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Abstract 

 

The impact of orexins on anterior pituitary function has yet to be clarified.  

We studied the effects of orexin A and its interaction with the bone morphogenetic 

protein (BMP) system on the regulatory role of prolactin synthesis using rat 

lactotrope GH3 cells expressing BMP-4.  Orexin type 1 receptor (OX1R), but not 

type 2 receptor (OX2R), was predominantly expressed in GH3 cells.  Orexin A 

suppressed forskolin-induced, but not basal, prolactin mRNA expression without 

reducing cAMP levels.  Of note, orexin A suppressed BMP-4-induced prolactin 

mRNA and cAMP synthesis.  Impairment of the effects of orexin by chemical 

inhibitors suggested involvement of the P38 pathway in the OX1R activity that 

suppresses BMP-4-induced PRL expression.  Given that inhibition of BMP-

receptor signaling reduced prolactin mRNA levels, endogenous BMP action is 

likely to be linked to the activation of prolactin synthesis by GH3 cells.  Orexin A 

was revealed to suppress Smad1/5/9 phosphorylation and Id-1 transcription 

induced by BMP-4, which was restored in the presence of orexin-receptor 

antagonists, suggesting that the inhibitory effect of orexin A occurred via OX1R.  

Orexin A also reduced ALK-3 expression but increased inhibitory Smad6/7 

expression, while BMP-4 treatment downregulated OX1R expression.  These 

results indicated that orexin A plays an inhibitory role in prolactin production 

through suppression of endogenous BMP activity in GH3 cells, suggesting that a 

new functional role of the interaction between orexin and BMP-4 is modulation of 

prolactin levels in lactotrope cells.  
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Introduction 

 

Orexins, including orexin A and orexin B, are neuropeptides that are 

mainly synthesized in the hypothalamus and produced from the common 

precursor preproorexin, [1, 2].  Orexins have specific affinities to two different 

receptors coupled with G-proteins, named orexin type 1 and orexin type 2 

receptors (OX1R and OX2R).  OX1R selectively binds orexin A, while OX2R can 

bind both orexin A and orexin B with similar affinities [3].  Orexins have important 

functions in the regulation of sleep-wake balance, energy expenditure and intake 

of food.  The expression of orexins and their receptors has been found in various 

peripheral tissues [4] and also in many endocrine tissues such as the adrenal, 

testis, ovary and pituitary [5].   

Orexins are functionally linked to the regulation of endocrine activities 

including the hypothalamic-pituitary-adrenal and -gonadal axes [6, 7] and growth 

hormone control [8].  Orexin receptors were shown to be expressed in the rat 

[9], porcine [10] and human pituitaries [11]; however, the effects of orexin on 

prolactin (PRL) synthesis and the regulatory roles in lactotorope cells have not 

been clarified.  Intra-ventricular administration of orexin reduced the plasma 

concentration of PRL in experiments using rats [12, 13], and the action of orexin 

was shown to be mediated by tubero-infundibular dopaminergic neurons (TIDA) 

in the hypothalamus [14]. 

There has been accumulating evidence that bone morphogenetic proteins 

(BMPs), produced as autocrine and/or paracrine factors, play key roles in the 

differentiation of pituitary cells [15-18].  Interestingly, BMP-4, which induces key 
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organogenetic actions in the anterior pituitary, has also been shown to have 

various functions in the pathogenesis of differentiated pituitary tumors including 

corticotropinomas [16] and prolactinomas [19-21].  It has also been revealed 

that there is a functional interrelationship between the BMP-4-Smad pathway and 

estrogen receptor (ER) signaling in the pathogenesis of PRL-producing pituitary 

adenomas and in the regulation of PRL transcription [22, 23].   

In the present study, we studied the activities of orexin by focusing on 

BMP-4, which can facilitate PRL production and is also involved in the 

aggressiveness of prolactinomas, in regard to the modulation of PRL secretion 

by lactotrope cells.  A modulatory effect of orexin on PRL production and mutual 

interaction of orexin and the BMP system were revealed.   

 

Materials and Methods 

 

Experimental Reagents 

A mixture of Dulbecco’s Modified Eagle’s Medium/Ham F-12 medium 

(DMEM/F12), forskolin (FSK), 3-isobutyl-1-methylxanthine (IBMX) and H-89 

(cAMP-dependent protein kinase inhibitor) were purchased from Sigma-Aldrich 

Corp. (St. Louis, MO).  Recombinant human BMP-4 from R&D Systems Inc. 

(Minneapolis, MN) and the BMP-receptor signaling inhibitors LDN193189, from 

Stemgent (San Diego, CA), and dorsomorphin, from Calbiochem (San Diego, 

CA), were used in the experiments.  The ERK inhibitor U0126 and the P38-

MAPK inhibitor SB203580 were from Promega Corp. (Madison, WI), and the 

stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK) inhibitor 
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SP600125 was from Biomol Lab. Inc. (Plymouth Meeting, PA).  Human orexin A 

was purchased from Wako Pure Chemical Industries, Ltd. (Osaka, Japan), the 

dual orexin-receptor antagonist DORA-12 [24] was provided by Merck Sharp & 

Dohme Corp. (Rahway, NJ), and the selective non-peptide OX1R antagonist 

SB408124 [25] was purchased from Tocris Bioscience (Bristol, UK). 

 

GH3 cell culture and measurement of cAMP levels 

Rat pituitary tumor GH3 cells (5 × 104 viable cells), originally provided by 

Prof. Joseph A. Majzoub, Children's Hospital, Harvard Medical School, were 

cultured in DMEM/F12 supplemented with 10% fetal calf serum (FCS) and 

antibiotics in 24-well plates under a 5% CO2 atmosphere at 37C.  After 

preculture with the growth medium, the medium was changed to a serum-free 

medium containing 0.1 mM IBMX, an inhibitor of phosphodiesterase activity, and 

the GH3 cells were treated with the indicated concentrations of orexin A in 

combination with FSK or BMP-4 for 24 h.  The culture medium was then 

collected and the supernatant of the centrifuged medium was collected and 

stored at -80C until measurement.  The extracellular contents of cAMP were 

determined by an enzyme immunoassay (ELISA; Enzo Life Sciences, Inc., NY, 

USA).   

 

RNA extraction, reverse transcription (RT) and real-time PCR 

After preculture, cells (1 × 105 viable cells) were treated with the indicated 

concentrations of orexin A in combination with FSK or BMP-4 in the presence or 

absence of LDN193189, dorsomorphin, orexin receptor inhibitors (DORA-12 and 
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SB408124), MAPK inhibitors (U0126, SB203580 and SP600125) or H-89 in 12-

well plates in a serum-free condition for 24 h.  The culture medium was then 

removed and total cellular RNA was extracted using TRI Reagent® (Cosmo Bio 

Co., Ltd., Tokyo, Japan).  Whole tissues of the normal rat pituitary were obtained 

from 8-week-old female Wistar rats and total RNA was also extracted using TRI 

Reagent®.  Primer pairs for PCR were selected from different exons of the 

corresponding genes as follows: rat PRL: 271-291 and 471-491 (NM_012629); 

rat Id-1: 218-240 and 357-377 (NM_012797); rat OX1R: 1658-1680 and 2057-

2079 (NM_013064); rat OX2R: 209-233 and 539-558 (NM_013074); rat BMP-4: 

500-521 and 705-724 (NM_012827.2); and rat BMP type II receptor (BMPRII): 

1785-1804 and 1942-1961 (NM_080407).  Rat Smad6, Smad7, ALK-2, ALK-3 

and ribosomal protein L19 (RPL19) were selected as we reported previously [26].  

The extracted RNA (1 μg) was subjected to an RT reaction using ReverTra Ace® 

(TOYOBO CO., LTD., Osaka, Japan) with a random hexamer and 

deoxynucleotide triphosphate (dNTP).  After optimizing the annealing conditions 

for each pair of primers, quantitative PCR (qPCR) was performed to quantify the 

level of target gene mRNA using the LightCycler® Nano real-time PCR system 

(Roche Diagnostic Co., Tokyo, Japan).  The relative expression of each mRNA 

was determined by the ΔCt method, in which ΔCt was the value obtained by 

subtracting the Ct value of RPL19 mRNA from that of the target mRNA.  The 

amount of target mRNA relative to RPL19 mRNA was expressed as 2-(ΔCt), and 

the results were expressed as the ratio of target mRNA to RPL19 mRNA.    

 

Western blots 
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GH3 cells (1 × 105 viable cells) were precultured with DMEM/F12 

containing 10% FCS and antibiotics in 12-well plates.  The growth medium was 

then changed to a serum-free medium and treated with the indicated 

concentrations of orexin A for 24 h.  Subsequently, the cells were stimulated with 

indicated concentrations of BMP-4 for 60 to 120 min.  The treated cells were 

solubilized in 100 μl RIPA lysis buffer (Upstate Biotechnology, Lake Placid, NY) 

containing 1 mM Na3VO4, 1 mM NaF, 2% SDS, and 4% β-mercaptoethanol.  

Western blot analysis was performed using the cell lysates with specific 

antibodies against phospho-Smad1/5/9 (pSmad1/5/9), total-Smad1 (tSmad1; 

Cell Signaling Technology, Inc., Beverly, MA) and actin (Sigma-Aldrich Co. Ltd.).  

The blotted bands were analyzed by the C-DiGit® Blot Scanner System (LI-COR 

Biosciences, NE) by scanning the integrated signal intensities.  For evaluating 

the phosphorylated Smad contents, the ratios of the digitized levels of 

pSmad/tSmad bands were calculated. 

 

Statistics 

Experimental results are shown as means ± SEM of data from at least 

three independent experiments, each performed with triplicate samples.  The 

data were then subjected to ANOVA followed by Tukey-Kramer’s post hoc test or 

unpaired t-test (StatView 5.0 software, Abacus Concepts, Inc., Berkeley, CA).  P 

values <0.05 were accepted as statistically significant.   

 

Results 
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Firstly, we assessed the expression of orexin receptors in rat whole 

pituitary tissues and GH3 cells.  The expression of both OX1R and OX2R was 

detected in the rat whole pituitary by RT-PCR as shown in Fig. 1A, whereas the 

major orexin receptor for GH3 cells was found to be OX1R.  In GH3 cells, BMP-

4 expression was also detected by RT-PCR as seen in the rat whole pituitary (Fig. 

1A).  Treatment with orexin A (10-300 nM) did not change basal mRNA levels 

of PRL for 24 h as shown in Fig. 1B.  FSK (0.3 M) treatment significantly 

enhanced mRNA expression of PRL, which was significantly suppressed by co-

treatment with orexin A (100 to 300 nM).  To investigate the mechanism by 

which orexin A suppressed FSK-induced PRL synthesis, changes of cAMP levels 

were examined.  As shown in Fig. 1C, orexin A failed to suppress basal and 

FSK (0.01-0.3 M)-induced cAMP synthesis. 

 PRL synthesis is known to be induced by BMP-4 treatment in lactotorope 

cells, and it is thought that crosstalk between Smad and ER complex [23] and 

increase in cellular cAMP induction [19] are involved.  We therefore examined 

the functional interrelationship between BMP-4 and orexin in GH3 cells.  As 

shown in Fig. 2A, treatment with BMP-4 (10 ng/ml) significantly enhanced PRL 

mRNA expression and co-treatment with orexin A (100 nM) suppressed the 

enhancement of PRL expression.  Furthermore, treatment with orexin A 

significantly reduced BMP-4-induced cAMP levels in 24-h culture, while orexin A 

failed to suppress basal cAMP synthesis (Fig. 2B).  To examine the role of the 

activity of endogenous BMP expressed in GH3 cells [26], a BMP-receptor signal 

inhibitor, dorsomorphin, that selectively inhibits ALK-2, -3 and -6 signaling [27] 

and another inhibitor, LDN193189, that specifically inhibits ALK-2 and -3 actions 
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[28] were used to inhibit endogenous BMP actions.  As shown in Fig. 2C, co-

treatment with LDN193189 or dorsomorphin (100-300 nM) reduced basal and 

FSK-induced levels of PRL mRNA in 24-h culture, indicating that endogenous 

BMPs augment PRL synthesis by GH3 cells. 

Furthermore, to determine the possible signaling pathways of orexin for 

suppressing BMP-4-induced PRL expression, specific inhibitors (1 M) for cAMP-

PKA and MAPKs were used for examining the changes of PRL mRNA levels.  

As shown in Fig. 2D, treatment with a P38 inhibitor, SB203580, abolished the 

suppressive effect of orexin A on BMP-4-induced PRL expression in 24-h culture, 

whereas treatments with a cAMP-PKA inhibitor, H-89, an ERK inhibitor, U0126, 

and a SAPK/JNK inhibitor, SP600125, did not affect the action of orexin.  These 

results suggested that P38 signaling is, at least in part, involved in the orexin 

receptor activity for regulating BMP-4-induced PRL expression in GH3 cells. 

Next, we examined the involvement of orexin action in the intracellular 

signaling of BMP-4.  Stimulation with BMP-4 (10 ng/ml) for 2 h readily activated 

Smad1/5/9 phosphorylation in GH3 cells as shown in Fig. 3A.  Importantly, 

orexin A (100 nM) pretreatment for 24 h suppressed Smad1/5/9 phosphorylation 

induced by BMP-4 (Fig. 3A), suggesting that orexin A suppresses PRL 

production by reducing Smad1/5/9 activation in GH3 cells.  To clarify the effects 

of the orexin receptor on BMP-signaling, mRNA levels of Id-1, the target gene of 

BMP-receptor signaling, were examined.  As shown in Fig. 3B, treatment with 

BMP-4 (1 ng/ml) significantly upregulated Id-1 mRNA for 24 h, and the expression 

was significantly inhibited by co-treatment with orexin A (100 nM).   Of note, 

treatment with the dual orexin receptor antagonist DORA-12 (10 µM) and the 
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selective OX1R antagonist SB408124 (10 µM) restored the suppressive effect of 

orexin on Id-1 mRNA expression induced by BMP-4 (Fig. 3B), suggesting that 

OX1R action is functionally linked to the suppression of BMP-Smad signaling in 

GH3 cells.  To determine the role of OX1R function in GH3 cells, changes of 

OX1R mRNA in the presence of BMP-4 were also examined.  As shown in Fig. 

3C, addition of BMP-4 (10 ng/ml) downregulated OX1R mRNA expression for 24 

h, suggesting that there is a counter-regulatory effect of BMP-4 for controlling 

PRL level via OX1R action. 

To try to determine the underlying mechanism by which orexin A inhibits 

BMP-receptor signaling, the expression levels of BMP-receptor components 

were also examined by real-time PCR.  As shown in Fig. 4A, cell culture with 

orexin A (100 nM) for 24 h reduced the expression levels of ALK-3 among the 

BMP-4 receptors expressed in GH3 cells, including ALK-2, ALK-3 and type II 

receptor BMPRII [26].  We next examined the effects of orexin A on the 

expression of inhibitory Smads.  Since it is known that the expression of 

inhibitory Smad6/7 can be induced by stimulation of BMPs in various BMP-

responsive cells [29-32], Smad6/7 mRNA levels were evaluated in GH3 cells in 

the presence of BMP-4 (10 ng/ml).  As a result, treatment with orexin A (100 nM) 

significantly enhanced the mRNA expression of inhibitory Smad6 and Smad7 

induced by BMP-4 (10 ng/ml) for 24 h (Fig. 4B).  These findings suggested that 

OX1R signaling plays an inhibitory role in BMP-Smad signaling in GH3 cells via 

downregulation of BMP receptors and upregulation of inhibitory Smad6/7.      

       

Discussion 
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Here we demonstrated a functional interaction between orexin A and BMP-

4 in PRL secretion by pituitary lactotrope GH3 cells (Fig. 5).  OX1R was 

expressed more dominantly than OX2R in GH3 cells, and OX1R activation 

induced by orexin A suppressed FSK- and BMP-4-induced PRL mRNA 

expression.  Since orexin A treatment suppressed BMP-4-induced cAMP 

synthesis but not FSK-induced cAMP synthesis, the mechanism by which orexin 

A suppressed FSK-induced PRL expression is directly linked to BMP activity 

rather than the cAMP-PKA pathway in GH3 cells.  Given that ALK inhibitors 

suppressed PRL expression, endogenous BMP action seems to upregulate PRL 

synthesis in an autocrine manner.  Orexin A suppresses endogenous BMP 

activity in GH3 cells, leading to a reduction of FSK-induced PRL expression.  It 

was of interest that orexin A treatment suppressed BMP-4-induced Smad1/5/9 

signaling and Id-1 transcription via OX1R.  It was also revealed that BMP 

signaling in GH3 cells was modulated by orexin A through suppression of BMP 

type-I receptor expression as well as upregulation of inhibitory Smad6/7.   

Treatment with BMP-4, in turn, suppressed OX1R expression, implying the 

presence of regulatory interaction of orexin and BMP-signaling in GH3 cells. (Fig. 

5).   

OX1R mRNA is expressed at a higher level than that of OX2R in the rat 

pituitary, and OX1R mRNA levels were significantly higher in male rats than in 

female rats [33].  Both OX1R mRNA and OX2R mRNA were expressed 

abundantly in the intermediate lobe in the rat pituitary, whereas OX1R was 

expressed more strongly than OX2R in the anterior lobe [9].  Immunofluorence 
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analysis revealed that OX1R was present in acidophil cells that co-express GH, 

while OX2R was present in basophil cells that co-express ACTH [11].  In 

addition, in the Xenopus pituitary, OX1R was shown to be distributed in PRL-

containing cells [34].  However, the physiological effect of orexin on PRL 

secretion in pituitary cells has remained controversial.   In rat pituitary primary 

culture cells, orexin A did not affect PRL secretion [35], whereas Molik et al. found 

by using ovine cultured pituitary cells that PRL secretion in response to orexin A 

changed depending on the length of day [36].  Also, sheep PRL secretion was 

negatively responsive to orexin A during a short day, whereas orexin enhanced 

PRL secretion during a long day [36].  Given that the circadian modulator 

melatonin and Clock gene were shown to be linked to the regulation of PRL 

secretion via the function of BMP-4 [20], a new interaction between BMP-4 and 

orexin signaling might also be involved in control of the circadian profile of PRL 

secretion. 

BMPs were originally recognized as factors for bone formation, but many 

physiological actions of BMPs in various endocrine tissues, including the ovary, 

pituitary, adrenal and thyroid, have been revealed [37, 38].  We earlier reported 

that rat lactotrope GH3 cells express BMP ligands including BMP-4 and -6, BMP 

type I (ALK-2, -3 and -4) and type II (ActRII, ActRIIB and BMPRII) receptors, and 

Smads (Smad1 to 8) [26].  We previously found that the BMP system is involved 

in PRL regulation by somatostatin analogs [19].  In addition, we reported that 

melatonin, related to the formation of circadian and seasonal rhythms, 

suppressed PRL production by inhibiting Smad signaling and cAMP synthesis 

[21].  BMPs have also been shown to be linked to follicle-stimulating hormone 
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(FSH) and luteinizing hormone secretion in gonadotropes cells [31, 39-42] and to 

the regulation of adrenocorticotropin produced by corticotrope cells [16, 43]. 

Orexins were originally identified as neuropeptides in the hypothalamus, 

and attention has been paid to the localization where the orexin ligands can be 

produced and supplied for the pituitary.  Preproorexin mRNA was not detected 

in the rat pituitary, as previously reported [33]; however, orexin nerve fibers and 

orexin ligands were abundantly expressed in the rat median eminence and 

posterior lobe of the pituitary [9].  Immunofluorence analyses demonstrated the 

presence of both orexin A and orexin B in the human pituitary, wherein orexin A 

was distributed diffusely in the anterior pituitary and detected in more than 80% 

of lactotrope cells, and orexin B was found in all corticotrope cells. [44].  The 

existence of a low concentration of orexin A in human plasma has also been 

reported, and the levels apt to be affected by alteration of the energy status and 

body composition [4].  These results indicate the existence of circulating orexin 

from the hypothalamus via the pituitary portal artery or other peripheral tissues, 

although the source of orexin ligands remains unknown. 

The present study demonstrated a physiological interaction of the orexin 

system and BMP signaling in lactotrope cells.  Expression profiling analysis 

indicated that BMP-Smad signaling is one of the pathways regulated by orexin 

signaling [45].  In this regard, a novel effect of orexin on steroidogenesis of rat 

granulosa cells was uncovered by our recent approach [32].  It was found in that 

study that orexin A suppressed Smad-signaling by suppressing BMP receptors 

and by upregulating Smad6/7, which led to enhancement of FSH-induced 

progesterone synthesis [32].  Those findings are similar to the results of the 
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present study, implying that a functional link between the effects of orexin and 

BMPR signaling plays a key role in regulating hormonal homeostasis in various 

tissues.  Considering that orexin A exerted inhibitory effects on BMP-4-induced 

PRL expression, orexin might also contribute to the formation of diurnal rhythm 

involving PRL secretion through regulation of BMP-4 activity in an in vivo situation.  

In the present study, a putative signaling of OX1R was indicated to be the P38-

MAPK pathway based on the results of chemical inhibition experiments.  

However, the detailed mechanism by which OX1R activation suppresses BMP-

4-induced PRL expression remains uncertain, and other pathways including PLC, 

PKC and intracellular Ca++ induction could also be involved in this activity [3]. 

Collectively, the results of the present study suggest that orexin A has an 

inhibitory role in PRL synthesis in the presence of PRL secretory factors.  This 

may also be associated with circadian secretion of PRL.  The results suggested 

that orexin plays a functional role as a modulator for BMP-4 activity that can 

facilitate PRL secretion (Fig. 5).  From a clinical viewpoint, the findings may be 

applicable to treatment of prolactinomas, the most frequent functioning pituitary 

adenomas.  Although dopamine agonists are widely and effectively used to treat 

most prolactinomas, some cases are resistant to treatment and some may recur 

[46].  Control of the endogenous BMP system that induces PRL secretion and 

an attempt to upregulate endogenous orexin activity might be a possible strategy 

for controlling prolactinomas.  
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Figure Legends: 
 

Fig. 1. Expression of orexin receptors and effect of orexin A on PRL 

expression induced by FSK in GH3 cells.  A) The expression of mRNAs 

encoding OX1R, OX2R, BMP-4 and RPL19 was examined by RT-PCR in GH3 

cells compared with rat whole pituitary tissues.  MM: molecular weight marker.  

B) After preculture, GH3 cells (1 × 105 cells/well) were treated with forskolin (FSK) 

and orexin A (ORX) in serum-free media.  After 24-h culture, total cellular RNA 

was extracted and the mRNA expression levels of PRL were quantified by qPCR.  

The expression levels of target genes were standardized by the RPL19 level in 

each sample.  C) After preculture, cells (5  104 cells/well) were treated with the 

combination of ORX and FSK in serum-free media containing 0.1 mM of IBMX.  

After 24-h culture, the supernatants of culture media were collected and cAMP 

levels were determined using ELISA.  Results are shown as means ± SEM of 

data from at least three independent experiments with triplicated samples (B: 

n=9; C: n=6).  Statistical analysis was performed by ANOVA.  P values <0.05 

were accepted as statistically significant.  Values with different superscript 

letters are significantly different at P < 0.05. 

 

Fig. 2. Effects of orexin A on BMP-4-induced PRL expression and 

involvement of endogenous BMP action in GH3 cells.  A, C, D) After 

preculture, GH3 cells (1 × 105 cells/well) were treated with ORX, BMP-4, FSK, 

and various signal inhibitors, LDN193189 (LDN), dorsomorphin (Dor), U0126, 

SB203580, SP600125 and H-89, in serum-free media.  After 24-h culture, total 
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cellular RNA was extracted and the mRNA expression levels of PRL were 

quantified by qPCR.  The expression levels of target genes were standardized 

by the RPL19 level in each sample.  B) After preculture, cells (5  104 cells/well) 

were treated with ORX and BMP-4 in serum-free media containing 0.1 mM of 

IBMX.  After 24-h culture, supernatants of the culture media were collected, and 

cAMP levels were determined using ELISA.  Results are shown as means ± 

SEM of data from at least three independent experiments with triplicated samples 

(A: n=14; B: n=6; C: n=9; D: n=15).  Statistical analysis was performed by 

ANOVA (A, B, D) and unpaired t-test (C).  P values <0.05 were accepted as 

statistically significant.  Values with different superscript letters are significantly 

different at P < 0.05.  **P < 0.01 and *P < 0.05 vs. corresponding control groups, 

and #P < 0.05 vs. BMP-4-treated group. 

 

Fig. 3. Effects of orexin A on BMP-receptor signaling in GH3 cells.  A) GH3 

cells (1 × 105 cells/well) were pretreated with ORX in serum-free media for 24 h.  

After 2-h stimulation with BMP-4, the cell lysates were subjected to immunoblot 

(IB) analysis using antibodies that detect pSmad1/5/9, tSmad1 and actin.  B, C) 

Cells (1  105 cells/well) were treated with BMP-4, ORX, a dual ORX receptor 

antagonist (DORA-12), and an OX1R-selective antagonist (SB408124) in serum-

free conditions for 24 h.  Total cellular RNAs were extracted and the mRNA 

levels of Id-1 and OX1R were examined by qPCR.  The expression levels of 

target genes were standardized by the RPL19 level in each sample.  Results are 

shown as means ± SEM of data from at least three independent experiments with 

triplicated samples (A: n=7; B: n=15; C: n=11).  Statistical analysis was 
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performed by ANOVA (A, B) and unpaired t-test (C).  P values <0.05 were 

accepted as statistically significant.  Values with different superscript letters are 

significantly different at P < 0.05.  *P < 0.05 vs. between the indicated groups.  

 

Fig. 4. Effects of orexin A on the expression of genes involved in BMP-

receptor signaling in GH3 cells.  GH3 cells (1 × 105 cells/well) were treated 

with ORX (A) and the combination of ORX and BMP-4 (B).  After 24-h culture, 

total cellular RNAs were extracted and the mRNA levels of ALK-2, ALK-3, BMPRII 

(A), Smad6 and Smad7 (B) were examined by qPCR.  The expression levels of 

target genes were standardized by the RPL19 level in each sample.  Results are 

shown as means ± SEM of data from at least three independent experiments with 

triplicated samples (A: n=12; B: n=15).  Statistical analysis was performed by 

the unpaired t-test (A) and ANOVA (B).  P values <0.05 were accepted as 

statistically significant.  *P < 0.05 vs. between the indicated groups.  Values 

with different superscript letters are significantly different at P < 0.05.  

 

Fig. 5. Functional interrelationship between orexin A and BMP-4 activities 

in pituitary lactotrope cells.  Orexin A inhibited BMP-4-induced PRL 

expression via OX1R on GH3 cells.  Orexin A also suppressed FSK-induced 

PRL expression by inhibiting endogenous BMP action.  Orexin A inhibited BMP-

4-induced Smad1/5/9 phosphorylation and Id-1 transcription by downregulating 

ALK-3 and by upregulating BMP-4-induced Smad6/7, while BMP-4 suppressed 

OX1R expression.  Thus, orexin A plays an inhibitory role in PRL production 
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through suppression of BMPR signaling including endogenous BMP-4 action.  

AC, adenylyl cyclase; BMPRs, BMP receptors; FSK, forskolin. 

 

 

 


