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ABSTRACT 

Light-harvesting-1 (LH1) and reaction center (RC) core complex is an integral 

membrane-protein super-complex of purple photosynthetic bacteria that performs the 

primary reactions of photosynthesis. The structure of LH1-RC has been reported at 

relatively low resolutions, providing much information on the arrangement of protein 

subunits and cofactors. Here we report the crystal structure of a Ca-bound LH1-RC super-

complex from Thermochromatium tepidum at a resolution of 1.9 Å. This atomic 

resolution structure revealed a number of novel features regarding the organization of 

protein subunits and cofactors, allowing us to identify some RC loop regions in their 

intact states and their interactions with the LH1 subunits, the exchange route for the bound 

QB with the free quinones as well as for their transport between inside and outside of the 

LH1 ring structure, and the detailed Ca2+-binding environment. This structure provides a 

solid basis for detailed examination of the light reactions of bacterial photosynthesis. 
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Photosynthesis converts light energy from the sun into biologically useful chemical 

energy, thereby sustaining virtually all life forms on the earth. Purple photosynthetic 

bacteria possess a simple and robust photosynthetic apparatus, which has been 

extensively studied regarding the initial photochemical reactions1. In most purple 

photosynthetic bacteria, there are typically two kinds of light-harvesting (LH) complexes 

LH1 and LH2, where light energy is first absorbed by the peripheral LH2, then transferred 

via LH1 rapidly and efficiently to the reaction center (RC) to drive the primary redox 

reactions. LH1 exists in all purple bacteria and surrounds the RC to form an integral 

membrane protein-pigment super-complex (LH1-RC) consisting of 32-36 subunits with 

a total molecular weight of ~400 kDa.  

The structures of the Ca2+-bound and the Sr/Ba substituted LH1-RC super-complexes 

have been determined at 3.0 Å and 3.3 Å resolutions from a thermophilic purple sulfur 

photosynthetic bacterium Thermochromatium (Tch.) tepidum2,3, respectively, which 

showed that the RC is surrounded by 16 heterodimers of the LH1 α, β-subunits containing 

32 bacteriochlorophyll (BChl) a and 16 spirilloxanthin (Spx) molecules, forming a 

completely closed elliptical ring. This is different from the structure of LH1-RC dimers 

from Rhodobacter (Rb.) sphaeroides and monomers from Rhodopseudomonas (Rps.) 

palustris determined by X-ray diffraction at 8.0 Å4 and 4.8 Å5 resolutions, in that both of 

them show an incomplete ring structure with the dimer having a PufX subunit and the 

monomer having a protein W, respectively, in their ring openings. Furthermore, 16 Ca2+ 

binding sites were observed in the C-terminal loop region of the thermophilic LH1 

complex, which was considered the reason for the unusual redshift and enhanced thermal 

stability of the thermophilic LH16,7. 

The resolution of the structure of LH1-RC reported so far, however, was not enough 

to reveal the detailed organization of many cofactors involved in the energy and electron 

transfer reactions within this super-complex. Here we report the structure of LH1-RC 

from Tch. tepidum at 1.9 Å resolution, which revealed detailed arrangement and 

organization of a large number of cofactors including BChls, carotenoids, menaquinone 

(MQ8) and ubiquinones (UQ8), lipids, Ca2+ and water molecules. On the basis of the 

high-resolution structure, energy transfer from LH1 to RC, quinone and proton channels, 

possible roles of Ca2+ are examined. These results greatly advance our understanding on 

the bacterial photosynthetic light reactions.  

Overall structure 

The quality of the LH1-RC crystals was improved significantly by optimization of the 

detergent and other conditions of crystallization, enabling the structure to be resolved at 
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1.9 Å resolution (Extended Data Fig. 1 and 2, Extended Data Table 1). The space group 

of the crystal obtained was C2, which is the same as that reported in the previous study2 

(Extended Data Fig. 1c, d). However, the unit cell dimensions were much shorter than 

those of the previous one (Extended Data Table 1), leading to a more compact packing 

and a much less solvent content of 55% compared to 65% for the previous crystals2. This 

may be the major reason for the significant improvement in the crystal resolution. 

The overall structure of the LH1-RC core complex is largely similar to that of the 

previous one determined at 3.0 Å resolution2 (Fig. 1). However, the root mean square 

deviation (rmsd) between Cα atoms of the two structures is 1.68 Å; this relatively large 

rmsd is mainly caused by deviations in some regions of the RC subunits and the N-, C-

termini of the LH1 subunits (see below). We identified a number of lipid and detergent 

molecules in the gap region between RC and LH1 (Fig. 1c), resulting in a rather crowded 

'gap region' in comparison with the previous rather empty gap space (Extended Data Fig. 

3). The whole structure contained 4 protein subunits, 4 BChls a, 2 bacteriopheophytins 

(BPheos), 1 Mg2+ ion, 1 Fe3+ ion, 1 Spx molecule, 1 MQ8 and 5 UQ8s in RC, and 16 

pairs of LH1 α, β-subunits, 32 BChls a and 16 Spx molecules, 16 Ca2+ ions in LH1 (Fig. 

1, Extended Data Table 2). In addition, nearly 1,000 water molecules were found in the 

super-complex, which are mostly distributed in both the cytoplasmic and periplasmic, 

hydrophilic surfaces (Fig. 1b). The overall shape of the LH1-RC super-complex is an 

ellipse as has been reported, and the LH1-BChls have almost equa-distances to the RC 

BChls (Fig. 1d). This may ensure an efficient energy transfer from LH1 to RC.  

The rmsds between the Cα atoms of the new RC structure and the RC-only structure 

at 2.2 Å resolution8, or the RC structure at 3.0 Å resolution2, were 3.19 Å and 1.98 Å, 

respectively, due to the apparent differences in some regions of the RC structures 

(Extended Data Figs. 3b, 4). In addition, the C-terminal loop regions of all α-apoproteins 

of LH1, which has poor electron densities in the previous 3.0 Å structure2, show relatively 

large deviations (Extended Data Fig. 4c, 4d). Since these terminal regions are exposed to 

the surface of the membrane and partly flexible as manifested in their high B-factors 

(Extended Data Table 3), we adjusted the length of the α/β-apoproteins with confidence 

based on the electron density map. Furthermore, the position and coordination patterns 

for the calcium ions were identified unambiguously. In the following, we describe 

features found in the present high-resolution structure that are unique and important for 

the functionality of this super-complex. 

Unique features in the structure of RC 

Comparison of our structure with those of the isolated RC reported previously revealed 
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three major differences; they include the N-terminal region in the Cyt subunit and its loop 

region (residues 172–196), and a loop region in the H subunit (residues 44-58) (Fig. 2a, 

2c, 2d). Cyt C is located at the periplasmic side, and has been reported to be a lipoprotein 

in Blastochloris (Bl.) viridis with its N-terminal cysteine linked to a diglyceride via a 

thioether bond9-11. In the previous structure2, this region was assigned incorrectly because 

of the lower resolution or possible X-ray radiation damage that may break the thioether 

bond11. In the present structure, the electron density map showed three partial acyl chains 

attached to the Cyt C-Cys23, among which, one is a single chain and the other one is 

clearly branched (Fig.2b). This suggests that Cyt is triacylated at the N-terminal cysteine 

with N-acyl and S-diacylglycerol similar to an outer membrane protein12, and these fatty 

acids anchor the Cyt subunit in the membrane. All aliphatic tails beyond the seventh 

carbon from the carbonyl carbon are disordered, presumably due to their flexibility, and 

could interact with the UQ8 found in the position waiting for the exchange of QB (see 

below). In addition, the loop region (172-196) of Cyt showed a large deviation from that 

of the isolated RCs8,9, which appears to interact with the neighboring LH1 only in this 

conformation (Fig. 2c). A Mg2+ ion was found in its vicinity (Fig. 2c, 2e), which may 

reduce the flexibility of this long loop. 

The loop region (44-58) of the H subunit was traced unambiguously in the present 

structure (Fig. 2d), which interacts with the neighboring LH1 β-polypeptide at the 

cytoplasmic side. This is largely different from the isolated RCs and the previous LH1-

RC. For example, these residues are located in the crystal lattice contact region in the 

recently reported RC structure from Bl. viridis at 1.92 Å9, which differs from the previous 

structures11,13. Thus, the interactions with the LH1 polypeptide appear to be required to 

keep this region in the correct configuration.  

Quinones and lipids 

One MQ8 and five UQ8s were found in the LH1-RC super-complex (Fig. 3a), which is 

consistent with the results of biochemical analysis with the same sample14. Among these 

quinones, MQ8 and one of the UQ8 function as QA and QB with similar binding sites as 

those reported previously2. The additional UQ8s were found to be distributed over RC 

and in the gap region between RC and LH1. In particular, one of the UQ8 was located in 

a position close to the isoprenoid tail of QB near the periplasmic surface (Fig. 3a), with 

its head oriented in the same direction as that of QB, suggesting that this quinone is in a 

position waiting for the exchange of QB following its double reduction and protonation. 

This is supported by the fact that, while the head of QB is surrounded by a number of 

residues and hydrogen-bonded to L-His199, L-Ser232, L-Ile233 and L-Gly234, the head 
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of the second UQ8 was not hydrogen-bonded to any residues, and its isoprenoid tail was 

not visible, presumably due to its high flexibility (Fig. 3a). The cavity harboring the head 

of this UQ8 was formed by L-Met183, L-Leu184, L-Ser187, L-Trp272, M-Ile179, as well 

as accessory BChl bound to the M subunit. 

Three UQ8s are located in the gap region between LH1 and RC, among which, two 

are close to the LH1 ring and the isoprenoid tail of one of these two UQ8s was found to 

be inserted into a space between the LH1 α- and β-subunits (Fig. 3b, 3c), suggesting that 

it is on the way to be transported between the inside and outside of the ring structure 

through the possible exchange channel in LH1 subunits. This channel is close to the 

cytoplasmic side of the membrane at the same level as the QB head, and has been 

suggested in the previous study2,15, but our present result provides direct evidence for the 

transport of quinones through such channels. This channel is hydrophobic and surrounded 

by Val20, Ser23, Ile24 and Phe27 from an α-subunit of LH1 in one side, and Leu21, Val22, 

Val25 and Ile29 from another α-subunit in the opposite side (Fig. 3c). In addition, the Spx 

and phytol tail of BChl bound to the LH1 α-subunit are close to the exit of the channel, 

which may contribute to form the hydrophobic channel exit. 

Extensive hydrogen-bond networks in the H subunit connecting QB to the cytoplasmic 

surface (Extended Data Fig. 5) were found, owing to the large number of water molecules 

identified. One of the major hydrogen-bond networks is approximately normal to the 

membrane surface, and may serve as a possible proton transfer channel connecting QB to 

the aqueous phase16. We also found a water cluster parallel to the membrane plane similar 

to that found in Rb. sphaeroides RC16-18. These hydrogen-bond networks may support the 

idea that there is multi-entry proton uptake networks for the protonation of QB
19. 

Among the 21 lipids identified, nine are tentatively assigned to cardiolipins (CDLs), 

ten to phosphatidylglycerols (PGs) and two to phosphatidylethanolamines (PEFs) 

(Supplementary Table 2, Fig. 3d). This number is much larger than that found in the RC-

only structure where only 1-2 lipids were found, presumably due to the loss or disorder 

of the lipid molecules upon solubilization of the RC-only complex, or replacement by the 

detergents employed. The distribution of the lipids is asymmetric: all of the CDLs were 

found at the cytoplasmic side with their head groups localized at the surface of the 

membrane, whereas PEF and PG were located at both cytoplasmic and periplasmic sides. 

All of the three lipids previously reported at 3.0 Å resolution were confirmed with some 

modifications in that, the PEF and one of the two PGs were re-assigned as CDL and PEF, 

respectively. 

Interactions of LH1-RC and among LH1 
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The interactions between LH1 and RC are found at both periplasmic and cytoplasmic 

sides either directly (Fig. 4a, 4b) or indirectly (through lipids etc, Extended Data Table 

4). As mentioned above, the newly built loop region (172-196) of Cyt forms two hydrogen 

bonds between Cyt C-Ser176, C-Gly177 and the neighboring α-Asp48, α-Ser41, which 

may stabilize this region of the Cyt C-subunit, indicating that this conformation represents 

its intact state. In addition, M-Leu109, C-Arg47, L-Arg85, and H-His7 interact with the 

neighboring LH1 α-Ser41 or α-Asp48 at the periplasmic side (Extended Data Fig. 6a, 6b, 

6c). Importantly, α-Ser41 and α-Asp48 are two main residues for the interaction between 

LH1 and RC subunits or lipids at the periplasmic side (Extended Data Table 4). At the 

cytoplasmic side, two arginine residues Arg18/Arg19 located at the begining of the α-

subunit helices play the major role in interacting with the RC subunits or lipids, and some 

other residues (Il414, Asp16 and Ser23) also provided some interactions with RC and 

lipids (Fig. 4b, Extended Data Fig. 6d-f, Extended Data Table 4). These two arginines 

form a positively charged layer together with some other arginines/lysines from the RC 

and α-Lys10/β-Lys15 at the membrane surface, which may interact with the phosphate 

group of the lipids and thereby strength the association of LH1 with RC. 

Extensive interactions between the LH1 α/β-heterodimers are found around the Ca-

binding site in the C-terminal domain at the periplasmic side, especially in the region of 

the residues α-42~49 (Fig. 4c). This region forms a characteristic short turn structure at 

the surface of the membrane, which occurs in Tch. tepidum only, since a residue at the 

position 43 is deleted in this organism in comparison with other photosynthetic bacteria20. 

This characteristic structure enables α-Asp43 to form hydrogen bonds with α-Asp48, α-

Ser54, α-Tyr55 and α-Gln56 from the neighboring α-polypeptide. In addition, α-Asn45 is 

also a key residue since it is conserved in almost all purple bacteria, and forms extensive 

interactions with its neighboring subunits. β-Arg43 is also highly conserved and involved 

in additional interactions with its neighboring subunits (Extended Data Table 4). Another 

strong hydrogen-bond responsible for the α/β-interactions was found between β-Pro44 

and α-Tyr55. On the other hand, only one strong hydrogen bond was found between β-

Leu46 and (n-1) β-Tyr42 at the membrane surface for the β/β interactions.  

In contrast to the extensive interactions in the C-terminal region at the periplasmic 

side, those in the N-terminal region at the cytoplasmic side are less, where β-Thr7 is 

hydrogen-bonded with α-Leu13 and α-Trp12 respectively, and β-Asp11 interacts with α-

Tyr9 and α-Lys10 respectively (Fig. 4c). Taken together, the interactions in both the N-

terminal and C-terminal regions ensure a tight connection of the LH1 α-/β-apoproteins as 

well as a joint coordination to BChls a, carotenoids and Ca2+ ions (Fig. 5a, 5b, see below), 

which results in a robust structural unit as a closed concentric elliptical ring. 
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Ca2+ binding sites 

One of the remarkable features of the thermophilic LH1-RC is its binding of 16 Ca2+ ions 

in the LH1 subunits, and we identified all of the ligands for Ca2+ unambiguously, which 

are the side chain of α-Asp49, the carbonyl oxygens of α-Trp46, α-Ile51, (n+1) β-Trp45, 

and two water molecules, giving rise to a six-coordinated structure (Fig. 5c, 5d). Three 

out of the four coordinating residues are hydrophobic; this may be due to the fact that this 

binding site is located just at the periplasmic surface of the membrane, and may thus 

contribute to its weak binding, making it easily exchangeable with other divalent 

cations21,22.  

The Ca2+-binding site is located in the C-terminal region of both α/β-subunits, which 

contributed to the tight connection of the two LH1 subunits (Fig. 5). This is in accordance 

with the result of FTIR measurement which showed that Ca2+-binding reduces the 

conformational flexibility of LH1-RC23. The structural stability induced by the binding 

of Ca2+ may therefore contribute to the thermophilic stability of LH1 as well as the red 

shift of the absorption peak, two unique features of the thermophilic bacterium. These 

results are in agreement with those of recent spectral measurements24-26.   

The unique binding of Ca2+ may be related to the deletion of the residue α-43 in Tch. 

tepidum20, since insertion of an Ala into this site has been shown to disrupt the Ca2+-

binding of the thermophilic LH1, leading to a blue shift in its absorption27. This is 

consistent with the Ca2+-binding environment revealed in the present study and its 

functional importance. 

Apparent differences were also found in BChls of LH1 in comparison with the 

previous 3.0 Å structure. The imidazole ring of β-His36, a direct ligand to β-BChl, is 

rotated by about 45 degrees in most cases; and the porphyrin plane of the β-BChl is rotated 

by about 10 degrees along its Qy axis. These changes resulted in a more parallel 

orientation of the neighboring BChls, giving rise to a stronger coupling between the 

adjacent BChls. 



9 

Acknowledgements 

  We thank M. T. Madigan for providing the Tch. tepidum strain MC, F. Ma, Y. Xin, Y. 

Umena, X. Chen, X. Qin, W. Wang and T. Kawakami for kind discussions and helps 

during the experiments, data analysis and manuscript preparation. This work was 

supported by JSPS KAKENHI No. JP24000018 and JP17H0643419 (to J.-R.S.), 

JP16H04174 (to Z.-Y.W.-O.), JP16H06296 and JP16H06162 (to M.S.), a program for 

promoting the enhancement of research universities at Okayama University from MEXT, 

Japan, and performed using the beamlines BL41XU (proposal numbers 2014B1277, 

2015A1079, 2015B2079, 2016A2553, 2017A2590 to L.-J.Y.), BL44XU (2015B6522, 

2016A6621, 2016B6621, 2017A6724, 2017B6724 to M.S.) at SPring-8, and BL-1A at 

Photon Factory (PF), Japan (2016R-27 to L.-J.Y.). We are grateful to staff members of 

SPring-8 and PF for their assistance in the data collection.  

Author Contributions 

  J.-R. S. and L.-J. Y. conceived the project; L.-J. Y. prepared the samples with the help 

of Z.-Y. W.-O., grew the crystals, L.-J.Y. and M.S. collected the diffraction data and 

analyzed the structure; L.-J.Y. and J.-R. S. wrote the manuscript, and all authors 

contributed to the discussion and improvement of the manuscript.   

Author Information 

  The structure factors and coordinates have been deposited in Protein Data Bank with 

an accession code 5Y5S. The authors declare no competing financial interests. Readers 

are welcome to comment on the online version of the paper. Correspondence and requests 

for materials should be addressed to J.-R. S. (shen@cc.okayama-u.ac.jp). 



10 

References 

1. Cogdell, R. J. & Roszak, A. W. Structural biology: The purple heart of photosynthesis.

Nature 508, 196-197 (2014).

2. Niwa, S. et al. Structure of the LH1-RC complex from Thermochromatium tepidum

at 3.0 Å. Nature 508, 228-232 (2014).

3. Yu, L. J., Kawakami, T., Kimura, Y. & Wang-Otomo, Z. Y. Structural basis for the

unusual Qy red-shift and enhanced thermostability of the LH1 complex from

Thermochromatium tepidum. Biochemistry 55, 6495-6504 (2016).

4. Qian, P. et al. Three-dimensional structure of the Rhodobacter sphaeroides RC-LH1-

PufX complex: dimerization and quinone channels promoted by PufX. Biochemistry

52, 7575-7585 (2013).

5. Roszak, A. W. et al. Crystal structure of the RC-LH1 core complex from

Rhodopseudomonas palustris. Science 302, 1969-1972 (2003).

6. Kimura, Y. et al. Calcium ions are involved in the unusual red shift of the light-

harvesting 1 Qy transition of the core complex in thermophilic purple sulfur

bacterium Thermochromatium tepidum. J. Biol. Chem. 283, 13867-13873 (2008).

7. Kimura, Y., Yu, L. J., Hirano, Y., Suzuki, H. & Wang, Z. Y. Calcium ions are required

for the enhanced thermal stability of the light-harvesting-reaction center core

complex from thermophilic purple sulfur bacterium Thermochromatium tepidum. J.

Biol. Chem. 284, 93-99 (2009).

8. Nogi, T., Fathir, I., Kobayashi, M., Nozawa, T. & Miki, K. Crystal structures of

photosynthetic reaction center and high-potential iron-sulfur protein from

Thermochromatium tepidum: thermostability and electron transfer. Proc. Natl. Acad.

Sci. USA 97, 13561-13566 (2000).

9. Roszak, A. W. et al. New insights into the structure of the reaction centre from

Blastochloris viridis: evolution in the laboratory. Bioch. J. 442, 27-37 (2012).

10. Weyer, K. A., Schafer, W., Lottspeich, F. & Michel, H. The cytochrome subunit of

the photosynthetic reaction center from Rhodopseudomonas viridis is a lipoprotein.

Biochemistry 26, 2909-2914 (1987).

11. Wohri, A. B. et al. Lipidic sponge phase crystal structure of a photosynthetic reaction

center reveals lipids on the protein surface. Biochemistry 48, 9831-9838 (2009).

12. Kulathila, R., Kulathila, R., Indic, M. & van den Berg, B. Crystal structure of

Escherichia coli CusC, the outer membrane component of a heavy metal efflux pump.

Plos One 6, e15610 (2011).

13. Li, L. et al. Nanoliter microfluidic hybrid method for simultaneous screening and

optimization validated with crystallization of membrane proteins. Proc. Natl. Acad.



11 

Sci. USA 103, 19243-19248 (2006). 

14. Kimura, Y. et al. Characterization of the quinones in purple sulfur bacterium

Thermochromatium tepidum. FEBS letters 589, 1761-1765 (2015).

15. Wang-Otomo, Z.-Y. in Solar to Chemical Energy Conversion. (eds. Sugiyama, M. et

al.), pp. 379-390 (Springer, 2016).

16. Stowell, M. H. B. et al. Light-induced structural changes in photosynthetic reaction

center: Implications for mechanism of electron-proton transfer. Science 276, 812-816

(1997).

17. Fritzsch, G., Kampmann, L., Kapaun, G. & Michel, H. Water clusters in the reaction

centre of Rhodobacter sphaeroides. Photosynth Res 55, 127-132 (1998).

18. Abresch, E. C. et al. Identification of proton transfer pathways in the X-ray crystal

structure of the bacterial reaction center from Rhodobacter sphaeroides. Photosynth.

Res. 55, 119-125 (1998).

19. Krammer, E. M., Till, M. S., Sebban, P. & Ullmann, G. M. Proton-transfer pathways

in photosynthetic reaction centers analyzed by profile hidden markov models and

network calculations. J. Mol. Biol. 388, 631-643 (2009).

20. Rucker, O., Kohler, A., Behammer, B., Sichau, K. & Overmann, J. Puf operon

sequences and inferred structures of light-harvesting complexes of three closely

related Chromatiaceae exhibiting different absorption characteristics. Arch.

Microbiol. 194, 123-134 (2012).

21. Kimura, Y., Inada, Y., Yu, L. J., Wang, Z. Y. & Ohno, T. A spectroscopic variant of

the light-harvesting 1 core complex from the thermophilic purple sulfur bacterium

Thermochromatium tepidum. Biochemistry 50, 3638-3648 (2011).

22. Kimura, Y. et al. Metal cations modulate the bacteriochlorophyll-protein interaction

in the light-harvesting 1 core complex from Thermochromatium tepidum. Biochim.

Biophys. Acta 1817, 1022-1029 (2012).

23. Jakob-Grun, S., Radeck, J. & Braun, P. Ca2+-binding reduces conformational

flexibility of RC-LH1 core complex from thermophile Thermochromatium tepidum.

Photosynth. Res. 111, 139-147 (2012).

24. Ma, F., Yu, L. J., Wang-Otomo, Z. Y. & van Grondelle, R. The origin of the unusual

Qy red shift in LH1-RC complexes from purple bacteria Thermochromatium tepidum

as revealed by Stark absorption spectroscopy. Biochimica et biophysica acta 1847,

1479-1486 (2015).

25. Ma, F., Yu, L. J., Wang-Otomo, Z. Y. & van Grondelle, R. Temperature dependent

LH1-->RC energy transfer in purple bacteria Tch. tepidum with shiftable LH1-Q band:

A natural system to investigate thermally activated energy transfer in photosynthesis.



12 

Biochim Biophys. Acta 1857, 408-414 (2015). 

26. Ma, F. et al. Metal cations induced alpha, beta-BChl a heterogeneity in LH1 as

revealed by temperature-dependent fluorescence splitting. Chemphyschem. 18, 2295-

2301. (2017).

27. Nagashima, K. V. P. et al. Probing structure-function relationships in early events in

photosynthesis using a chimeric photocomplex. Proc. Natl. Acad. Sci. USA 114,

10906-10911 (2017).



13 

Figure legends 

Figure 1 | Architecture of the LH1-RC complex from Tch. tepidum at a resolution of 

1.9 Å. a, View from the direction parallel to the membrane plane. b, Arrangement of the 

cofactors and water molecules with the same view as in panel a. c, Arrangement of the 

cofactors with a view perpendicular to the membrane. Protein subunits are depicted in 

light grey. d, Distances between the closest pairs of Bchls between LH1 and RC. Color 

codes for cofactors: green, Bchls; yellow, Spx; orange balls, Ca2+ ions; raspberry dots, 

water molecules. Color codes for proteins in panel a: blue, LH1 α-subunit; light cyan, 

LH1 β-subunit; purple, RC C-subunit. 

Figure 2 | Differences between the structures of isolated and intact RC core. a, 

Superposition of the isolated RC structures from Tch. tepidum (1EYS; purple), Rb. 

sphaeroides (2J8C; orange), Bl. viridis (3T6E; yellow) and the present one (marine). 

Regions with similar structures are colored in grey, whereas the three regions with large 

differences are boxed and colored differently. The boxed areas numbered 1, 2, 3 are 

enlarged in b, c and d, respectively. b, Tri-acylation of the Cyt N-terminal cysteine. c, 

The loop region of Cyt (residues 172-196) including the Mg2+-binding site, which is 

circled in c and enlarged in e. d, The N-terminal region and residues 44-58 of the H 

subunit. e, The Mg2+-binding site in the Cyt subunit. 

Figure 3 | Distribution of quinones and lipids in the LH1-RC. a, Overall distribution 

of the six quinones revealed in the present structure. Color codes: green, UQs, cyan, MQ, 

red, UQ with its tail inserted in the channel between the LH1 α/β-subunits. Orange and 

blue, two α- and two β-subunits of LH1 that form the channel for the transport of the UQ. 

b, c, Quinone exchange channel between the LH1-α/β subunits. d, Distribution of lipids 

with a side view of the LH1-RC super-complex. The lipid molecules are shown in space-

filling mode (oxygen, red; nitrogen, blue; carbons of PEF, CDL and PG are colored in 

green, yellow and magenta, respectively, and protein subunits in grey). 

Figure 4 | Interactions between LH1 and RC, and among LH1. For clarity, only 

protein-protein interactions are depicted. a, Interaction sites (boxed) between LH1-α and 

RC at the periplasmic side. b, Interaction sites (boxed) between LH1-α and RC at the 

cytoplasmic side. The letters in the boxed areas in a and b correspond to the panels in 

Extended Data Fig. 6. Color codes for panels a and b: magenta, L-subunit; marine, M-

subunit; green, C-subunit; yellow, H-subunit; light grey, LH1 α/β-subunits c, Interactions 
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between adjacent LH1 α-α and α-β subunits. Color codes for panel c: magenta and dark 

cyan, LH1 α-subunits; yellow and cyan, LH1 β-subunits; green, Bchl; light yellow, Spx. 

Figure 5 | Calcium-binding sites in the LH1 complex. a, Binding pattern of 16 Ca2+ 

ions in LH1. Green, LH1 α-subunits; blue, LH1 β-subunits. b, The positions of two Ca2+ 

ions in the LH1 subunits. Ca2+ and BChl a are represented by red spheres and green sticks 

respectively. c, A close-up view of the Ca2+-binding site. The α-subunit is depicted in 

green, and the β-subunit in pink. d, Top view of the expanded region of the Ca2+-binding 

site. 
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Figure 5 
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METHODS 

No statistical method was used to predetermine the sample size. The experiments were 

not randomized, and the investigators were not blinded to allocation during experiments 

and outcome assessment. 

Purification and crystallization 

Tch. tepidum cells were grown in a growth chamber (BiOTRON, LH-410PFP-SP, NK 

System, Japan) at 49
o
C for 7 days. The light illumination was provided by LED lamps

specified for plant growth, which have emission peaks at around 450 nm and 645 nm, 

respectively, at a light intensity of 30 μEinsteins m
-2 

s
-1

. The bacterial cells grown under

this condition appeared to have a larger ratio of LH1-RC/LH2 according to the absorption 

spectra, which suggests that there are more LH1-RC in the same amount of wet bacterial 

cells. LH1-RC complex was purified as described previously2,28 with slight modifications. 

The final LH1-RC samples with a ratio of A915/A280 over 2.20 were collected and 

precipitated by addition of polyethylene glycol 1,450 to a final concentration of 13% 

(w/v), and then suspended in 20 mM MES (pH 6.2) containing 3.4% n-octyl-

phosphocholine (OPC) to a concentration of 20 mg protein ml-1. Crystallization was 

performed by a microbatch-under-oil method in which, 2 µl of the above protein solution 

was mixed with an equal volume of the precipitant solution containing 50 mM MES (pH 

6.2), 50 mM CaCl2, 10 mM MgCl2, 3.4% OPC and 26% polyethylene glycol 1,450. The 

crystals grew to sizes of 0.3 × 0.4× 0.05 mm3 to 0.4 × 0.8 × 0.2 mm3 in 10 days at 20
o
C

(Extended data Fig. 1a), which were then transferred into a 10 µl cryoprotectant solution 

containing 50 mM MES (pH 6.2), 3.4% OPC, 30% polyethylene glycol 1,450, 50 mM 

CaCl2 and 15% glycerol, and flash-frozen immediately in a nitrogen stream. 

Data collection 

X-ray diffraction experiments were carried out at beamlines BL41XU of SPring-8 and 

BL1A of the Photon Factory (Japan), and the highest resolution diffraction data used for 

structural analysis was collected at BL41XU of SPring-8. The wavelength of X-rays used 

was 1.0 Å and the beam size was 35 × 22 µm2. The diffraction images were recorded with 

a Pilatus 6M detector, and the crystals were rotated by 0.1˚ in a helical manner. A total of 

5,400 images covering a rotation angle of 540˚ were collected. The photon flux of the 

beamline used was 6.8 × 1011 photons s-1 (after attenuation by a 0.75-mm thick 

aluminium), and the exposure time was 0.1 s for each diffraction image. The diffraction 

data was processed, integrated and scaled using the XDS Program Package (version 

October 15, 2015)29, and the reflection data statistics are summarized in Extended Data 
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Table 1. 

Structure refinement 

The initial structure of the LH1-RC complex was solved by the molecular replacement 

method using the Phaser program in PHENIX (version 1.12-2829)30. The structure of 

LH1-RC previously determined at 3.0 Å resolution from Tch. tepidum (PDB code: 

3WMM) was used as the search model, with the Ca2+ ions, lipid and solvent molecules 

omitted. Five percent of reflections were used for the free R factor calculation in the 

structure refinement. The initial model was subjected to rigid body and restrained 

refinements successively in a resolution range 50-2.0 Å. Incorporation of cofactors, lipid 

and detergent molecules and model modification were performed using COOT (version 

0.8.2)31. For the assignment of lipid molecules, positions of the phosphorous atoms in 

lipids were confirmed either by the strong electron density interacting with the positively 

charged amino acid residues or the peaks found in the anomalous map. The lipids were 

assigned, based on the electron density of the polar head group, as CDLs when they were 

connected to each other, and as PEFs and PGs when they interact with the negatively 

charged amino acids and neutral groups, respectively. Positional and isotropic 

displacement parameters were refined in the resolution range of 50-1.9 Å. After solvent 

molecules were included in the model, anisotropic displacement parameters were refined, 

and the final model was refined to Rwork = 18.15% and Rfree = 21.52%, with 98.42% 

residues in the favored Ramachandran region, 1.51% in the allowed region, and 0.08% in 

the outliers. The relatively high R values may be caused by blurred electron densities at 

the terminal regions of the LH1 polypeptides, especially the N-terminus, resulting in 

higher B-factors in these regions. In addition, some residual densities in the gap region 

between RC and the LH1 ring were not modelled, which may be flexible fragments of 

lipids and quinones. The refinement statistics are listed in Extended Data Table 1, and the 

quality of the structure was analyzed by using PROCHECK32. Figures were made with 

the PyMOL program33. The atomic coordinates and structural factors were deposited in 

Protein Data Bank under accession code 5Y5S. 

28. Suzuki, H. et al. Purification, characterization and crystallization of the core complex

from thermophilic purple sulfur bacterium Thermochromatium tepidum. Biochim

Biophys. Acta 1767, 1057-1063 (2007).

29. Kabsch, W. Xds. Acta Cryst. D 66, 125-132 (2010).

30. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for

macromolecular structure solution. Acta Cryst. D 66, 213-221 (2010).



22 

31. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of 

Coot. Acta Cryst. D 66, 486-501 (2010).

32. Laskowski, R. A., Macarthur, M. W., Moss, D. S. & Thornton, J. M. Procheck - a

program to check the stereochemical quality of protein structures. J. Appl. Cryst. 26,

283-291 (1993).

33. Schrodinger, LLC. The PyMOL molecular graphics system, Version 1.8 (2015).
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Legends for Extended Data Figures 

Extended Data Figure 1 | Quality of the LH1-RC crystal and its packing pattern. a, 

An image of the LH1-RC crystals obtained in the present study. These crystals were 

obtained reproducibly with the present crystallization conditions. b, A typical diffraction 

image of the LH1-RC crystal taken at BL41XU of SPring-8, Japan, with a wavelength of 

1.0 Å at 100 K. This diffraction image was obtained reproducibly with many crystals 

tested. c, d, Packing pattern of the previous (c) and present crystal (d). 

Extended Data Figure 2 | Close-up views of the electron density maps for some of 

the cofactors of LH1-RC. The blue mesh represents 2Fo-Fc map contoured at 1.0 σ, 

taken at a wavelength of 1.0 Å and analyzed to 1.9 Å resolution. a-d, The special pair 

BChls (a) and one pair of the LH1 BChls (b), one of the CDL (c) and the QB molecule 

(d). 

Extended Data Figure 3 | Comparison of the arrangement of the cofactors between 

the previous and present structures. a, Arrangement of the cofactors in the previous 3.0 

Å structure, with a view from the top of the membrane. b, Superposition of the cofactors 

between the previous 3.0 Å and present 1.9 Å structures. c, The same as panel b, with the 

view from the side of the membrane. In panels b and c, the cofactors revealed in the 

present 1.9 Å structures were colored differently, whereas those in the previous 3.0 Å 

structures were depicted in grey. 

Extended Data Figure 4 | Comparison of the protein structures between the previous 

and present structures. a, Superposition of the RC subunits between the previous 2.2 Å 

and present 1.9 Å structures, with a side view from the membrane plane. b, Superposition 

of the RC subunits between the previous 3.0 Å and present 1.9 Å structures, with a side 

view from the membrane plane. c and d, Superposition of the LH1 subunits between the 

previous 3.0 Å and present 1.9 Å structures, with a side view (c) and top view (d) relative 

to the membrane plane, respectively. In all panels, the present 1.9 Å structure is colored, 

whereas the previous structures are depicted in grey. 
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Extended Data Figure 5 | Hydrogen-bond networks for the protonation of QB. a, Two 

possible proton channels connecting QB to the cytoplasmic surface. Thick arrow (colored 

in marine) indicates the main channel formed within the H-subunit, which is enlarged in 

panel b, and the thin arrow indicates the second channel. b. The main hydrogen-bond 

network indicated by the thick arrow in panel a, formed by a number of water molecules 

and the residues (green) from the H-subunit (pale cyan). QA and QB are depicted in violet 

and red, respectively, and the non-heme iron is depicted in deep purple. The hydrogen 

bonds are depicted as dashed lines, and water molecules participating in the hydrogen-

bond networks are depicted in orange, whereas those not participating are depicted in grey. 

Extended Data Figure 6 | Protein-protein interactions between LH1 and RC. a, b, c, 

Interactions between the LH1 α-subunits and RC subunits at the periplasmic side. These 

three panels correspond to those indicated in the boxed areas in Fig. 4 of the main text. d, 

e, f, Interactions between the LH1 α-subunits and RC subunits at the cytoplasmic side, 

with each of the panels corresponding to those indicated in the boxed areas in Fig. 4 of 

the main text. 
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Extended Data Figure 1 
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Extended Data Figure 2 
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Extended Data Figure 3 
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Extended Data Figure 4 
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Extended Data Figure 5 



30 

Extended Data Figure 6 



Extended Data Table 1 | Data collection and refinement statistics. 

LH1-RC 

Data collection 

Space group C121 

Cell dimensions 

    a, b, c (Å) 145.23, 143.81, 210.28 

 ()  90.00, 90.74, 90.00 

Resolution (Å) 46.92-1.90 (1.968-1.900)* 

Rmerge 0.1035 (1.863) 

I / I 9.47 (1.14) 

Completeness (%) 99.95 (99.94) 

Redundancy 9.2 (8.0) 

Refinement 

Resolution (Å) 46.92-1.90 (1.968-1.900)* 

No. reflections 338536 (33812) 

Rwork / Rfree 0.1815 (0.3558)/0.2152 (0.3737) 

No. atoms 

    Protein 22003 

    Ligand/ion 5022 

    Water 956 

B-factors 65.45 

    Protein 63.68 

    Ligand/ion 73.62 

    Water 63.26 

R.m.s. deviations 

    Bond lengths (Å) 0.018 

    Bond angles () 1.77 

*Values in parentheses are for highest-resolution shell.

The table was prepared by using PHENIX with all automatic 

default settings. 



Extended Data Table 2 | Components of LH1-RC 

determined at the 1.9 Å resolution. 

Proteins Cofactor Numbers 

RC C, H, M, L 

BChl a 4 

BPhe a 2 

Heme-Fe 4 

Spirilloxanthin 1 

Non-heme-Fe 1 

Mg 1 

MQ8 1 

UQ8 5 

CDL 9 

PG 10 

PEF 2 

LH1 
α (16) 

β (16) 

BChl a 32 

Spirilloxanthin 16 

Ca 16 

Total 36 104 



Extended Data Table 3 | Average B-factors of the RC subunits and α-/β-

apoproteins of LH1.

LH1 α-

apoproteins 

No. of 

atoms 

Average 

B-factors 

A 548 72.17 

D 559 75.37 

F 559 79.27 

I 574 75.90 

K 571 69.46 

O 569 62.35 

Q 571 56.56 

S 582 60.01 

U 580 65.40 

W 565 67.74 

Y 571 74.25 

1 564 79.34 

3 569 78.86 

5 548 72.61 

7 566 72.46 

9 571 72.36 

Average 70.83 

RC 

subunits 

No. of 

atoms 

Average 

B-factors 

C 2590 51.82 

L 2466 44.45 

M 2850 43.60 

H 1976 60.59 

Average 49.36 

LH1 β-

apoproteins 

No. of 

atoms 

Average 

B-factors 

B 417 80.85 

E 392 84.21 

G 417 89.55 

J 417 82.48 

N 417 74.38 

P 417 64.49 

R 411 60.12 

T 426 64.16 

V 417 73.47 

X 411 77.82 

Z 403 79.47 

2 411 84.72 

4 417 80.31 

6 417 74.92 

8 411 76.65 

0 426 76.71 

Average 76.47 



Extended Data Table 4 | Interactions between LH1 and RC. 




