mg kg ⁻¹ | | Paddy soil | 4.68 | 1.28 | 17.5 | 1.78 | | Upland soil | 1.27 | 2.07 | 16.0 | 1.97 | Table 5.2 Chemical components of bamboo fresh powder and charcoal | Materials | NO ₃ - (mg kg-1) | NH ₄ ⁺ (mg kg ⁻¹) | |-----------------|-----------------------------|---| | Fresh bamboo | ND | 2.46 | | Bamboo charcoal | ND | 514 | ND = Not detected ### 5.2.2 Extraction experiments The experiment was conducted to examine the effects of: - a) Contact times. - b) Concentrations. - c) Competitive ion. - d) Organic materials amendment. ### 5.2.3 Chemical solution preparation The chemical property of ¹³⁷Cs similarly to that of stable cesium (Khandaker et al., 2018), stable cesium is general use instead of ¹³⁷Cs. In our laboratory, stable Cs solution was prepared by using cesium chloride (CsCl, FW= 168.36 g). Preparing 1000mg-Cs l⁻¹ stock solution was performed by dissolved dried 1.266 g of CsCl in pure water and then adjusted to 1000 ml with pure water. Cesium adsorption experiments were used 5 mg l⁻¹ (ppm) and 10 mg l⁻¹, which were prepared by using stock solution diluted with pure water. ## 5.2.4 Measurement of Cs concentration For all experiments, adding the soil samples and solution to 45 ml centrifuge tube the shook and centrifuged by 5000 rpm for 5 minutes, and then filtered through 45µ membrane. The supernatant was used to measure Cs and K concentrations by an atomic absorption spectrophotometer (Z-5300 Polarized Zeeman Atomic Absorption Spectrophotometer). The equilibrium of Cs adsorbed in the soil was calculated as follows. $$(\triangle Cs \times Cs \text{ solution's volume}) / Soil$$ where: $$\triangle Cs = Cs_0 - Cs_1$$ Cs_0 = initial concentration $Cs_1 = Cs$ concentration of supernatant ## 5.2.5 The Cs adsorption experiments #### a) Effect of contact times Soils 4 g (DW) and 40 ml 5 mg l⁻¹ of Cs solution were added to the 45 ml centrifuge tube, shook for 1, 6, 12, 24, and 48 hrs. After shaking, centrifuged by 5000 rpm for 5 minutes and then filtered through 45µ membrane using the plastic syringe. The supernatant was used for Cs concentration measurement. Both paddy and upland soils were used and done with two replications. #### b) Effect of Cs concentrations Soils, 4 g (DW) and 40 ml of various concentrations; 0, 5,10, and 20 mg l⁻¹ of Cs were added to 45 ml centrifuge tube, shook 2 hours. After shaking, centrifuged by 5000 rpm for 5 minutes and then filtered through 45µ membrane using the plastic syringe. The supernatant was used for Cs concentration measurement. #### c) Effect of competitive ion The competitive ion was used potassium (K). Preparation of solution was done by mixing solutions 10 mM of Cs (0.0752 mg l⁻¹) and 10 mM of K (0.256 mg l⁻¹), expressed as Cs (mM) /K(mM) ratio. For each sample 4 g of dried soil and 40 ml of solutions at the ratios of 1:0, 1:0.5, 1:1, and 1:2 were added to the 45 ml centrifuge tube, the extraction procedure was same as expressed above. #### d) The effect of soil amendment with various material Preparing of soil with organic materials by added fresh bamboo powder at rates of 10% and 20% of soil weight (DW) into soil and mixed. This method was the same for bamboo charcoal. For each sample, added 4 g of mixed material and 40 ml of 10 mg l⁻¹ of Cs to the centrifuge tube, the extraction procedure was the same as above. The following content, treatments will be expressed as soil paddy or upland10 and 20 is equal to paddy or upland soil + 10% and 20% amendment materials, respectively. #### 5.3 Results and discussion #### 5.3.1 Effect of the contact-time Figure 5.1 showed that Cs can be adsorbed suddenly after contacted with the soil. Cesium adsorbed in soil was countered to over 90 % of the initial concentration for both soils. Different of adsorption rate among two soils probably because different in soil properties such as clay and potassium (exchangeable K) contents. Our soil samples were contained 4.68 and 1.27 % of clay, and 1.28 and 2.07 cmol/kg of exchangeable K, paddy soil and upland soil respectively. Our result suggested that Cs can be fixed immediately after its contact with the soils. According to Nakashima (2018) radioactive cesium ¹³⁴Cs and ¹³⁷Cs remained at the initial points of deposition with not moving. The resulted of our study may explain that Cs be fixed strongly in mineral soil after its deposition. However, Cs can be re-distributed through soil erosion Sutherland (1994). Figure 5.1 The effect of shaking time on Cs adsorption for soils. #### 5.3.2 Effect of the concentration Figure 5.2 showed that Cs adsorption increased by the increase of Cs concentration. This result may be explained that capacity for Cs adsorption of the soils should be higher than our tested concentration. The different adsorption lines for two soils was not observed, indicated that soil properties were not affected the capacity of adsorption for Cs. Our result was agreed with the report of Nakanishi (2018), the adsorption for ¹³⁷Cs in mineral soil was had not showed the saturation. However, in our experiment, the highest concentration may be much lower than the capacity of adsorption of the soils. Figure 5.2 The effect of concentration of Cs on Cs adsorption for soils. # 5.3.3 Effect of the competitive ion Figure 5.3 showed that Cs adsorption was increased when the solution containing the ratio of Cs/K in solution from 1/0 to 1/0.5, but these was gradually decreased when rates of K increased. This result suggests that increasing of K from 0 to 0.5 caused Cs adsorption, but when K equaled to Cs the adsorption will not be affected. The different for Cs and K to be fixed in clay mineral may be explained by their difference in ionic radius (1.33 nm for K and 1.69nm for Cs) (Johanson et al.1999). When K presence in solution it competed with Cs to be fixed in clay mineral. **Figure 5.3** The effect of K concentration in solution on Cs adsorption for soil. ### 5.3.4 Effect of organic materials amendment on Cs adsorption Figure 5.4 showed that when the soils received fresh bamboo powder and charcoal powder the adsorption of Cs were reduced as compared with control soils. Among two rates of both fresh powder and charcoal, bamboo charcoal showed the lowest Cs adsorption. Our result was similar to the report of Khandaker et al. (2018) who studied using bamboo charcoal as an adsorbent for Cs from aqueous solution. The results suggested that the addition of organic material caused the reduction of Cs adsorption for soils. This explained that the soil with high organic matter resulted in more Cs desorption and enhance Cs available for plant uptake. Dumat and Staunton (1999) reported that clay-humic substance complexes caused less Cs adsorption than the uncoated clay mineral. Both paddy and upland soil showed that adding fresh bamboo and charcoal resulted in reduce Cs adsorption. Among fresh bamboo and charcoal, charcoal was more effectively reduced Cs adsorption. Figure 5.4 Effect of organic materials amendment in soil on Cs adsorption. #### **5.4 Conclusion** The results showed that Cs adsorption capacity of mineral soils from litate-village did not show the saturation stage but increased with increasing of Cs concentration. This can explain that the soil can adsorbed the fallout of ¹³⁷Cs with unlimited. The Cs or ¹³⁷Cs can be adsorbed immediately after its contact with soils. The present of potassium (K) in solution had influenced to Cs adsorption up to the ratio of 1/0.5, suggesting that the Cs adsorption was less when the solution absent of K, but the present of K ion caused Cs adsorption. This result explained that K ion in soil solution expanded the adsorption sites for Cs. On the other hand, soil organic matter plays a role as reduces Cs adsorption as its block the adsorption sites in soil particles, resulted in less adsorption. #### CHAPTER 6. GENERAL DISCUSSIONS AND CONCLUSION ## 6.1 Factors affecting ¹³⁷Cs adsorption in soil Our results from Chapter 5 revealed that stable Cs can be adsorbed by mineral soils immediately after its deposition, and that the capacity for adsorption by soils from agricultural fields in Iitate-Village did not show the saturation stage and unlimited Cs concentration. The presence of K in solution seems to have stimulated Cs adsorption. The presence of organic matter in solution can interfere with the Cs to be adsorbed onto the soils. These results explained the finding of the investigation of the degree of ¹³⁷Cs contamination in areas of different land use types, as represented in Chapter 3. The roadside soil with high clay content showed the highest ¹³⁷Cs (260 kBq kg⁻¹), and this can be explained by the deposition of eroded particles at the roadside. The soils from agricultural fields showed the ¹³⁷Cs range of 11-14 kBq kg⁻¹, which should be the initial ¹³⁷Cs deposition. The mountain soil with relatively high organic matter showed the lowest level (6 kBq kg⁻¹). In Chapter 3, we showed that in natural conditions, distribution of ¹³⁷Cs across the landscape was affected by a number of factors involved in both the sloping of the fields and soil property. After ¹³⁷Cs is deposited on the ground, it can be fixed strongly to soil minerals, but re-distribution occurs through physical process (soil erosion). ## 6.2 ¹³⁷Cs uptake by plants Plants grown in the ¹³⁷Cs contaminated fields play important roles as indicator, extractant, and distributor of ¹³⁷Cs in ecosystems. In Chapter 3, revealed that concentrations of ¹³⁷Cs in wild plants directly reflected that of their respective soil. Different plant species grown in the same soil showed similar ¹³⁷Cs levels, but the same plant species grown in different soils showed different ¹³⁷Cs concentration levels, and these finding suggested that capacity for ¹³⁷Cs uptake by plants depend on the ¹³⁷Cs concentration in the soil regardless of the plant species.
In general, the ¹³⁷Cs transfer factor (TF) used to explain the relationship of ¹³⁷Cs concentrations between plants and their corresponding soil, but we found that plants grown in the extremely high ¹³⁷Cs concentration showed low TF values. This result suggested that the TF value may not adequate to interpret the levels of ¹³⁷Cs concentration in extremely contaminated soil. ## 6.3 Reduction of ¹³⁷Cs in soils and rice After the FD1NPP accident, the Japanese government recommended effectively methods to reduce the ¹³⁷Cs concentration in the contaminated fields. Removal of the soil surface seems to be the most effective. Chapter 4 presented the strategy of reduction ¹³⁷Cs in soil through soil surface removal. However, after soil surface had been removed, some ¹³⁷Cs still remained. Protection of food crops from ¹³⁷Cs contamination is important. It is well known that sufficient K in soil can reduce the ¹³⁷Cs uptake by rice. Decontamination of agricultural fields through removal of the surface soil caused a loss of soil fertility. Application of cattle manure compost is a useful option for soil improvement, and derived cations (K, Ca, and Mg) can reduce ¹³⁷Cs uptake by rice plants. In addition, as reviewed in Chapter 2, possibly factors involved in our results can be sumarized as, 1) the physical characteristic of ¹³⁷Cs, ¹³⁷Cs is larger ionic radius than K, resulting in its lower transport than K. 2) the shoot vacuoles of rice limits for accumulating ¹³⁷Cs. And 3) rice grain vacuoles have the TPKb which is small and limits for ¹³⁷Cs permeability in rice grain. These factors involved in the decrease of the ¹³⁷Cs/K ratio in the aboveground parts of rice plant and the ¹³⁷Cs was not detected in rice panicles. #### **6.4 Conclusion** From our research, we found that ¹³⁷Cs concentrations in fields of different uses were significantly different, and these differences involved a number of factors. After ¹³⁷Cs is deposited on the ground, re-distribution occurred through ground water (erosion). The slope of the lands, further soil properties affect the movement of ¹³⁷Cs across the landscape. As our results showed, roadside soil with a high clay content was highest in ¹³⁷Cs concentration, a middle level was found in agricultural fields, and soil from the base of the mountain relatively high in organic matter showed the lowest ¹³⁷Cs. On the other hand, the concentration of ¹³⁷Cs in rice was successfully reduced by input of cations such as potassium (K) into the soil. Application of cattle manure compost increased the soil fertility after soil surface removal, and it provided cations such as potassium (K), calcium (Ca), and magnesium (Mg), which effectively reduced ¹³⁷Cs uptake by rice plants and ¹³⁷Cs distribution between rice parts. For future research it is important to study further the mechanism of ¹³⁷Cs uptake and accumulation in rice plant parts because it would be controlled by both external soil conditions and rice plant physiology. Additionally, our study results were based on investigations in natural conditions and outdoor fields, so the variations of data were wide. However, we believe that our research will be valuable for future research on the ¹³⁷Cs distribution in soil and plant systems as well as the decontamination of the ¹³⁷Cs contaminated lands. #### REFERENCES - Avci, H., 2010. Radiation Overviewed, Environet, Environmental remediation training course, IAEA. - Avery, S.V., 1995. Cesium accumulation by microorganisms: uptake mechanism, cation compartmentalization and toxicity, *Journal of Industrial Microbiology*, 14, 76-84. - Brown, R.B., Cutshall, H.N., and King, G.F., 1981. Agricultural erosion indicated by ¹³⁷Cs redistribution: I. Level and distribution of ¹³⁷Cs activity in soils. *Soil Sci. Soc. Am. J.* 45,1184-1190. - Bueno, C.S., Lafarge, T., 2009. Higher crop performance of rice hybrids than of elite inbreds in the tropics. 1. Hybrids accumulate more biomass during each phenological phase, *Field Crops Research*, 112, 229-237. - Buysse, J., Van den Brande, K., and Merck, R., 1995. The distribution of radiocesium, and potassium in spinach plants grown at different shoot temperatures, *Plant Physiology*, 146, 263-267. - Chino, M., Nakayama, H., Nagai, H., Terada, H., Katata, G., Yamazawa, H., 2011. Preliminary estimation of release amounts of ¹³¹I and ¹³⁷Cs accidentally discharged from the Fukushima Daiichi Nuclear Power Plant into the atmosphere Journal of Nuclear Science and Technology, 48(7) 1129–1134. - Choppin, G., Liljenzin, J., and Rydberg., 2002. Radiochemistry and nuclear chemistry 3rd edition, Butterworth-Heinemann. Printed in USA. - Cline, J. F., Hungate, F.P., 1960. Accumulation of Potassium, ¹³⁷Cesium, and ⁸⁶Rubidium in bean plants grown in nutrient solutions, *Plant Physiology*, 35(6), 826-829. - Dahlman, R.C., C.W. Francis, and T. Tamura., 1975. Radiocesium cycling in vegetation and soil. In F.G. Howell et al. (ed.) Mineral cycling in southeastern ecosystems. ERDA Symp. Ser. CONF-740513. US ERDA, Washington, DC, 462-481. - Davis, J.J., 1963. Cesium and its relationship to potassium in ecology, In V. Schultz and A.W. Klement, Jr. (ed.) Radioecology. Reinhold, New York, 539-556. - Dumat, C. and Staunton, S., 1999. Reduced adsorption of caesium on clay minerals caused by various humic substances. Journal of Environmental Radioactivity, Elsevier, 46, 187-200. - Eghball, B., Wienhold, B.J., Gilley, J.E., Eigenberg, R.A., 2002. Mineralization of manure nutrients, *Journal of Soil and Water Conservation*, 57, 470-473 - Ehlken, S. and Kirchner, G., 2002. Environmental process affecting plant root uptake of radioactive trace elements and variability of transfer factor data: a review, *Journal of Environmental Radioactivity*, 58, 97-112. - Endo, S., Kajimoto, T., Shizuma K., 2013. Paddy-field contamination with ¹³⁴Cs and ¹³⁷Cs due to Fukushima Dai-ichi Nuclear Power Plant accident and soil-to-rice transfer factor coefficients, *Journal of Environmental Radioactivity*, 116, 59-64. - Epstien, E., 1961. The essential role of calcium in selective cation transport by plant cells, *Plant Physiology*. 36(4), 437-444. - Evans, E.J., Dekker, A. J., 1969. Effect of nitrogen on cesium-137 in soils and its uptake by Oat plants, *Canadian Journal of Soil Science*, 49, 349-355. - Eyman, L.D. and Kevern, N.R., 1975. Cesium-137 and stable cesium in a hypereutrophic lake, Health Phys., 28, 549-555. - Frissel, M.J., Deb, D.L., Fathony M, Lin, Y.M., Mollah, A. S., Ngo, N.T., Othman, I., Robison, W. L., Skarlou-Alexiou, V., Topcuoğlu, S., Twining J.R., Uchida, S., and - Wasserman, M. A., 2002. Generic values for soil-to-plant transfer factors of radiocesium. *Journal of Environmental Radioactivity*, 58, 113–128. - Fukushima Environmental Safety Center, 2015. Remediation of contaminated areas in the aftermath of the accident at the Fukushima Daiichi nuclear power station: Overview, analysis and lessons learned Part 2: Recent Developments, supporting R&D and International discussions, JAEA-Review 2014-052. - Garten, C.T. Jr., Gentry, J.B., Pinder, J.E., Sharitz, R.R. III, and Smith, M.H., 1975. Radiocesium dynamics in a contaminated flood plain ecosystem in the southeastern United States, In Impact of nuclear releases into the aquatic environment, Int. Atomic Energy Agency, Vienna, 331-347. - Hampton, C., Boardley, M., and White, P., 2005. Short review: the mechanism of radiocesium uptake by Arabidopsis roots. NUKLEONIKA 50: (supplement 1), S3-S8. - Heredia, M. A., Zapico, R., Garc, J. and Fernández, J. A., 2002. Effect of calcium, sodium and pH on uptake and accumulation of radiocesium by Riccia fluitans, *Aquatic Botany*, 74, 245–256. - Horneck, D.A., and Miller, R.O., 1998. Determination of total nitrogen in plant tissue, in Yash, P. K. edited, Handbook of reference methods for plant analysis, Soil and Plant analysis council, Inc, 75-84. - IAEA., 1989. Measurement of radionuclides in food and the environment (A Guidebook), Technical Report series No. 295, Vienna. - IRSN, 2012. Fukushima, one year later Initial analyses of the accident and its consequences, Report IRSN. - Isayenkov, S., Isner, J.C., and Maathuis, F., 2011. Rice two pore K⁺ channels are expressed in different types of vacuoles, The plant cell, *American Society of Plant Biologists*, 23, pp. 756-768. - Ishii Y, Hayashi S, Takamura N., 2017. Radiocesium transfer in forest insect communities after the Fukushima Dai-ichi nuclear power plant accident, Doi: 10.1371/journal.pone.0171133. - Jiménez, E.I., García, V.P., 1992. Relationships between organic carbon and total organic matter in municipal solid wastes and city refuse composts, *Bioresource and Technology*, 41, pp. 265-272. - Johanson, K., Nikolova, I., Taylor, A., and Vinichuk, M., 2004. Uptake of element by fungi in the Forsmark area, Technical report: TR-04-26. - Kamewada, K., 1997. CEC and AEC. Jpn. Soc. of Soil Sci. and Plant Nutr. (Ed.) Analysis of soil environment. (In Japanese.) Hakuyu-sha, Tokyo, 208-211. - Kato, N., Kihoh, N., Fujimura, S., Ikeba, M., Miyazaki, N., Saito, Y., Eguchi, T., and Itoh, S., 2015. Potassium fertilizer and other materials as countermeasures to reduces radiocesium level in rice: Results of urgent experiments in 2011 responding to the Fukushima Daiichi Nuclear Power Plant accident, *Soil Science and Plant Nutrition*, 61, 179-190. - Khandaker, S., Toyohara, Y., Kamida, S., and Kuba, T., 2018. Adsorptive removal of cesium from aqueous solution using oxidized bamboo charcoal, Water Resources and Industry, 19, 35-46. - Kinoshita, N., Sueki, K., Sasa, K., Kitagawa, J., Ikarashi, S., Nishimura, T., Wong, Y S., Satou, Y., Handa, K., Takahashi, T., Sato, M., Yamagata, T., 2011. Assessment of - individual radionuclide distributions from the Fukushima nuclear accident covering central-east Japan, www.pnas.org/cgi/doi/10.10.1073/pnas.1111724108. - Koarashi, J., Atarashi-Andoh, M., Matsunaga, T., and Sanada, Y., 2016. Forest type effects on the retention of radiocesium in
organic layers of forest ecosystems affected by the Fukushima nuclear accident, Scientific Reports, URL, http://www.nature.com/articles/srep38591 - Kondo, M., Makino, T., Eguchi, T., Goto, A., Nakano, H., Takai, T., Arai-Sano, Y., and Kimura, T., 2015. Comparative analysis of the relationship between Cs and K in soil and plant parts toward control of Cs accumulation in rice, *Soil Science and Plant Nutrition*, 61, 144-151. - Koranda, J. J., and Robison, W. L., 1997. Accumulation of radionuclides by plants as a monitor system, *Environmental Health Perspectives*, 27, 165-179. - Lasat, M. M., Norvell, W. A., and Kochain, L. V., 1997. Potential for phytoextraction of ¹³⁷Cs from a contaminated soil, *Plant and Soil*, 195, 99-106. - Maathuis, F.J.M., and Sanders, D., 1996. Mechanisms of potassium absorption by higher plant roots, *Plant Physiology*, 96, 158–168. - MAFF, 2012. Summary of technical report of farmland decontamination measures /investigation, design, construction/, http://www.maff.go.jp/j/press/nousin/noukan/pdf/120831-08.pdf, in Japanese. - MAFF, 2013. Result of agricultural land decontamination measure projects. http://www.maff.go.jp/j/nousin/seko/josen/pdf/kekka.pdf, in Japanese. - Marty, F.,1999. Plant vacuoles, The plant cells, *American Society of Plant Physiolologists*, 11, pp. 587-599. - Matsuda, N., Mikami, S., Simoura, S., Takahashi, J., Nakano, M., Shimada, K., Uno, K., Hagiwara, S, and Saito, K., 2015. Depth profiles of radioactive cesium in soil using a scraper plate over a wide area surrounding the Fukushima Dai-ichi Nuclear Power Plant, Japan, *Journal of Environmental Radioactivity*, 139, 427-434. - MEXT, 2011. Preparation of distribution map of radiation doses, etc. (Map of radioactive cesium concentration in soil). http://radioactivity.nsr.go.jp/en/contents/5000/4165/24/1750_083014.pdf. - MHLW, 2013. Levels of Radioactive Contaminants in Foods Tested in Respective Prefectures (main inspections). http://www.mhlw.go.jp/english/topics/2011eq/index food radioactive.html. - Morino, Y., Ohara, T. and Nishizawa, M., 2011. Atmospheric behavior, deposition, and budget of radioactive materials from the Fukushima Daiichi nuclear power plant in March 2011, Geophys. Res. Lett., 38, L00G11, doi:10.1029/2011GL048689. - Murakami, M., Ohte N., Suzuki, T., Ishii, N., Igarashi, Y., and Tanoi, K., 2014., Biological proliferation of ¹³⁷cesium through the detrital food chain in a forest ecosystem in Japan, Scientific Reports, DOI: 10.1038/srep03599. - Nakai, S., 1997. Soil particle size (Pipette method). Jpn. Soc. of Soil Sci. and Plant Nutr. (Ed.) Analysis of soil environment. (In Japanese.) Hakuyu-sha, Tokyo, 25-29. - Nakashishi, M., 2018, Agricultural aspects of radiocontamination induced by the Fukushima nuclear accident-A survey of studies by the Univ. of Tokyo Agricultural Dept. (2011–2016), Proc. Jpn. Acad., Ser. B 94, 20-34. - Nakanishi, M., and Tanoi, K., 2013. The overview of our research, In Nakanishi, M. and Tanoi, K. (ed.) Agricultural implication of The Fukushima Nuclear accident. Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan, 1-10. - Nishiwaki, J., Asagi, N., Komatsuzaki, M., Mizoguchi, M., Noborio, K., 2017. Effects of added organic matter on soil fertility after stripping-off Cs-contaminated top soil at litate village in Fukushima Prefecture, *Paddy Water Environ*, Vol. 15, pp 11-18. - Nobori, T., Kobayashi, I. N., Tanoi, K., and Nakanishi, T., 2014. Effects of potassium in reducing the radiocesium translocation to grain in rice, *Soil Science and Plant Nutrition*, Vol. 60 pp. 772-781. - Ohno, T., Muramatsu, Y., Miura, Y., Oda, K., Inagawa, N., Ogawa, H., Yamazaki, A., Toyama, C., and Sato, N., 2012. Depth profiles of radioactive cesium and iodine released from the Fukushima Daiichi Nuclear Power Plant in different agricultural fields and forests, *Geochemical Journal*, 46, 287-295. - Ohse, K., Kitayama, K., Suenaga, S., Matsumoto, K., Kanno, A., Suzuki, C., Kawatsu, K., and Tsukada, H., 2015. Concentration of radiocesium in rice, vegetables, and fruits cultivated in the evacuation area in Okuma Town, Fukushima, *J Radioanal Nucl Chem*, 303, 1533-1537. - Overstreet, R., Jacobson, L. and Handley, R., 1952. The effect of calcium on the absorption of potassium by barley roots, *Plant Physiology*, 27(3), 583-590. - Périé, C., and Ouimet, R., 2008. Organic carbon, organic matter and bulk density relationships in boreal forest soils, *Canadian Journal of Soil Science*, 88, 315-325. - Qian, P., Schoenau, J.J., King, T., and Japp, M., 2005. Effect of repeated manure application on potassium, calcium and magnesium in soil and cereal crops in Saskatchewan, *Canadian Journal of Soil Science*, 397-403. - Rigol, A., Vidal, M., and Rauret, G., 2002. An overview of the effect of organic matter on soil-radiocaesium interaction: implications in root uptake, *Journal of Environmental Radioactivity.*, 58 (2-3), 191-216. - Ritchie, J and McHenry, R, 1990. Application of Radioactive Fallout Cesium-137 for Measuring Soil Erosion and Sediment Accumulation Rates and Patterns: A Review, I. ENVIRON. QUAL., 19, 216-233. - Saito, K., Takahashi, K., Makino, T., Tsukada, H., Sato, M., and Yoshioka, K., 2015. Effect of application timing of potassium fertilizer on root uptake of Cs-137 in brown rice, J Radioanal Nucl Chem, 303, 1585-1587. - Saito, T., Ohkoshi, S., Fujimura, S., Iwabuchi, K., Saito, M., Nemoto, T., Sato, M., Sato, M., Yoshioka, K., and Tsukada, H., 2012. Effect of potassium application on root uptake of radiocesium in rice, KUR research program for scientific basis of nuclear safety, 165-169. - Sanchez, A.L., Wright, S.M., Smolders, E., Naylor, C., Stevens, P.A., Kennedy, V. H., Dodd, B. A., Singleton, D. L., and Barnett, C.L., 1999. High plant uptake of radiocesium from organic soils due to Cs mobility and low soil K content, Environmental Science and Technology, 33, 2752-2757. - Shiozawa, S., Tanoi, K., Nemoto, K., Yoshida, S., Nishida, K., Hashimoto, K., Sakurai, K., Nakanishi, T., Nihei, N., and Ono, Y., 2011. Vertical concentration profiles of radioactive cesium and convective velocity in soil in a paddy field in Fukushima, *Radioisotopes* (in Japanese), 60, 323–328. - Smolders, E., Van Den Brande, K., and Merckx, R., 1997. Concentration of ¹³⁷Cs and K in soil solution predict the plant availability of ¹³⁷Cs in soils, *Environmental Science and Technology*, 31, 3432-3438. - Smolders E., Sweeck L., Merckx R., Cremers A., 1997. Cation interactions in radiocaesium uptake from solution by spinach, *Journal Environ. Radioactivity*.34 (2), 161-170. - Staunton, S., Dumat, C., and Zsolnay, A., 2002., Possible role of organic matter in radiocaesium adsorption in soils, *Journal of Environmental Radioactivity*, 58 (2-3) 163-173. - Sutherland, R.A., 1994. Spatial variability of ¹³⁷Cs and the influence of sampling on estimates of sediment redistribution, *Catena*, 21, 57-71. - Tanaka, K., Sakaguchi, A., Kanai, Y., Tsuruta, H., Shinohara, A., and Takahashi, Y., 2013. Heterogeneous distribution of radiocesium in aerosols, soil and particulate matters emitted by the Fukushima Daiichi Nuclear Power Plant accident: retention of microscale heterogeneity during the migration of radiocesium from the air into ground and river systems, *Journal of Radioanalytical and Nuclear Chemistry*, 295, 1927-1937. - Tanaka, K., Takahashi, Y., Sakaguchi, A., Umeo, M., Hayakawa, S., Tanida, H., Saito, T., and Kanai, Y., 2012. Vertical profiles of Iodine-131 and Cesium-137 in soils in Fukushima Prefecture related to the Fukushima Daiichi Nuclear Power Station accident, Geochemical Journal, 46, 73-76. - Tsukada, H., Hasegawa, H., Hisamatsu, S., and Yamasaki, S., 2002. Rice uptake and distributions of radioactive ¹³⁷Cs, stable ¹³³Cs and K from soil, *Environmental Pollution*. 117, 403-409. - Uchida, S., Tagami, K. and Komamura, M., 2006. Variation of transfer factors of radionuclides for food crops in Japan, Classification of soil systems the basis of transfer factors of radionuclides from soil to reference plants, IAEA, Proceedings of a final research co-ordination meeting organized by the Joint FAO/IAEA Program of Nuclear Techniques in Food and Agriculture and health in China, Crete, 22-26 September 2003, 101-111. - Van, I. F., Loolen, M., Gerriten, A., Noordervliet, M.and Boers-van, S., 1981. The lagphase of the potassium translocation from the root to shoot of low-salt barley plants kinetic and localization studies, *Plant Physiology*, 52, 15-22. - Viets, F.G. Jr., 1999. Calcium and other polyvalent cations as accelerators of ion accumulation by excised barley roots. *Plant Physiology*, Vol. 19(3), pp. 466-480, 1994. - White, P.J., 1999. The mechanism of sodium influx to root cells, *Trends Plant. Sci*, 4, 245-246. - White, P., Bowen, H., Broadley, M., Hampton, C., Meacham, M., and Payne, K., 2004. The mechanism of cesium uptake by plants. In Inaba J., Tsukada H., Takeda A., eds, Proceedings of the International on Radio ecology and environmental Dosimetry, Aomori, Japan, October 2003, 255-262. - WHO, 2013. Preliminary dose estimation from the nuclear accident after the 2011 Great East Japan Earthquake and tsunami. - Yamada, M., 2012. A brief reviewed of environmental impacts and health effects from the accidents at the Three Mile Island, Chernobyl and Fukushima-Daiichi nuclear power plants, *Radiation Emergency Medicine*, 1 (1-2), 33-39. - Yamanichi, H., Inagaki, M., Wakabayashi, G., Hohara, S., Itoh, T., and Furukawa, M., 2011. Environmental radiation survey in Kawamata-machi, Fukushima-Ken: Measurement of radiocesium in soil and plants. http://www.rri.kyotou.ac.jp/anzen_kiban/outcome/Proceedings_for_Web/Topics_1-11.pdf - Yamashita, J., Enomoto, T., Yamada, M., Ono, T., Hanafusa, T., Nagamatsu, T., Sonoda, S., and Yamamoto, Y., 2014. Estimation
of soil-to-plant transfer factors of radiocesium - in 99 wild plant species grown in arable lands 1 year after the Fukushima 1 Nuclear Power Plant accident, *Journal of Plant Resources*, 127, 11-22. - Yang, J., and Zhang, J., 2010. Crop management techniques to enhance harvest index in rice, *Journal of Experimental Botany*, (June 2010),1-13. - Zhu, Y. G. and Smolders, E., 2000. Plant uptake radiocesium: A review of mechanisms, regulation and application, *Journal of Experimental Botany*, 51 (351), 1635-1645. #### Presentation slides Radiocesium distribution in rice, wild plants, and soil following the Fukushima-Daiichi nuclear power accident Nittaya Wakai Graduate School of Environmental and Life Science Okayama University 20 August 2019 1 #### Introduction Introduction - 1. The accidental damage to the Fukushima-Daiichi nuclear power plant (FD1NPP) in March 2011 released a large amount of ¹³⁷Cs into the environment. - 2. 137 Cs (half-life: 30 years) emits β and γ rays during its decay. - 3. Uptake of ¹³⁷Cs by crops is the pathway of ¹³⁷Cs enters human. - 4. A year following the accident, Japanese authorities prohibited crop planting in agricultural soils containing $^{137}\text{Cs} \geq 5000 \text{ Bq kg}^{-1}$. - 5. The maximum limit of ¹³⁷Cs in general foods of Japan is 100 Bq kg⁻¹)(since 2012). 2 Introduction ¹³⁷Cs uptake by wild plants and rice is expressed as transfer factor (TF): $TF = \frac{^{137}Cs \text{ concentration in plant (Bq kg}^{-1})}{^{137}Cs \text{ concentration in soil (Bq kg}^{-1})}$ **Background** Introduction - Yamashita et al. (2014) reported the ¹³⁷Cs contamination in hundred species of wild plants grown in agricultural fields in Iitate-Village. However, the factors affecting ¹³⁷Cs distribution in these plants had not been defined. - 2. ¹³⁷Cs distribution in non-agricultural lands has not frequently studied. - 3. To obtain more information on ¹³⁷Cs distribution in soil-plant systems in the lands of different uses, we conducted the investigation in 2014. <u>Research I</u>: Factors affecting ¹³⁷Cs concentration in wild plants and soils of different land use. # Background (continued) Introduction - 3. Experimental paddy field in Kawamata-Town, the surface soil was removed and cattle manure compost was used to improve soil fertility. - 4. Reducing ¹³⁷Cs in crop plants by applying K fertilizer has been well researched, but effects of compost has not been studied yet. - 5. To obtain the information about the effects of cattle manure compost application at various rates on soil productivity and on ¹³⁷Cs distribution in rice plants, the study was conducted in 2015. Research II: ¹³⁷Cs concentration in rice plant parts affected by cattle manure compost application 5 Study sites Research I | Manumon | Study | Soma | Pacific Ocean Pacifi Research I: Introduction Research I: Factors affecting ¹³⁷Cs concentration in wild plants and soils with different land uses. ### Objectives: - 1) To estimate the ¹³⁷Cs contamination degree of soils and wild plants in the lands of different uses - 2) To identify the factors affecting ¹³⁷Cs transfer in soils and wild plants ecosystems. Material and methods Research I: Introduction - 1. Three land use types; roadside, agricultural fields, and mountain. - 2. Six species of wild plants and three soil samples were collected. - 3. ¹³⁷Cs concentration in soil and plant samples was measured using a Ge semiconductor for 30 minutes per one sample. #### Research I: 137Cs in soils and wild plants #### 1. ¹³⁷Cs distribution in soils with different land uses | Land uses | Locations
/ (km) * | SOM
(%) | Clay
(%) | ¹³⁷ Cs
(kBq kg ⁻¹) | |--------------------|------------------------|------------------|-------------|--| | Agricultural lands | 1P (paddy)/ (50) | 10.8 | 4.7 | 12.06 | | | 1U (upland)/(50) | 7.7 | 1.3 | 10.68 | | | 2P (paddy)/(55) | 7.0 | 3.1 | 13.82 | | | 2C (canal ditch) /(55) | 6.4 | 4.5 | 14.64 | | Roadside | 1R (roadside)/(50) | 4.9 | 10.5 | 260.58 | | Mountain | 3M (mountain)/ (80) | <mark>8.5</mark> | 10.8 | 6.35 | ^{*} Approximately distant from FD1NPP Roadside soil with high clay showed the highest ¹³⁷Cs, while the mountain soil with high SOM showed the lowest level. 9 # Discussions (1) - 1. The highest ¹³⁷Cs level in the roadside soil was assumed to the re-deposition of ¹³⁷Cs-fixed particles. - 2. The lowest ¹³⁷Cs in mountain soil was related to - (1) distant from the FD1NPP and - (2) the effects of leaching, sampling point was on slope and combined with the high SOM resulted in ¹³⁷Cs had washed out. - 3. In agricultural lands, ¹³⁷Cs would be the originate levels because these lands have less affected by the erosion. 10 Research I: 137Cs in soils and wild plants Research I: 137Cs in soils and wild plants #### Research I: 137Cs in soils and wild plants 2. Different plant species grown in the same soil showed the similar ¹³⁷Cs transfer factor (TF). * ND = not detected, TF is assumed to zero. Location 1: Yomogi and Setaka-awadachisou in paddy and upland fields were did contain ¹³⁷Cs. showed the similar ¹³⁷Cs transfer factor (continued). 2. Different plant species grown in the same soil At . Deltoidofrons (Satomeshida) 12 Research I: 137Cs in soils and wild plants 3. The same plant species grown the different soils showed different ¹³⁷Cs concentration and TF. | Sampling
points | 137Cs ii
soils
kBq kg | plants | TF | |--------------------|-----------------------------|----------------------|------| | Canal | 13.70 | $2.51 \pm 0.20 d$ | 0.18 | | Canal | 15.58 | $1.37\ {\pm}0.31\ d$ | 0.09 | | Mountain | 6.35 | $3.71 \pm 2.98 c$ | 0.58 | Comparison between Hebinonegoza in 2 locations, TF of plant at the mountain (3M) was higher than that at Canal ditch (2C). different ¹³⁷Cs concentration and TF. (continued) 3. The same plant species grown in different soils showed Comparison between Seitaka awadachisou at Location 1 (1P and 1U) and in Location 2 (2P). At Location 1 (1P and 1U) there were not ¹³⁷Cs detected, but that in Location 2 (2P) were found to high TF levels (0.2 to 0.3). 14 Research I: 137Cs in soils and wild plants Research I: 137Cs in soils and wild plants Research I: 137Cs in plants 13 4. Wild plant grown in the soil with high ¹³⁷Cs concentration showed the high ¹³⁷Cs content, but TF was relatively low. | Location | ¹³⁷ Cs in soils | 137Cs in
plants | TF | |----------|----------------------------|---------------------|------| | | kBq kg ¹ | kBq kg ¹ | | | Roadside | 260.58 | 21.90 ± 1.76 | 0.08 | This suggests that in soil with extremely high ¹³⁷Cs concentration TF value may not enough for interpret the ¹³⁷Cs uptake potential of plant. Discussion (2) 1. The potential of $^{137}\mathrm{Cs}$ uptake of plants depending on soil factors regardless of plant species. - (1) Seitaka awadachisou in 1P and 1U were not detected 137 Cs because these soils had a high ex-K. In contrast, that in 2P showed a high TF because the soil had a lower ex-K and high content of $\mathrm{NH_4^+}$. - (2) Hebinonegoza at the mountain showed higher TF than that at 2C because the soil had a relatively higher SOM and NH_4^+ . - 2. TF value may not enough to interpret the potential of ¹³⁷Cs uptake of plant in the extremely contaminated soil. - 3. ¹³⁷Cs had re-distributed after its deposition. 16 Research I: 137Cs in soils and wild plants 4. The relationship between ¹³⁷Cs-TF of wild plants and soil components. In the present study, the relationship between TF of wild plants and soil components were not cleared because of the variation of samples were wide. However, as an individual observation and the literatures can explain our results. 17 #### Research I: 137Cs in soils and wild plants #### Conclusions - Soil and wild plants at the roadside the highest ¹³⁷Cs concentration. - 2. ¹³⁷Cs distribution across the landscape through the effect of ground water. - ¹³⁷Cs uptake by wild plants affected by soil factors, regardless of plant species. Soil factors include competitive ions (exchangeable K) or cooperative components such as NH₄⁺, SOM. 18 #### Research II: Introduction Research II: ¹³⁷Cs distribution an rice plant parts affected by cattle manure compost application ### Objective: To evaluate the effects of cattle manure compost application at various rates on rice yields and ¹³⁷Cs distribution in rice parts. 19 #### Materials and methods Research II: Introduction - 1. Experimental paddy field at Kawamata-Town (50 km far from FD1NPP. - 2. The field had removed the soil surface and replaced with sandy soil before the experiment started. - 3. Four rates of cattle manure compost (0, 10, 20, and 40 t ha⁻¹). Rice (Akitakomachi) transplanted on May 27 and harvested in October 2015. ## Materials and methods (continued) Research II: Introduction 4. Soil and rice samples were collected at harvest. 5. ¹³⁷Cs concentration in soil and rice parts (stems, leaves, and panicles) measured by a Ge semiconductor. 6. Measuring time for soil was 30 minutes and for rice was 24 hrs. Chemical components of cattle manure compost. | Components | Dried weight
bases | |-----------------------------------|-----------------------| | Total-N (%) | 1.2 | | Total-C (%) | 39.7 | | P ₂ O ₅ (%) | 0.86 | | CaO (%) | 1.3 | | MgO (%) | 0.6 | | K ₂ O (%) | 3.13 | | Ash (%) | 24.6 | 21 Research II: 137Cs in rice 1. Soil chemical components increased with increase rates of compost. | Treatment
t ha ⁻¹ | Total C
mg kg ⁻¹ | Total N
mg kg ⁻¹ | K
cmol _c kg ⁻¹ | Mg
cmol _c kg ⁻¹ | Ca
emol _e kg ⁻¹ | |---------------------------------|--------------------------------|--------------------------------|---|--|--| | 0 | 10.7 b | 0.96 b | 0.17 b | 0.82 b | 6.41 b | | 10 | 15.6 ab | 1.29 ab | 0.41 ab | 0.95 ab | 7.47 ab | | 20 | 22.2 a | 1.68 a | 0.51 a | 1.02 a | 8.09 a | | 40 | 18.6 a | 1.41 ab | 0.42 ab | 0.88 ab |
6.73 ab | Application rates of 20 t ha⁻¹ was significantly increased soil components. 22 #### Research II: 137Cs in rice 2. Rice components increased with increase rates of compost. | Treatments
t ha ⁻¹ | Total dry
mass
g m ⁻² | No. of panicles m ⁻² | No. of
spiklets
panicle ⁻¹ | Ripened
grains
% | 1000 gains
weight
g | Grain
yield
g m ⁻² | |----------------------------------|--|---------------------------------|---|------------------------|---------------------------|-------------------------------------| | 0 | 1116 | 371 | 61 | 86.7 | 23.1 | 453 | | 10 | 1139 | 366 | 64 | 85.0 | 22.9 | 458 | | 20 | 1359 | 417 | 64 | 85.7 | 23.4 | 593 | | 40 | 1499 | 438 | 67 | 86.9 | 23.7 | 601 | These were not significantly different among treatments, but increased by compost application. Research II: ¹³⁷Cs in rice 3. Concentration of ¹³⁷Cs and transfer factor (TF) of rice plant parts. | Treatments
t ha-1 | Stems
Bq kg ⁻¹ | Leaves
Bq kg ⁻¹ | Panicles
Bq kg ⁻¹ | TF of
stems | TF of
leaves | TF of
aboveground
parts | |----------------------|------------------------------|-------------------------------|---------------------------------|----------------|-----------------|-------------------------------| | 0 | 21 | 14 | ND | 0.050 | 0.034 | 0.022 | | 10 | 35 | 6 | ND | 0.051 | 0.009 | 0.020 | | 20 | 24 | 5 | ND | 0.024 | 0.005 | 0.009 | | 40 | 18 | 9 | ND | 0.026 | 0.013 | 0.011 | ¹³⁷Cs in rice plants decreased by compost application. TF was lowest in rice at 20 t ha⁻¹, which was 2.4 times lower than that at control plot. Research II: 137Cs in rice 8. ¹³⁷Cs/K ratio of leaves negative correlated with cations in the soils. Indicating that these cations affecting 137Cs transfers (accumulates) to rice leaves. 29 ## Conclusion Research II: 137Cs in rice - 1. Rice yields increased by cattle manure compost application. - 2. Increasing of exchangeable K due to cattle manure compost application caused reduce ¹³⁷Cs uptake by rice. - 3. ¹³⁷Cs and K distribution in rice plant parts were similar trends, stems > leaves > panicle (in the present study, ¹³⁷Cs was not detected in the panicles of all rice). - 4. Exchangeable K, Mg, and Ca in soil affected ¹³⁷Cs distribution in rice plants. - 5. Application rate of 20 t ha⁻¹ was the most effective to both increasing the rice yields and reducing ¹³⁷Cs uptake by rice. 30 ## From our research - 1. The information of ¹³⁷Cs contamination in soils of different uses might be useful for decontamination works. - 2. In the ¹³⁷Cs contaminated agricultural lands, the contamination of food crops can avoided by soil management. - 3. Application of compost increased soil productivity and reduced ¹³⁷Cs uptake by rice plants. - 4. Effects of exchangeable Mg and Ca on ¹³⁷Cs translocation between rice parts should more studied.