CESÀRO ORLICZ SEQUENCE SPACES AND THEIR KÖTHE-TOEPLITZ DUALS

KULDIP RAJ, RENU ANAND AND SURUCHI PANDOH

ABSTRACT. The present paper focus on introducing certain classes of Cesàro Orlicz sequences over n-normed spaces. We study some topological and algebraic properties of these spaces. Further, we examine relevant relations among the classes of these sequences. We show that these spaces are made n-BK-spaces under certain conditions. Finally, we compute the Köthe-Toeplitz duals of these spaces.

1. Introduction and Preliminaries

Let w, ℓ_p , ℓ_1 , c and c_0 represent the spaces of all, bounded, p-absolutely summable, absolutely summable, convergent and null sequences $x = (x_k)$ with complex terms, respectively. The zero element of a normed linear space is denoted by θ .

The space of all complex sequences $\ell_p(0 such that <math>\sum_k |x_k|^p < \infty$, known as the space of p-absolutely summable sequences. The space ℓ_p for

known as the space of *p*-absolutely summable sequences. The space ℓ_p for $p \geq 1$ is complete under the norm defined by $||x|| = (\sum_k |x_k|^p)^{\frac{1}{p}}$ and for

$$0 , ℓ_p is a complete *p*-normed space, *p*-normed by $||x|| = \sum_{k=1}^{\infty} |x_k|^p$.$$

A BK-space $(X, \|.\|)$ is a Banach space of complex sequences $x = (x_k)$, in which the co-ordinate maps are continuous, i.e., $|x_k^n - x_k| \to 0$, whenever $||x^n - x|| \to 0$ as $n \to \infty$, where $x^n = (x_k^n)$ for all $n \in \mathbb{N}$ (see [33]).

Let $(X, \|.\|)$ be a normed linear space and λ is a scalar-valued sequence space, then the vector-valued sequence space or X-valued sequence space $\lambda(X)$ is defined by

$$\lambda(X) = \{(x_k) : x_k \in X \text{ for all } k \in \mathbb{N} \text{ and } ||x|| \in \lambda\}.$$

Clearly, $\lambda(X)$ is a linear space under coordinatewise addition and scalar multiplication over the field of scalars of X. Similarly, if X is a Banach space, then $\ell_p(1 \leq p < \infty)$ is a Banach space with the norm given by

Mathematics Subject Classification. Primary 40A05, 46A20; Secondary 46D05, 46A45, 46E30.

Key words and phrases. Orlicz function, Musielak-Orlicz function, n-normed spaces, difference sequence spaces, Köthe-Toeplitz dual.

$$||x|| = (\sum_{k=1}^{\infty} ||x_k||^p)^{\frac{1}{p}}.$$

Cesàro sequence spaces Ces_p , $1 \le p < \infty$, were introduced for the first time in 1968 in connection with the problem of finding their duals, which was posed by the Dutch Mathematical Society [1]. Shiue [27] and Leibowitz [14] studied the basic properties of these spaces. In 1974, Jagers [11] found the dual space of Ces_p [15].

The Cesàro sequence spaces is defined by

$$Ces_p = \left\{ x = (x_k) : ||x||_p = \left(\sum_{n=1}^{\infty} \frac{1}{n} \sum_{k=1}^n |x_k|^p \right)^{\frac{1}{p}} < \infty, \ 1 \le p < \infty \right\}$$

and

$$Ces_{\infty} = \left\{ x = (x_k) : ||x||_{\infty} = \sup_{n} \frac{1}{n} \sum_{k=1}^{n} |x_k| < \infty \right\}.$$

It was observed that $\ell_p \subset Ces_p(1 is strict, although it does not hold for <math>p = 1$. Nag and Lee [22] defined and studied the Cesàro sequence space X_p of non-absolute type as follows:

$$X_p = \left\{ x = (x_k) : \|x\|_p = \left(\sum_{n=1}^{\infty} \left| \frac{1}{n} \sum_{k=1}^n x_k \right|^p \right)^{\frac{1}{p}} < \infty, \ 1 \le p < \infty \right\}$$

and

$$X_{\infty} = \left\{ x = (x_k) : ||x||_{\infty} = \sup_{n} \left| \frac{1}{n} \sum_{k=1}^{n} x_k \right| < \infty \right\}.$$

The inclusion $Ces_p \subset X_p$, $1 \leq p < \infty$ is strict. Orhan [23] defined and studied the Cesàro difference sequence spaces $X_p(\Delta)$ and $X_{\infty}(\Delta)$ by replacing $x = (x_k)$ with $\Delta x = (\Delta x_k) = (x_k - x_{k+1}), k = 1, 2, ...$ and proved that for $1 \leq p < \infty$, the inclusions $X_p \subset X_p(\Delta)$ and $X_{\infty} \subset X_{\infty}(\Delta)$ are strict. In fact, Orhan [23] used C_p instead of $X_p(\Delta)$ and C_{∞} instead of $X_{\infty}(\Delta)$. Further, Orhan [23] also defined and studied the following sequence spaces

$$O_p(\Delta) = \left\{ x = (x_k) : \sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{k=1}^n |\Delta x_k| \right)^p < \infty, \ 1 \le p < \infty \right\}$$

and

$$O_{\infty}(\Delta) = \left\{ x = (x_k) : \sup_{n \ge 1} \frac{1}{n} \sum_{k=1}^n |\Delta x_k| < \infty \right\}.$$

He established that for $1 \leq p < \infty$, the inclusions $O_p(\Delta) \subset X_p(\Delta)$ and $Ces_p \subset O_p(\Delta)$ are strict.

Mursaleen et al. [19] studied the Cesàro difference sequence spaces which

were defined as

$$X_p(\Delta^2) = \left\{ x = (x_k) : \sum_{n=1}^{\infty} \left| \frac{1}{n} \sum_{k=1}^n \Delta^2 x_k \right|^p < \infty, \ 1 \le p < \infty \right\}$$

and

$$X_{\infty}(\Delta^2) = \left\{ x = (x_k) : \sup_{n \ge 1} \left| \frac{1}{n} \sum_{k=1}^n \Delta^2 x_k \right| < \infty \right\},\,$$

where $\Delta^2 x_k = \Delta x_k - \Delta x_{k+1}$.

For uniformity of the literature, henceforth, we shall write C_p instead of X_p and C_{∞} instead of X_{∞} .

Let E and F be two sequence spaces. Then the F dual of E is defined as $E^F = \{(x_k) \in w : (x_k y_k) \in F \text{ for all } (y_k) \in E\}.$

For $F = \ell_1$, the dual is termed as α -dual (Köthe-Toeplitz dual) of E and denoted by E^{α} . If $X \subset Y$, then $Y^{\alpha} \subset X^{\alpha}$.

For more details about Cesàro-type summable spaces and Köthe-Toeplitz dual one can refer to ([3], [20], [21], [22], [28], [29], [31], [32]).

The concept of 2-normed spaces was initially developed by Gähler [6] in the mid of 1960's, while that of n-normed spaces one can see in Misiak [18]. Since then, many others have studied this concept and obtained various results, see Gunawan ([7], [8]) and Gunawan and Mashadi [9]. Let $n \in \mathbb{N}$ and X be a linear space over the field of real numbers \mathbb{R} of dimension d, where $d \geq n \geq 2$. A real valued function $||\cdot, \cdots, \cdot||$ on X^n satisfying the following four conditions:

- (1) $||(x_1, x_2, \dots, x_n)|| = 0$ if and only if x_1, x_2, \dots, x_n are linearly dependent in X,
- (2) $||(x_1, x_2, \dots, x_n)||$ is invariant under permutation,
- (3) $||(\alpha x_1, x_2, \dots, x_n)|| = |\alpha| ||(x_1, x_2, \dots, x_n)||$ for any $\alpha \in \mathbb{R}$, and
- $(4) ||(x+x',x_2,\cdots,x_n)|| \le ||(x,x_2,\cdots,x_n)|| + ||(x',x_2,\cdots,x_n)||$

is called an *n*-norm on X and the pair $(X, ||\cdot, \cdots, \cdot||)$ is called an *n*-normed space over the field \mathbb{R} .

As an example, we may take $X = \mathbb{R}^n$ being equipped with the *n*-norm $||(x_1, x_2, \dots, x_n)||_E$ = the volume of the *n*-dimensional parallelopiped spanned by the vectors x_1, x_2, \dots, x_n which may be given explicitly by the formula

$$||(x_1, x_2, \cdots, x_n)||_E = |\det(x_{ij})|,$$

where $x_i = (x_{i1}, x_{i2}, \dots, x_{in}) \in \mathbb{R}^n$ for each $i = 1, 2, \dots, n$.

Let $(X, ||\cdot, \dots, \cdot||)$ be an n-normed space of dimension $d \geq n \geq 2$ and $\{a_1, a_2, \dots, a_n\}$ be linearly independent set in X. Then the following function $||\cdot, \dots, \cdot||_{\infty}$ on X^{n-1} as defined by

$$||(x_1, x_2, \cdots, x_{n-1})||_{\infty} = \max\{||(x_1, x_2, \cdots, x_{n-1}, a_i)|| : i = 1, 2, \cdots, n\}$$

is called an (n-1)-norm on X with respect to $\{a_1, a_2, \cdots, a_n\}$. A sequence (x_k) in an n-normed space $(X, ||\cdot, \cdots, \cdot||)$ is said to *converge* to some $L \in X$ if

$$\lim_{k \to \infty} ||(x_k - L, z_1, \dots, z_{n-1})|| = 0 \text{ for every } z_1, \dots, z_{n-1} \in X.$$

A sequence (x_k) in an *n*-normed space $(X, ||\cdot, \cdots, \cdot||)$ is said to be *Cauchy* if

$$\lim_{k,p\to\infty} ||(x_k - x_p, z_1, \dots, z_{n-1})|| = 0 \text{ for every } z_1, \dots, z_{n-1} \in X.$$

If every Cauchy sequence in X converges to some $L \in X$, then X is said to be *complete* with respect to the n-norm. A complete n-normed space is said to be n-Banach space. For more details about sequence spaces and n-normed spaces (see [2], [24], [25], [26]) and references therein.

An Orlicz function $M: [0, \infty) \to [0, \infty)$ is a continuous, non-decreasing and convex such that M(0) = 0, M(x) > 0 for x > 0 and $M(x) \to \infty$ as $x \to \infty$. If convexity of Orlicz function is replaced by $M(x+y) \le M(x) + M(y)$, then this function is called modulus function. Lindenstrauss and Tzafriri [13] used the idea of Orlicz function to define the following sequence space,

$$\ell_M = \left\{ x = (x_k) \in w : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) < \infty, \text{ for some } \rho > 0 \right\}$$

is known as an Orlicz sequence space. The space ℓ_M is a Banach space with the norm

$$||x|| = \inf \left\{ \rho > 0 : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) \le 1 \right\}.$$

A sequence $\mathcal{M}=(M_k)$ of Orlicz functions is said to be Musielak-Orlicz function (see [16], [17]). A Musielak-Orlicz function $\mathcal{M}=(M_k)$ is said to satisfy Δ_2 -condition if there exist constants a, K>0 and a sequence $c=(c_k)_{k=1}^{\infty}\in l_+^1$ (the positive cone of l^1) such that the inequality

$$M_k(2u) \le KM_k(u) + c_k$$

holds for all $k \in \mathbb{N}$ and $u \in \mathbb{R}^+$, whenever $M_k(u) \leq a$.

The notion of difference sequence spaces was introduced by Kizmaz [12], who studied the difference sequence spaces $\ell_{\infty}(\Delta)$, $c(\Delta)$ and $c_0(\Delta)$. The notion was further generalized by Et and Çolak [4] by introducing the spaces $\ell_{\infty}(\Delta^m)$, $c(\Delta^m)$ and $c_0(\Delta^m)$. Let n, m be non-negative integers, then for Z = c, c_0 and ℓ_{∞} we have sequence spaces

$$Z(\Delta_n^m) = \{ x = (x_k) \in w : (\Delta_n^m x_k) \in Z \},$$

where $\Delta_n^m x = (\Delta_n^m x_k) = (\Delta_n^{m-1} x_k - \Delta_n^{m-1} x_{k+1})$ and $\Delta_n^0 = x_k$ for all $k \in \mathbb{N}$ which is equivalent to the following binomial representation

$$\Delta_n^m x_k = \sum_{v=0}^m (-1)^v \begin{pmatrix} m \\ v \end{pmatrix} x_{k+nv}.$$

Taking n = 1, we get the spaces $\ell_{\infty}(\Delta^m)$, $c(\Delta^m)$ and $c_0(\Delta^m)$ studied by Et and Çolak [4]. Taking n = m = 1, we get the spaces $\ell_{\infty}(\Delta)$, $c(\Delta)$ and $c_0(\Delta)$ introduced and studied by Kizmaz [12].

Let $(X, \|\cdot, \dots, \cdot\|)$ be an *n*-normed real linear space, w(n-X) denotes X-valued sequence space. Let $\mathcal{M} = (M_i)$ be a sequence of Orlicz functions and $u = (u_k)$ be a sequence of positive real numbers. Then we define the following sequence spaces for every nonzero $z_1, \dots, z_n \in X$;

$$C_p(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|) =$$

$$\left\{ (x_k) \in w(n-X) : \sum_{i=1}^{\infty} M_i \left(\left\| \frac{1}{i} \sum_{k=1}^{i} \frac{u_k \Delta_n^m x_k}{\rho}, z_1, ..., z_{n-1} \right\| \right)^p < \infty, \right.$$

for some
$$\rho > 0$$
,

$$C_{\infty}(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|) =$$

$$\left\{ (x_k) \in w(n-X) : \sup_i M_i \left(\left\| \frac{1}{i} \sum_{k=1}^i \frac{u_k \Delta_n^m x_k}{\rho}, z_1, ..., z_{n-1} \right\| \right) < \infty, \right\}$$

for some
$$\rho > 0$$
,

$$\ell_p(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|) =$$

$$\{(x_k) \in w(n-X) : \sum_{k=1}^{\infty} M_k \left(\left\| \frac{u_k \Delta_n^m x_k}{\rho}, z_1, ..., z_{n-1} \right\| \right)^p < \infty,$$

for some
$$\rho > 0$$
,

$$O_p(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|) =$$

$$\left\{ (x_k) \in w(n-X) : \sum_{i=1}^{\infty} M_i \left(\frac{1}{i} \sum_{k=1}^{i} \left\| \frac{u_k \Delta_n^m x_k}{\rho}, z_1, ..., z_{n-1} \right\| \right)^p < \infty, \right\}$$

for some
$$\rho > 0$$

and

$$O_{\infty}(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|) =$$

$$\left\{ (x_k) \in w(n-X) : \sup_i M_i \left(\frac{1}{i} \sum_{k=1}^i \left\| \frac{u_k \Delta_n^m x_k}{\rho}, z_1, ..., z_{n-1} \right\| \right) < \infty, \right.$$
for some $\rho > 0$.

Lemma 1.1. [30] (a) Let $1 \le p < \infty$. Then

(i) The space C_p is a Banach space, normed by

$$||x|| = \left(\sum_{i=1}^{\infty} \left|\frac{1}{i}\sum_{k=1}^{i} x_k\right|^p\right)^{\frac{1}{p}}.$$

(ii) The space O_p is a Banach space, normed by

$$||x|| = \left(\sum_{i=1}^{\infty} \frac{1}{i} \sum_{k=1}^{i} |x_k|^p\right)^{\frac{1}{p}}.$$

(iii) The space ℓ_p is a Banach space, normed by

$$||x|| = \left(\sum_{k=1}^{\infty} |x_k|^p\right)^{\frac{1}{p}}.$$

(b) (i) The space C_{∞} is a Banach space, normed by

$$||x|| = \sup_{i} \left| \frac{1}{i} \sum_{k=1}^{i} x_k \right|.$$

(ii) The space O_{∞} is a Banach space, normed by

$$||x|| = \sup_{i} \frac{1}{i} \sum_{k=1}^{i} |x_k|.$$

Definition 1. An *n*-BK-space $(X, \|., ..., .\|)$ is an *n*-Banach space of real sequences $x = (x_k)$ in which the co-ordinate maps are continuous.

Let us consider a few special cases of the above sequence spaces:

(i) If
$$M_i(x) = x$$
 for all $i \in N$, then we have
$$C_p(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|) = C_p(u, \Delta_n^m, \|\cdot, \cdots, \cdot\|), C_{\infty}(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|)$$

$$= C_{\infty}(u, \Delta_n^m, \|\cdot, \cdots, \cdot\|), \ell_p(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|) = \ell_p(u, \Delta_n^m, \|\cdot, \cdots, \cdot\|),$$

$$O_p(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|) = O_p(u, \Delta_n^m, \|\cdot, \cdots, \cdot\|) \text{ and } O_{\infty}(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|)$$

$$= O_{\infty}(u, \Delta_n^m, \|\cdot, \cdots, \cdot\|).$$

(ii) If $u = (u_k) = 1$ for all $k \in \mathbb{N}$, then we have

$$\begin{split} &C_p(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|) = C_p(\mathcal{M}, \Delta_n^m, \|\cdot, \cdots, \cdot\|), C_{\infty}(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|) \\ &= C_{\infty}(\mathcal{M}, \Delta_n^m, \|\cdot, \cdots, \cdot\|), \ell_p(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|) = \ell_p(\mathcal{M}, \Delta_n^m, \|\cdot, \cdots, \cdot\|), \\ &O_p(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|) = O_p(\mathcal{M}, \Delta_n^m, \|\cdot, \cdots, \cdot\|) \text{ and } O_{\infty}(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|) \\ &= O_{\infty}(\mathcal{M}, \Delta_n^m, \|\cdot, \cdots, \cdot\|). \end{split}$$

The following inequality will be used throughout the paper. Let $p = (p_k)$ be a sequence of positive real numbers with $0 < p_k \le \sup_k p_k = H$ and let $K = \max\{1, 2^{H-1}\}$. Then for the factorable sequences (a_k) and (b_k) in the complex plane, we have

$$(1.1) |a_k + b_k|^{p_k} \le K(|a_k|^{p_k} + |b_k|^{p_k}).$$

Also $|a_k|^{p_k} \le \max\{1, |a|^H\}$ for all $a \in \mathbb{C}$.

The main purpose of this paper is to introduce and study certain classes of multiplier sequences of Cesàro-type defined by a sequence of Orlicz functions over n-normed space. We make an effort to study completeness and some interesting inclusion relations between these spaces. Finally, we compute the Köthe-Toeplitz duals of these spaces.

2. Main Results

Theorem 2.1. Let $\mathcal{M} = (M_i)$ be a sequence of Orlicz functions and $u = (u_k)$ be a sequence of positive real numbers. Then the classes of sequences $C_p(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|), C_{\infty}(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|), \ell_p(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|), O_p(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|)$ and $O_{\infty}(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|)$ for $1 \leq p < \infty$ are linear spaces over the real field \mathbb{R} .

Proof. We shall prove the result for the space $O_p(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|)$ and for the other spaces, it will follow on applying similar arguments. Suppose $x = (x_k), y = (y_k) \in O_p(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|)$ and $\alpha, \beta \in \mathbb{R}$. Then there exist positive numbers ρ_1, ρ_2 such that

$$\sum_{i=1}^{\infty} M_i \left(\frac{1}{i} \sum_{k=1}^{i} \left\| \frac{u_k \Delta_n^m x_k}{\rho_1}, z_1, ..., z_{n-1} \right\| \right)^p < \infty, \text{ for some } \rho_1 > 0$$

and

$$\sum_{i=1}^{\infty} M_i \left(\frac{1}{i} \sum_{k=1}^{i} \left\| \frac{u_k \Delta_n^m y_k}{\rho_2}, z_1, ..., z_{n-1} \right\| \right)^p < \infty, \text{ for some } \rho_2 > 0.$$

Let $\rho_3 = \max(2|\alpha|\rho_1, 2|\beta|\rho_2)$. Since $\mathcal{M} = (M_i)$ is a non-decreasing and convex so by using inequality (1.1), we have

$$\begin{split} &\sum_{i=1}^{\infty} M_{i} \Big(\frac{1}{i} \sum_{k=1}^{i} \Big\| \frac{\alpha u_{k} \Delta_{n}^{m} x_{k} + \beta u_{k} \Delta_{n}^{m} y_{k}}{\rho_{3}}, z_{1}, ..., z_{n-1} \Big\| \Big)^{p} \\ &\leq \sum_{i=1}^{\infty} M_{i} \Big(\frac{1}{i} |\alpha| \sum_{k=1}^{i} \Big\| \frac{u_{k} \Delta_{n}^{m} x_{k}}{\rho_{3}}, z_{1}, ..., z_{n-1} \Big\| + |\beta| \sum_{k=1}^{i} \Big\| \frac{u_{k} \Delta_{n}^{m} y_{k}}{\rho_{3}}, z_{1}, ..., z_{n-1} \Big\| \Big)^{p} \\ &\leq K \sum_{i=1}^{\infty} M_{i} \Big(\frac{1}{i} \sum_{k=1}^{i} \Big\| \frac{u_{k} \Delta_{n}^{m} x_{k}}{\rho_{1}}, z_{1}, ..., z_{n-1} \Big\| \Big)^{p} \\ &+ K \sum_{i=1}^{\infty} M_{i} \Big(\frac{1}{i} \sum_{k=1}^{i} \Big\| \frac{u_{k} \Delta_{n}^{m} y_{k}}{\rho_{2}}, z_{1}, ..., z_{n-1} \Big\| \Big)^{p} \\ &< \infty. \end{split}$$

Thus, $\alpha x + \beta y \in O_p(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|)$. This proves that $O_p(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|)$ $\|\cdot, \cdots, \cdot\|$) is a linear space.

Theorem 2.2. Let $\mathcal{M} = (M_i)$ be a sequence of Orlicz functions and u = (u_k) be a sequence of positive real numbers. Let $1 \leq p < \infty$ and the base space X is an n-Banach space. Then

(i) The space $C_p(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|)$ is an n-Banach space, n-normed by

 $||x^1, x^2, \cdots, x^n||_{C_n(\mathcal{M}, u, \Delta_x^m)} = 0$ if x^1, x^2, \cdots, x^n are linearly dependent and $= \sum_{k=1}^{m} \|x_k, z_1, \cdots, z_{n-1}\| + \left(\sum_{i=1}^{\infty} M_i \left\| \frac{1}{i} \sum_{k=1}^{i} \frac{u_k \Delta_n^m x_k}{\rho}, z_1, ..., z_{n-1} \right\|^p\right)^{\frac{1}{p}}$

for every $z_1, ..., z_{n-1} \in X$ if x^1, x^2, \cdots, x^n are linearly independent. (ii) The space $O_p(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|)$ is an n-Banach space, n-normed by

 $||x^1, x^2, \cdots, x^n||_{O_n(\mathcal{M}, u, \Delta^m)} = 0$ if x^1, x^2, \cdots, x^n are linearly dependent and $= \sum_{k=1}^{m} \|x_k, z_1, \cdots, z_{n-1}\| + \left(\sum_{i=1}^{\infty} M_i \frac{1}{i} \sum_{k=1}^{i} \left\| \frac{u_k \Delta_n^m x_k}{\rho}, z_1, ..., z_{n-1} \right\|^p \right)^{\frac{1}{p}}$

for every $z_1, ..., z_{n-1} \in X$ if x^1, x^2, \cdots, x^n are linearly independent. (iii) The space $\ell_p(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|)$ is an n-Banach space, n-normed by

 $||x^1, x^2, \cdots, x^n||_{\ell_n(\mathcal{M}, u, \Delta_n^m)} = 0$ if x^1, x^2, \cdots, x^n are linearly dependent and $= \sum_{k=1}^{m} \|x_k, z_1, \cdots, z_{n-1}\| + \left(\sum_{k=1}^{\infty} M_k \left\| \frac{u_k \Delta_n^m x_k}{\rho}, z_1, ..., z_{n-1} \right\|^p\right)^{\frac{1}{p}}$

for every $z_1, ..., z_{n-1} \in X$ if $x^1, x^2, ..., x^n$ are linearly independent. (b) (i) The space $C_{\infty}(\mathcal{M}, u, \Delta_n^m, \|\cdot, ..., \cdot\|)$ is an n-Banach space, n-normed

 $||x^1, x^2, \cdots, x^n||_{C_{\infty}(\mathcal{M}, u, \Delta_n^m)} = 0$ if x^1, x^2, \cdots, x^n are linearly dependent and

$$= \sum_{k=1}^{m} \|x_k, z_1, \cdots, z_{n-1}\| + \sup_{i} M_i \left\| \frac{1}{i} \sum_{k=1}^{i} \frac{u_k \Delta_n^m x_k}{\rho}, z_1, ..., z_{n-1} \right\|,$$

for every $z_1, ..., z_{n-1} \in X$ if $x^1, x^2, ..., x^n$ are linearly independent.

(ii) The space $O_{\infty}(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|)$ is an n-Banach space, n-normed by

 $\|x^1,x^2,\cdots,x^n\|_{O_\infty(\mathcal{M},u,\Delta_n^m)}=0$ if x^1,x^2,\cdots,x^n are linearly dependent and

$$= \sum_{k=1}^{m} \|x_k, z_1, \cdots, z_{n-1}\| + \sup_{i} M_i \frac{1}{i} \sum_{k=1}^{i} \left\| \frac{u_k \Delta_n^m x_k}{\rho}, z_1, ..., z_{n-1} \right\|,$$

for every $z_1, ..., z_{n-1} \in X$ if x^1, x^2, \cdots, x^n are linearly independent.

Proof. It is easy to show that the spaces $C_p(\mathcal{M}, u, \Delta_n^m, \|\cdot, \dots, \cdot\|)$, $O_p(\mathcal{M}, u, \Delta_n^m, \|\cdot, \dots, \cdot\|)$, $\ell_p(\mathcal{M}, u, \Delta_n^m, \|\cdot, \dots, \cdot\|)$, $C_{\infty}(\mathcal{M}, u, \Delta_n^m, \|\cdot, \dots, \cdot\|)$ and $O_{\infty}(\mathcal{M}, u, \Delta_n^m, \|\cdot, \dots, \cdot\|)$ are *n*-normed spaces under the *n*-norm as defined above.

Now, we prove the completeness for the space $C_{\infty}(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|)$ only. The other parts can be proved in a similar way.

Let $(x^s)_{s=1}^{\infty}$ be a Cauchy sequence in $C_{\infty}(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|)$, where $x^s = (x_i^s) = (x_1^s, x_2^s, \ldots) \in C_{\infty}(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|)$ for each $s \in N$. Let $\epsilon > 0$ be given. Then there exists a positive integer n_0 such that

$$||x^s - x^t, w^2, ..., w^n||_{C_{\infty}(\mathcal{M}, u, \Delta_n^m)} < \epsilon$$

for all $s, t \geq n_0$ and for every $w^2, ..., w^n \in C_{\infty}(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|)$, we have

$$\sum_{k=1}^{m} \|x_k^s - x_k^t, z_1, ..., z_{n-1}\| + \sup_{i} M_i \left\| \frac{1}{i} \sum_{k=1}^{i} \frac{u_k \Delta_n^m (x_k^s - x_k^t)}{\rho}, z_1, ..., z_{n-1} \right\| < \epsilon$$

for all $s, t \ge n_0$ and for every $z_1, ..., z_{n-1} \in X$. This implies

$$\sum_{k=1}^{m} \|x_k^s - x_k^t, z_1, ..., z_{n-1}\| < \epsilon$$

and
$$\sup_{i} M_{i} \left\| \frac{1}{i} \sum_{k=1}^{i} \frac{u_{k} \Delta_{n}^{m} (x_{k}^{s} - x_{k}^{t})}{\rho}, z_{1}, ..., z_{n-1} \right\| < \epsilon$$

for all $s, t \ge n_0$ and for every $z_1, ..., z_{n-1} \in X$. Hence, $||x_k^s - x_k^t, z_1, ..., z_{n-1}|| < \epsilon$ for all k = 1, 2, ..., m and for every $z_1, ..., z_{n-1} \in X$.

Therefore, (x_k^s) is a Cauchy sequence for all k = 1, 2, ..., m in X, an n-Banach space.

Hence, (x_k^s) converges in X for all k = 1, 2, ..., m. Let $\lim_{s \to \infty} x_k^s = x_k$ for all k = 1, 2, ..., m. Next, we have

$$\sup_{i} M_{i} \left\| \frac{1}{i} \sum_{k=1}^{i} \frac{u_{k} \Delta_{n}^{m} (x_{k}^{s} - x_{k}^{t})}{\rho}, z_{1}, ..., z_{n-1} \right\| < \epsilon,$$

for all $s,t \geq n_0$ and for every $z_1,...,z_{n-1} \in X$. This implies for every $z_1,...,z_{n-1} \in X$

$$M_i \left\| \frac{1}{i} \sum_{k=1}^i \frac{u_k \Delta_n^m (x_k^s - x_k^t)}{\rho}, z_1, ..., z_{n-1} \right\| < \epsilon,$$

for all $s, t \geq n_0$ and $i \in N$.

Thus, $(\Delta_n^m x_k^s)$ is a Cauchy sequence in $C_{\infty}(\mathcal{M}, u, \|\cdot, \cdots, \cdot\|)$ which is complete. Hence, $(\Delta_n^m x_k^s)$ converges for each $k \in \mathbb{N}$.

Let $\lim_{s\to\infty} \Delta_n^m x_k^s = y_k$ for each $k \in \mathbb{N}$. Let k=1, we have

(2.1)
$$\lim_{s \to \infty} \Delta_n^m x_1^s = \lim_{s \to \infty} \sum_{v=0}^m (-1)^v \binom{m}{v} x_{1+nv} = y_1,$$

we have

(2.2)
$$\lim_{s \to \infty} x_k^s = x_k, \text{ for } k = 1 + nv, \text{ for } v = 1, 2, ..., m - 1.$$

Thus, from equation (2.1) and (2.2), we have $\lim_{s\to\infty} x_{1+m}^s$ exists. Let $\lim_{s\to\infty} x_{1+m}^s = x_{1+m}$. Proceeding in this way inductively $\lim_{s\to\infty} x_k^s = x_k$ exists for each $k \in N$. Now, for every $z_1, ..., z_{n-1} \in X$

$$\lim_{t} \sum_{k=1}^{m} \|x_{k}^{s} - x_{k}^{t}, z_{1}, ..., z_{n-1}\| = \sum_{k=1}^{m} \|x_{k}^{s} - x_{k}, z_{1}, ..., z_{n-1}\| < \epsilon,$$

for all $s \ge n_0$. Again, using the continuity of *n*-norm, we find that for every $z_1, ..., z_{n-1} \in X$

$$M_i \left\| \frac{1}{i} \sum_{k=1}^{i} \frac{u_k \Delta_n^m x_k^s}{\rho} - \lim_{t \to \infty} \frac{u_k \Delta_n^m x_k^t}{\rho}, z_1, ..., z_{n-1} \right\| < \epsilon,$$

for all $s \geq n_0$ and $i \in N$. Hence, for every $z_1, ..., z_{n-1} \in X$

$$\sup_{i} M_{i} \left\| \frac{1}{i} \sum_{k=1}^{i} \frac{u_{k} \Delta_{n}^{m} x_{k}^{s} - u_{k} \Delta_{n}^{m} x_{k}}{\rho}, z_{1}, ..., z_{n-1} \right\| < \epsilon \text{ for all } s \ge n_{0}.$$

Thus, for every $w^2, ..., w^n \in C_{\infty}(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|)$

$$||x^s - x, w^2, ..., w^n||_{C_{\infty}(\mathcal{M}, u, \Delta_n^m)} < 2\epsilon$$
 for all $s \ge n_0$.

Hence, $(x^s - x) \in C_{\infty}(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|)$. Since $C_{\infty}(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|)$ is a linear space, so we have for all $s \geq n_0, x = x^s - (x^s - x) \in C_{\infty}(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|)$. Hence, $C_{\infty}(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|)$ is complete and as such is an n-Banach space.

Corollary 2.3. The spaces $C_p(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|)$, $C_{\infty}(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|)$, $\ell_p(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|)$, $O_p(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|)$ and $O_{\infty}(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|)$ for $1 \leq p < \infty$ are n-BK-spaces if the base space X is an n-Banach space.

Theorem 2.4. Let $\mathcal{M} = (M_i)$ be a sequence of Orlicz functions and $u = (u_k)$ be a sequence of positive real numbers. Then $Z(\mathcal{M}, u, \Delta_n^{m-1}, \|\cdot, \cdots, \cdot\|) \subset Z(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|)$ (in general $Z(\mathcal{M}, u, \Delta_n^i, \|\cdot, \cdots, \cdot\|) \subset Z(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|)$ for i = 1, 2, ..., m-1) for $Z = C_p, C_p, \ell_p, C_\infty$ and C_∞ .

Proof. We shall prove the result for the space $Z = C_p$ only and others can be proved in the similar way.

Let $x = (x_k) \in C_p(\mathcal{M}, u, \mathring{\Delta}_n^{m-1}, \|\cdot, \dots, \cdot\|), 1 \leq p < \infty$. Then for every nonzero $z_1, \dots, z_{n-1} \in X$,

(2.3)
$$\sum_{i=1}^{\infty} M_i \left(\left\| \frac{1}{i} \sum_{k=1}^{i} \frac{u_k \Delta_n^{m-1} x_k}{\rho}, z_1, ..., z_{n-1} \right\| \right)^p < \infty.$$

Now, we have for every nonzero $z_1,...,z_{n-1} \in X$

$$M_{i}\left(\left\|\frac{1}{i}\sum_{k=1}^{i}\frac{u_{k}\Delta_{n}^{m}x_{k}}{\rho}, z_{1}, ..., z_{n-1}\right\|\right)$$

$$\leq M_{i}\left(\left\|\frac{1}{i}\sum_{k=1}^{i}\frac{u_{k}\Delta_{n}^{m-1}x_{k}}{\rho}, z_{1}, ..., z_{n-1}\right\|\right)$$

$$+ M_{i}\left(\left\|\frac{1}{i}\sum_{k=1}^{i}\frac{u_{k}\Delta_{n}^{m-1}x_{k+1}}{\rho}, z_{1}, ..., z_{n-1}\right\|\right).$$

It is known that for $1 \le p < \infty$, $|a + b|^p \le 2^p (|a|^p + |b|^p)$. Hence, for $1 \le p < \infty$, $M_i \Big(\Big\| \frac{1}{i} \sum_{k=1}^{i} \frac{u_k \Delta_n^m x_k}{\rho}, z_1, ..., z_{n-1} \Big\| \Big)^p$

$$\leq 2^{p} \Big\{ M_{i} \Big(\Big\| \frac{1}{i} \sum_{k=1}^{i} \frac{u_{k} \Delta_{n}^{m-1} x_{k}}{\rho}, z_{1}, ..., z_{n-1} \Big\| \Big)^{p} + M_{i} \Big(\Big\| \frac{1}{i} \sum_{k=1}^{i} \frac{u_{k} \Delta_{n}^{m-1} x_{k+1}}{\rho}, z_{1}, ..., z_{n-1} \Big\| \Big)^{p} \Big\}.$$

Then for each positive integer r, we get

$$\begin{split} \sum_{i=1}^{r} M_{i} \Big(\Big\| \frac{1}{i} \sum_{k=1}^{i} \frac{u_{k} \Delta_{n}^{m} x_{k}}{\rho}, z_{1}, ..., z_{n-1} \Big\| \Big)^{p} \\ & \leq 2^{p} \Big\{ \sum_{i=1}^{r} M_{i} \Big(\Big\| \frac{1}{i} \sum_{k=1}^{i} \frac{u_{k} \Delta_{n}^{m-1} x_{k}}{\rho}, z_{1}, ..., z_{n-1} \Big\| \Big)^{p} \\ & + \sum_{i=1}^{r} M_{i} \Big(\Big\| \frac{1}{i} \sum_{k=1}^{i} \frac{u_{k} \Delta_{n}^{m-1} x_{k+1}}{\rho}, z_{1}, ..., z_{n-1} \Big\| \Big)^{p} \Big\}. \end{split}$$

Taking $r \to \infty$ and using equation (2.3), we get

$$\sum_{i=1}^{\infty} M_i \left(\left\| \frac{1}{i} \sum_{k=1}^{i} \frac{u_k \Delta_n^m x_k}{\rho}, z_1, ..., z_{n-1} \right\| \right)^p < \infty.$$

Thus, $C_p(\mathcal{M}, u, \Delta_n^{m-1}, \|\cdot, \cdots, \cdot\|) \subset C_p(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|)$ for $1 \leq p < \infty$. The inclusion is strict and it follows from the following example.

Example 2.5. Let $X = \mathbb{R}^3$ be a real linear space. Define $\|., \|: X \times X \to \mathbb{R}$ by $\|x,y\| = \max\{|x_1y_2 - x_2y_1|, |x_2y_3 - x_3y_2|, |x_3y_1 - x_1y_3|\}$, where $x = (x_1, x_2, x_3), y = (y_1, y_2, y_3) \in \mathbb{R}^3$. Then $(X, \|., \|)$ is a 2-normed linear space. Let $(u_k) = 1$, $(M_i) = I$, the identity map, for all $i \in N$, m = 2 and n = 1. Consider the sequence $x = (x_k) = (k, k, k)$ for all $k \in N$. Then $\Delta^2 x_k = (0, 0, 0)$ for all $k \in N$. Hence, $(x_k) \in C_p(\mathcal{M}, u, \Delta^2, \|., \|)$, we have $\Delta(x_k) = (-1, -1, -1)$ for all $k \in N$. Hence, $(x_k) \notin C_p(\mathcal{M}, u, \Delta, \|., \|)$. The inclusion is strict.

Theorem 2.6. Let $\mathcal{M} = (M_i)$ be a sequence of Orlicz functions and $u = (u_k)$ be a sequence of positive real numbers. Then

(a) $O_p(\mathcal{M}, u, \Delta_n^m, \|\cdot, \dots, \cdot\|) \subset C_p(\mathcal{M}, u, \Delta_n^m, \|\cdot, \dots, \cdot\|) \subset C_{\infty}(\mathcal{M}, u, \Delta_n^m, \|\cdot, \dots, \cdot\|)$ and the inclusions are strict.

(b) $O_p(\mathcal{M}, u, \Delta_n^m, \|\cdot, \dots, \cdot\|) \subset O_\infty(\mathcal{M}, u, \Delta_n^m, \|\cdot, \dots, \cdot\|) \subset C_\infty(\mathcal{M}, u, \Delta_n^m, \|\cdot, \dots, \cdot\|)$ and the inclusions are strict.

Proof. The proof is trivial, so we omitted.

Remark. $\ell_p(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|) \subseteq O_p(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|).$

Example 2.7. Let p = 1 and 2-norm $\|.,.\|$ on $X = \mathbb{R}^3$ in Example (2.5). Let m = 2, n = 1, $(u_k) = 1$ and $(M_i) = I$. Consider the sequence $\{x_k\} = \{(1,1,1), (0,0,0), (0,0,0), (0,0,0), ...\}$. Then $\Delta^2 x_k = (1,1,1)$ for k = 1 and $\Delta^2 x_k = (0,0,0)$ for all k > 1. Then $(x_k) \in \ell(\mathcal{M}, u, \Delta^2, \|...\|)$ but $(x_k) \notin O(\mathcal{M}, u, \Delta^2, \|...\|)$.

Theorem 2.8. If $1 \le p < q$, then

- (i) $C_p(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|) \subset C_q(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|);$

$$(ii) \ \ell_p(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|) \subset \ell_q(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|);$$

$$(iii) \ O_p(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|) \subset O_q(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|).$$

Proof. We prove the result for the space $O_p(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|)$ only and for the other cases it can be proved in a similar way. Let $x \in O_p(\mathcal{M}, u, \Delta_n^m)$ $\|\cdot, \cdots, \cdot\|$). Then there exists $\rho > 0$ such that

$$\sum_{i=1}^{\infty} M_i \left(\frac{1}{i} \sum_{k=1}^{i} \left\| \frac{u_k \Delta_n^m x_k}{\rho}, z_1, ..., z_{n-1} \right\| \right)^p < \infty.$$

This implies

$$M_i \left(\frac{1}{i} \sum_{k=1}^{i} \left\| \frac{u_k \Delta_n^m x_k}{\rho}, z_1, ..., z_{n-1} \right\| \right)^p < 1$$

for sufficiently large values of i. Since (M_i) is non-decreasing, we get

$$\sum_{i=1}^{\infty} M_{i} \left(\frac{1}{i} \sum_{k=1}^{i} \left\| \frac{u_{k} \Delta_{n}^{m} x_{k}}{\rho}, z_{1}, ..., z_{n-1} \right\| \right)^{q}$$

$$\leq \sum_{i=1}^{\infty} M_{i} \left(\frac{1}{i} \sum_{k=1}^{i} \left\| \frac{u_{k} \Delta_{n}^{m} x_{k}}{\rho}, z_{1}, ..., z_{n-1} \right\| \right)^{p}$$

$$\leq \infty$$

Thus, $x \in O_q(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|)$. This completes the proof.

3. Köthe-Toeplitz duals

In order to compute Köthe-Toeplitz dual, we first define the following: An *n*-functional is a real-valued mapping with domain $A_1 \times ... \times A_n$, where $A_1, ..., A_n$ are linear manifolds of a linear n-normed space.

Let F be an n-functional with domain $A_1 \times ... \times A_n$. F is called a linear n-functional whenever for all ${}^1a_1, {}^1a_2, ..., {}^1a_n \in A_1, {}^2a_1, {}^2a_2, ..., {}^2a_n \in A_2$ and

$${}^{n}a_{1}, {}^{n}a_{2}, ..., {}^{n}a_{n} \in A_{n} \text{ and all } \alpha_{1}, ..., \alpha_{n} \in \mathbb{R}, \text{ we have}$$

$$(\underline{i}) F({}^{1}a_{1}, {}^{1}a_{2}, ..., {}^{1}a_{n}, {}^{2}a_{1}, {}^{2}a_{2}, ..., {}^{2}a_{n}, ..., {}^{n}a_{1}, {}^{n}a_{2}, ..., {}^{n}a_{n}) =$$

 $\sum_{1 \le i_1, i_2, \dots, i_n \le n} F({}^1a_{i_1}, {}^2a_{i_2}, \dots, {}^na_{i_n}) \text{ and }$

(ii) $F(\alpha_1 a_1, ..., \alpha_n a_n) = \alpha_1, ..., \alpha_n F(a_1, ..., a_n)$.

Let F be an n-functional with domain D(F). F is called bounded if there is a real constant $K \geq 0$ such that $|F(a_1,...,a_n)| \leq K||a_1,...,a_n||$ for all $(a_1,...,a_n) \in D(F)$. If F is bounded, we define the norm

$$||F|| = \text{glb}\{K : |F(a_1, ..., a_n)| \le K||a_1, ..., a_n|| \text{ for all } (a_1, ..., a_n) \in D(F)\}.$$

If F is not bounded, we define $||F|| = +\infty$.

Proposition 3.1. [10] A linear n-functional F is continuous if and only if it is bounded.

Proposition 3.2. [10] Let B^* be the set of bounded linear n-functionals with domain $B_1 \times ... \times B_n$. Then B^* is an n-Banach space upto linear dependence.

For any n(>1)-normed space E, we denote by E^* the continuous dual of E.

Definition 2. Let E be an n-normed linear space, normed by $\|.,...,.\|_E$. Then we define the Köthe-Toeplitz dual of the sequence space Z(E) whose base space is E as

 $[Z(E)]^{\alpha} = \{(y_k) : y_k \in E^*, k \in N \text{ and } (\|x_k, w_2, ..., w_n\|_E \|y_k, v_2, ..., v_n\|_{E^*}) \in \ell_1 \text{ for every}$

$$v_2, ..., v_n \in E^*, w_2, ..., w_n \in E, (x_k) \in Z(E)$$
.

It is easy to check that $\phi \in X^{\alpha}$. If $X \subset Y$, then $Y^{\alpha} \subset X^{\alpha}$. Let us consider $SC_p(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|) =$

$$\{x = (x_k) : x \in C_p(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|), x_1 = \dots = x_m = 0\}.$$

Then $SC_p(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|)$ is a subspace of $C_p(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|)$ for $1 \leq p < \infty$. We can have similar subspaces for other spaces as well.

Lemma 3.3. [5] $x \in SC_{\infty}(\Delta^m)$ implies $\sup_k k^{-m}|x_k| < \infty$.

Lemma 3.4. $x \in SC_{\infty}(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|)$ implies $\sup_k k^{-m} \|x_k, w_2, ..., w_n\| < \infty$ for every $w_2, ..., w_n \in X$.

Proof. The proof follows using similar techniques as applied in the proof of Lemma 3.3. Consider a set

$$\mathcal{U} = \left\{ a = (a_k) : \sum_{k=1}^{\infty} k^m || a_k, z_2, ..., z_n ||_{X^*} < \infty, \text{ for every } z_2, ..., z_n \in X^* \right\}.$$

Theorem 3.5. Let $\mathcal{M} = (M_i)$ be a sequence of Orlicz functions and $u = (u_k)$ be a sequence of positive real numbers. Then the Köthe-Toeplitz duals of the space $SC_p(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|)$ is \mathcal{U} , that is, $[SC_{\infty}(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|)]^{\alpha} = \mathcal{U}$.

Proof. If $a \in \mathcal{U}$, then

$$\sum_{k=1}^{\infty} \|a_k, z_2, ..., z_n\|_{X^*} \|x_k, w_2, ..., w_n\|_X$$

$$= \sum_{k=1}^{\infty} k^m \|a_k, z_2, ..., z_n\|_{X^*} (k^{-m} \|x_k, w_2, ..., w_n\|_X)$$

$$< \infty$$
,

for each $x \in SC_{\infty}(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|)$ by Lemma 3.4. Hence, $x \in [SC_{\infty}(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|)]^{\alpha}$.

Next, let $a \in [SC_{\infty}(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|)]^{\alpha}$. Then

$$\sum_{k=1}^{\infty} \|a_k, z_2, ..., z_n\|_{X^*} \|x_k, w_2, ..., w_n\|_X < \infty,$$

for each $x \in SC_{\infty}(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|)$. Define the sequence $x = (x_k)$ by

$$x_k = \begin{cases} 0, & k \le m, \\ k^m, & k > m \end{cases}$$

and choose $w_2, ..., w_n \in X$ such that

$$||k^m, w_2, ..., w_n||_X = k^m ||1, w_2, ..., w_n||_X = \begin{cases} 0, & k \le m \\ k^m, & k > m. \end{cases}$$

Thus, we have $z_2, ..., z_n \in X^*$

$$\sum_{k=1}^{\infty} k^{m} \|a_{k}, z_{2}, ..., z_{n}\|_{X^{*}} = \sum_{k=1}^{\infty} \|k^{m}, w_{2}, ..., w_{n}\|_{X} \|a_{k}, z_{2}, ..., z_{n}\|_{X^{*}}$$

$$= \sum_{k=1}^{m} \|k^{m}, w_{2}, ..., w_{n}\|_{X} \|a_{k}, z_{2}, ..., z_{n}\|_{X^{*}}$$

$$+ \sum_{k=1}^{\infty} \|k^{m}, w_{2}, ..., w_{n}\|_{X} \|a_{k}, z_{2}, ..., z_{n}\|_{X^{*}}$$

$$< \infty.$$

This implies $a \in \mathcal{U}$.

Theorem 3.6. Let $\mathcal{M} = (M_i)$ be a sequence of Orlicz functions and $u = (u_k)$ be a sequence of positive real numbers. Then

$$[SC_{\infty}(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|)]^{\alpha} = [C_{\infty}(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|)]^{\alpha}.$$

Proof. Since $SC_{\infty}(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|) \subset C_{\infty}(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|)$, we have $[C_{\infty}(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|)]^{\alpha} \subset [SC_{\infty}(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|)]^{\alpha}$. Let $a \in [SC_{\infty}(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|)]^{\alpha}$ and $x \in C_{\infty}(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|)$. Consider the sequence $x = (x_k)$ defined by

$$x_k = \begin{cases} x_k, & k \le m, \\ x_k', & k > m, \end{cases}$$

where
$$x' = (x'_k) \in SC_{\infty}(\mathcal{M}, u, \Delta_n^m, \|\cdot, \dots, \cdot\|)$$
. Then write
$$\sum_{k=1}^{\infty} \|a_k, z_2, ..., z_n\|_{X^*} \|x_k, w_2, ..., w_n\|_X$$

$$= \sum_{k=1}^{m} \|a_k, z_2, ..., z_n\|_{X^*} \|x_k, w_2, ..., w_n\|_X$$

$$+ \sum_{k=1}^{\infty} \|a_k, z_2, ..., z_n\|_{X^*} \|x_{k'}, w_2, ..., w_n\|_X$$

$$< \infty.$$

This implies $a \in [C_{\infty}(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|)]^{\alpha}$.

Theorem 3.7. Let $\mathcal{M} = (M_i)$ be a sequence of Orlicz functions and $u = (u_k)$ be a sequence of positive real numbers. Then

$$[O_{\infty}(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|)]^{\alpha} = [C_{\infty}(\mathcal{M}, u, \Delta_n^m, \|\cdot, \cdots, \cdot\|)]^{\alpha}.$$

Proof. The proof is easy, so omitted.

Acknowledgement: We would like to express our sincere thanks to the reviewer for the kind remarks which improved the presentation of the paper.

References

- Programma van Jaarlijkse Prijsvragen (Annual Problem Section), Nieuw Arch. Wiskd., 16 (1968), 47-1.
- [2] A. Alotaibi, K. Raj and S. A. Mohiuddine, Some generalized difference sequence spaces defined by a sequence of moduli in n-normed spaces, J. Funct. Spaces, Vol. 2015(2015), Article ID 413850, 8pp.
- [3] P. Chandra and B. C. Tripathy, On generalised Köthe-Toeplitz duals of some sequence spaces, Indian J. Pure Appl. Math., 33 (2002), 1301-1306.
- [4] M. Et and R. Çolak, On generalized difference sequence spaces, Soochow J. Math., 21 (1995), 377-386.
- [5] M. Et, On some generalized Cesàro difference sequence spaces, Istanbul Univ. fen fak. Mat. Dergisi, 55-56 (1996-1997), 221-229.
- [6] S. Gähler, Linear 2-normietre, Rume, Math. Nachr., 28 (1965), 1-43.
- [7] H. Gunawan, On n-Inner Product, n-Norms, and the Cauchy-Schwartz Inequality, Sci. Math. Jpn., 5 (2001), 47-54.
- [8] H. Gunawan, The space of p-summable sequence and its natural n-norm, Bull. Aust. Math. Soc., 64 (2001), 137-147.
- [9] H. Gunawan and M. Mashadi, On n-normed spaces, Int. J. Math. Sci., 27 (2001), 631-639.
- [10] W. A. Jr. George, 2-Banach spaces, Math. Nachr., 42 (1969), 43-60.
- [11] A. A. Jagers, A note on Cesàro sequence spaces, Nieuw Arch. Wiskund, 22 (1974), 113-124.
- [12] H. Kizmaz, On certain sequences spaces, Canad. Math. Bull., 24 (1981), 169-176.

- [13] J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces, Israel J. Math., 10 (1971), 379-390.
- [14] G. M. Leibowitz, A note on Cesàro sequence spaces, Tamkang J. Math., 2 (1971), 151-157.
- [15] P. Y. Lee, Cesàro sequence spaces, Math. Chronicle, New Zealand, 13 (1984), 29-45.
- [16] L. Maligranda, Orlicz spaces and interpolation, Seminars in Mathematics, 5, Polish Academy of Science (1989).
- [17] J. Musielak, Orlicz spaces and modular spaces, Lecture notes in Mathematics, 1034, Springer Verlag (1983).
- [18] A. Misiak, n-inner product spaces, Math. Nachr., 140 (1989), 299-319.
- [19] M. Mursaleen, M. A. Khatib and Qamaruddin, On difference Cesàro sequence spaces of non-absolute type, Bull. Calcutta Math. Soc., 89 (1997), 337-342.
- [20] M. Mursaleen, A. K. Gaur and A. H. Saifi, Some new sequence spaces their duals and matrix transformations, Bull. Calcutta Math. Soc., 88 (1996), 207-212.
- [21] I. J. Maddox, Continuous and Köthe-Toeplitz duals of certain sequence spaces, Proc. Camb. Philol. Soc., 65 (1969), 431-435.
- [22] P. N. Ng and P. Y. Lee, Cesàro sequence spaces of nonabsolute type, Comment. Math., 20 (1978), 429-433.
- [23] C. Orhan, Cesàro difference sequence spaces and related matrix transformations, Commun. Fac. Sci. Univ. Ankara, S 駻., **32** (1983), 55-63.
- [24] K. Raj and C. Sharma, Applications of strongly convergent sequences to Fourier series by means of modulus functions, Acta Math. Hungar., 150 (2016), 396-411.
- [25] K. Raj and S. K. Sharma, Some seminormed difference sequence spaces defined by Musielak-Orlicz function over n-normed spaces, J. Math. Appl., 38 (2015), 125-141.
- [26] K. Raj and S. K. Sharma, Double sequence spaces over n-normed spaces, Arch. Math., 50 (2014), 7-18.
- [27] J. S. Shiue, On the Cesàro sequence spaces, Tamkang J. Math., 1 (1970), 19-25.
- [28] B. C. Tripathy, Y. Altin and M. Et, Generalized difference sequence spaces on seminormed spaces defined by Orlicz functions, Math. Slovaca, 58 (2008), 315-324.
- [29] B. C. Tripathy and S. Borgohain, Statistically convergent difference sequence spaces of fuzzy real numbers defined by Orlicz function, Thai Jour. Math., 11 (2013) 357-370.
- [30] B. C. Tripathy, A. Esi and B. K. Tripathy, On a new type of generalized difference Cesàro Sequence spaces, Soochow J. Math., 31 (2005), 333-340.
- [31] B. C. Tripathy and B. Hazarika, I-convergent sequences spaces defined by Orlicz function, Acta Math. Appl. Sin. Engl. Ser., 27 (2011), 149-154.
- [32] B. C. Tripathy and S. Mahanta, On a class of generalized lacunary difference sequence spaces defined by Orlicz function, Acta Math. Appl. Sin. Engl. Ser., 20 (2004), 231-238.
- [33] K. Zeller, Theorie der Limitierungsverfahren, Springer, Berlin (1958).

Kuldip Raj School of Mathematics Shri Mata Vaishno Devi University Katra-182320, J&K, India

e-mail address: kuldipraj68@gmail.com

RENU ANAND
SCHOOL OF MATHEMATICS
SHRI MATA VAISHNO DEVI UNIVERSITY
KATRA-182320, J&K, INDIA
e-mail address: renuanand71@gmail.com

Suruchi Pandoh School of Mathematics Shri Mata Vaishno Devi University Katra-182320, J&K, India e-mail address: suruchi.pandoh87@gmail.com

> (Received July 12, 2017) (Accepted February 19, 2018)