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Abstract

Tsunami became an interesting subject to the researchers since its history and effects to
the environment. To achieve a better understanding about the tsunamis behaviour, data
from the past events in conjunction with theories and models should be employed. Aims
of those studies are to predict and prepare a better countermeasure for the future tsunami
events. Tsunami is a natural phenomena that causes severe damage and fatalities. Major
tsunamis brought serious and widespread destructions. Studies of tsunami generation and
propagation are essential. Earthquake or some other water bottom disturbances are the
causative of tsunami generation. Those causative first generated the source fault plane of
the initial tsunami wave, which at any time can collapse and approach coastal area.

This study was built on the numerical approache for the tsunami propagation. A
nonlinear shallow water equation that is the system of partial differential equations was
analyzed. The outcomes of numerical results contains information about tsunami char-
acteristics and effects. Numerical techniques, specifically water elevation, were tested
againts the exact solutions of moving boundary shallow water equations. The initial wa-
ter surface displacement based on source planes generated by other authors was set as an
initial condition. A system of ordinary differential equations was obtained by reducing the
system of partial differential equations with spatial discretization over a triangular mesh.
Ordinary differential equations (ODE) solvers were applied in conjunction with a moving
boundary technique. In the simulation, what is called, wet and dry scheme was applied
at each time step. Our numerical techniques were utilized to simulate the Mentawai 2010
tsunami and the Indian Ocean 2004 tsunami.

The simulation of tsunami propagation at the Mentawai islands on October 25th, 2010
was carried out for the first 85 minutes. The wave heights at several points on Mentawai
Island Regency were observed. The initial wave were generated from the source planes
data and it produced the maximum water surface elevation approximately 3 m. The
numerical results show that wave with heights up to 3 m occured at a shoreline area of
the South Pagai island, Mentawai Regency. Furthermore, the Indian Ocean tsunami 2004
was simulated for the first 1 hour. Most of the source fault planes have occured in the
vicinity of the Aceh Province area, among which the highest water surface displacement
was up to 20 m. The maximum wave height up to 30 m was appeared at several points
in the Aceh Province. Our numerical results were confirmed by some available data and
other authors results.
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Chapter 1

Introduction

1.1 Tsunami

A wave is a change of the physical quantity which travel from the source area to other
surrounding locations. Water wave is clasified according to the mechanism of a generation
or based on the characteristics [1]. The causative factors and generating sources of a water
wave include gravity, tide, wind, earthquake, landslide, iceberg collapses, and underwater
volcanic activities, etc. Tsunami is a water wave that is generated mainly by an earthquake
or underwater disturbance. Tsunami was classified as a long nonlinear wave which has
a large amplitude. Tsunami wave occurs on the water surface with wave periods longer
than minutes. At the time a tsunami wave reaches the shoreline, the wave height varies
with the water depth.

Western Coastal and Marine Geology Institute [2] described the life circulation of
tsunami wave as: (1) Underwater shaking pushes the water column up above mean sea
level. Tsunami potential energy is transferred to the kinetic energy of the horizontal
propagation. (2) The initial tsunami wave is generated within several minutes and travel
towards the nearby coast. (3) The amplitude increases and the wave length decreases when
approaching a shoreline. (4) A runup occurs immediately upon tsunami wave reached
shoreline. The runup is a measurement of the water elevation above the mean sea level.
(5) A part of the tsunami energy is reflected back to the ocean after runup.



Figure 1.1: Tsunami wave illustration.

The National Centers for Environmental Information of National Oceanic and At-
mospheric Administration (NOAA) noted that the first recorded tsunami event occured
on 2000 BC [3]. The unknown moment magnitude earthquake occured at 35.800°E and
35.683°N, in the Syiria coast area, Syiria. The first known moment magnitude earthquake
which produced a tsunami event was Mw 7.0, at the North Aegean, Greece. The earth-
quake occured at 23.300°E and 39.700°N. The largest moment magnitude of an earthquake
which produced a tsunami wave on the BC era was Mw 7.3, at the Corinthos-Patras Gulf,
Greece. Table 1.1 describes the global tsunami events with the largest moment magnitude
earthquake of each millenium period.

In the territory of Southeast Asia, the first recorded earthquake which generated a
tsunami occured at the Java Island coast, Indonesia, on 416 AD. The earthquake source
was located at 105.423°E and 6.102°S. On July 1th, 1608 AD, another tsunami wave hit the
Ternate Island, Indonesia, which was located at 127.352° longitude and 0.800° latitude.
Table 1.2 describes the tsunami events with the maximum wave height greater than ten
meters in the Indonesia region.

1.2 Statement of the Problem

The Sumatra island is a part of Greater Sunda Islands archipelago. This island is located
at 102°E and 0°N and known as the largest island in the Republic of Indonesia. Sumatra
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Source: National Centers for Environmental Information, NOAA website.
Moment Maximum

No. Periode Year Magnitude Location Wave Height

(Mw) (m)

1 2nd millenium BC unknown unknown unknown unknown

2 1st millenium BC 373 7.3 Corinthos-Patras Gulf, Greece unknown

3 1st millenium AD 869 8.6 Sanriku, Japan -

887 8.6 Nankaido, Japan -

4 2nd millenium AD 1960 9.5 Southern Chile, Chile 25.00

5 3rd millenium AD 2004 9.1-9.3 Off west coast of Sumatra, Indonesia 50.90

2011 9.1 Honshu Island, Japan 38.90

Table 1.1: The global largest moment magnitude per-millenium which produced tsunami
[3].

Island has a strike-slip fault (the Great Sumatran fault) which is strectching out on the
entire length of the island, and a subduction zone (the Sunda megathrust) is the most
seismogenic structures on the earth. A strike-slip fault is a fault plane on which rock strata
are displaced mainly in a horizontal direction, parallel to the line of the fault plane. The
Great Sumatran fault zone accomodates most of the strike-slip motion between the Indo-
Australian plate and the Eurasian plate. A subduction is a destructive plate boundaries of
tectonic plates. In this process the movement of one plate below another is forced or sinks
due to gravity. A subduction zone is a region where this process occurs. In particular,
the Sunda megathrust was responsible for many earthquakes in the Indonesia.

Table 1.3 lists the earthquakes due to geological processes of the Sunda megathrust
at Sumatra Island with the moment magnitude Mw greater than seven. Seven out of the
thirteen earthquakes were produced tsunami waves that caused serious disasters. The
most recent most devastating tsunami event in the Sunda megathrust region was the
Indian Ocean tsunami which occured on December 26th, 2004. The Indian Ocean 2004
earthquake recorded the third largest magnitude millenium AD. Studies estimated the
moment magnitude (Mw) of the earthquake between 9.1 and 9.3. The tsunami generated
by this earthquake was the most devastating and deadly one, with more than 200,000
fatalities along the coasts of the Indian Ocean [5]. An earthquake with moment magnitude
Mw 7.8 and epicenter 20 km below the surface occured at Mentawai Island Recency,
Indonesia on October 25th, 2010. The Mentawai Islands earthquake generated the much
larger tsunami than expected from its seismic magnitude [6]. The maximum tsunami
wave height 16.90 m was produced by the Mentawai Islands 2010 earthquake. This event
caused 435 casualities and hundreds of people vanished from the entire Mentawai Islands
regency.

A recent explication shows that Indonesia, especially the Sumatra Island is the high
risk region of the tsunami event. The high numbers of fatalities due to the tsunami at-
tack generally caused by the lack of comprehension or the unavailability of tsunami early
warning system. A tsunami wave are described mathematically as a system of linear or
nonlinear partial differential equations. Those system of partial differential equations can
be solved numerically to simulate tsunami wave propagation. A simulation illustrates
tsunami wave generation and propagation. Numerical studies of tsunami generation and

3



Source: National Centers for Environmental Information, NOAA website.
Moment Maximum

No. Date Magnitude Location Coordinate Wave Height

(Mw) (m)

1 August 1th, 1629 - Banda Sea 129.900°E, 4.600°S 16.00

2 February 17th, 1674 6.8 Banda Sea 127.750°E, 3.750°S 100.00

3 1799 - Southeast Sumatra 101.000°E, 2.000°S 15.00

4 December 29th, 1820 7.5 Flores Sea 119.000°E, 7.000°S 25.00

5 June 28th, 1859 7.0 North Moluccas Islands 126.500°E, 1.000°N 10.00

6 March 3rd, 1871 - Ruang 125.425°E, 2.280°S 25.00

7 August 27th, 1883 - Krakatau 105.423°E, 6.102°S 41.00

8 September 29th, 1899 7.8 Banda Sea 128.500°E, 3.000°S 12.00

9 December 1th, 1927 6.3 Sulawesi 119.700°E, 0.700°S 15.00

10 August 4th, 1928 - Flores Sea 121.708°E, 8.320°S 10.00

11 March 17th , 1930 - Krakatau 105.423°E, 6.102°S 500.00

12 August 22nd, 1968 7.8 Banda Sea 119.800°E, 0.200°N 10.00

13 December 12th, 1992 7.8 Flores Sea 121.896°E, 8.480°S 26.20

14 June 2nd, 1994 7.8 South of Java 112.835°E, 10.477°S 13.90

15 December 26th, 2004 9.1 Off west coast of Sumatra 95.854°E, 3.316°N 50.90

16 July 17th, 2006 7.7 South of Java 107.411°E, 9.254°S 20.90

17 October 25th, 2010 7.7 Mentawai Islands, Sumatra 100.082°E, 3.487°S 16.90

Table 1.2: The highest tsunami wave occurred in the Republic of Indonesia [3].

propagation can provide sufficient outcomes to described tsunami characteristics and ef-
fects. Those outcomes can lead to the establishment of a tsunami hazard assessment and
a tsunami early warning system.

Poisson, et.al. [7] simulated the Indian Ocean 2004 tsunami by the tsunami code
Geowave at the eastern coast of Sri Lanka. The Geowave model was based on fully
nonlinear Boussinesq equations. The simulation was induced by five different models of
the seismic source. They made a comparison between the simulation results and the
satellite Jason-1 data. A numerical simulation was based on the 3-dimensional shallow
water equations [8]. A nonlinear dispersive Reynolds-averaged Navier-Stokes equations
were studied by using the FLOW3D code to simulate the coastal runup behavior at the
Lhok Nga, Aceh. The tsunami source fault plane parameters proposed by Tanioka, et.al
[9] were utilized. A number of numerical simulations were performed by Syamsidik, et.al.
[10]. The simulations were based on the Cornell Multi-grid Coupled Tsunami (COMCOT)
model. The data were obtained from the Indian Ocean 2004 tsunami event and a future
near-shore tsunami events around the Mentawai Island.

The Mentawai Island 2010 tsunami was simulated based on the shallow water equa-
tions [11]. Two numerical models were employed and performed by using nonlinear and
dispersive long wave tsunami models (TUNAMI N” and SWAN). A tsunami simulation
system which was an integration part of the Global Disasters Alerts and Coordinate Sys-
tem (GDACS) established by Ulutas, et.al. [12]. This study aims to assess the tsunami
hazard on the Mentawai and Sumatra coast. Satake, et.al. [6] simulated tsunami wave
heights of the Mentawai 2010 using linear computations on a spherical coordinate sys-
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Source: NOAA and USGS website [3],[4].
Moment

No. Date Time Location Coordinate Magnitude Result

(UTC) (Mw)

1 June 4th, 2000 4:21:16 Enggano, Bengkulu 102.087°E, 4.721°S 7.9 -

2 November 2nd, 2002 1:26:10 Simeulue, Aceh 96.085°E, 2.824°N 7.3 -

3 December 26th, 2004 0:58:53 Off west coast of Aceh 95.854°E, 3.316°N 9.1-9.3 Tsunami

4 March 28th, 2005 16:9:36 Southwest Sumatra 97.108°E, 2.085°N 8.6 Tsunami

5 September 12th, 2007 11:10:26 Bengkulu 101.367°E, 4.438°S 8.4 Tsunami

September 12th, 2007 23:49:3 Bengkulu 100.841°E, 2.625°S 7.9 -

6 September 13th, 2007 3:35:26 Padang, West Sumatra 99.851°E, 2.160°S 7.0 -

7 February 20th, 2008 8:8:30 Banda Aceh, Aceh 95.964°E, 2.768°N 7.4 -

8 February 25th, 2008 8:36:33 Padang, West Sumatra 99.972°E, 2.486°S 7.2 Tsunami

9 September 30th, 2009 10:16:9 Padang, West Sumatra 99.867°E, 0.720°S 7.6 Tsunami

10 April 6th, 2010 22:15:1 Medan, North Sumatra 97.048°E, 2.383°N 7.8 Tsunami

11 May 9th , 2010 5:59:41 Simeulue Island, Aceh 96.018°E, 3.748°N 7.2 -

12 October 25nd, 2010 14:42:22 Mentawai, West Sumatra 100.082°E, 3.487°S 7.7 Tsunami

Table 1.3: The list of the earthquakes occured in the Sunda megathrust on period 2000-
2010.

tem and a system of nested grids. A finite difference scheme in the Cartesian coordinate
system was used to solved the nonlinear shallow water equations to simulated the wave
heights.

In this study, the nonlinear shallow water equations based on [13] were analyzed nu-
merically by using finite element analysis to simulated the Indian Ocean 2004 tsunami
and the Mentawai 2010 tsunami. A governing equations is a system of partial differential
equations derived from momentum equations and a continuity equation. Furthermore, the
system of partial differential equations was spatially discretized for reduction to a system
of ordinary differential equations (ODE) over a triangular mesh. The ODE solvers were
applied to the resultant of the system of ODE’s in conjunction with a moving bound-
ary technique. The numerical techniques were tested by comparing the numerical results
againts the exact solutions of the two-dimensional nonlinear shallow water equations in-
volving linear bottom friction for flow above parabolic bottom topography [14, 15]. The
seafloor vertical deformation of those tsunami events were computed by using Okada
formulation [16, 17] based on the source faults plane parameters. The results of the com-
putation were set as an initial water surface displacement for tsunami simulation. The
simulation and wave height changes of the Indian Ocean 2004 tsunami and the Mentawai
2010 tsunami were illustrated.
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Chapter 2

Mathematical Formulation

2.1 Shallow Water Equation

In the theory of a long wave, the vertical acceleration of water particles are negligible
except for an oceanic propagation of tsunami [13]. The vertical motion of water particles
has small effect on the water pressure distribution in consequence of the negligibility of
the vertical acceleration compared to the gravitational acceleration. The approximation
of the pressure distribution, with the hydrostatic pressure and the negligibility of the
vertical acceleration lead to by equations (2.1)-(2.4). The equations of mass conservation
and momentum in the three dimensional problem are expressed by

∂η

∂t
+

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (2.1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
+

1

ρ

∂p

∂x
+

1

ρ

(∂τxx
∂x

+
∂τxy
∂y

+
∂τxz
∂z

)
= 0, (2.2)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
+

1

ρ

∂p

∂y
+

1

ρ

(∂τxy
∂x

+
∂τyy
∂y

+
∂τyz
∂z

)
= 0, (2.3)

g +
1

ρ

∂ρ

∂z
= 0. (2.4)

Let η be the vertical displacement above the still water surface. The functions u, v, and
w are the water particle velocities in the x-, y-, and z-direction, respectively, where x and
y are the horizontal axis while z is the vertical axis. The constant g is the gravitational
acceleration, ρ is the water density, and τij is the normal or tangential shear stress in the
i direction on the j normal plane. The variable p is the hydrostatic pressure.

The dynamic and kinetic conditions at the surface and the bottom are given by

p = 0 at z = η, (2.5)

w =
∂η

∂t
+ u

∂η

∂x
+ v

∂η

∂y
at z = η, (2.6)



w = −u
∂h

∂x
− v

∂h

∂y
at z = −h. (2.7)

The Leibniz rule is applied to the equations (2.1)-(2.4). The dynamic and kinetic condi-
tions (2.5)-(2.7) were used, and the two-dimensional shallow water equations was obtained.

∂η

∂t
+

∂M

∂x
+

∂N

∂y
= 0, (2.8)

∂M

∂t
+

∂

∂x

(M2

H

)
+

∂

∂y

(MN

H

)
+ gH

∂η

∂x
+

τx
ρ

= A
(∂2M

∂x2
+

∂2M

∂y2

)
, (2.9)

∂N

∂t
+

∂

∂x

(MN

H

)
+

∂

∂y

(N2

H

)
+ gH

∂η

∂y
+

τy
ρ

= A
(∂2N

∂x2
+

∂2N

∂y2

)
. (2.10)

Here H = h+ η is the total water depth. The variable A is the horizontal eddy viscosity
which assumed to be constant in space. The variables M and N are the discharge fluxes
in the x-direction and y-direction, respectively, that is

M =

∫ η

−h

u dz ≈ u(h+ η) = uH, (2.11)

N =

∫ η

−h

v dz ≈ v(h+ η) = vH. (2.12)

The terms τx and τy are the bottom frictions in the x-direction and y-direction, respec-
tively.

τx
ρ

=
1

2g

f

H2
M

√
M2 +N2,

τy
ρ

=
1

2g

f

H2
N
√
M2 +N2. (2.13)

The variable f is the friction coefficient in conjunction of Manning’s roughness n, written
by

n =

√
fH

1
3

2g
. (2.14)

Thus the bottom friction became

τx
ρ

=
fn2

H
7
3

M
√
M2 +N2,

τy
ρ

=
fn2

H
7
3

N
√
M2 +N2. (2.15)

Equations (2.16)-(2.18) were obtained by neglecting the horizontal eddy turbulance
viscosity A. The term eddy in fluid dynamics refer to the swirling of a fluid and the reverse
current. Eddy is created when the fluid is in a turbulent flow regime. Whereas, the term
turbulance is any pattern of fluid motion characterized by changes in pressure and flow

7



velocity. Those equations (2.16)-(2.18) are a model for the propagation of tsunami wave
in the shallow water consisting the bottom friction.

∂η

∂t
+
(∂M
∂x

+
∂N

∂y

)
= 0, (2.16)

∂M

∂t
+

∂

∂x

(M2

H

)
+

∂

∂y

(MN

H

)
+ gH

∂η

∂x
+

gn2

H
7
3

M
√
M2 +N2 = 0, (2.17)

∂N

∂t
+

∂

∂x

(MN

H

)
+

∂

∂y

(N2

H

)
+ gH

∂η

∂y
+

gn2

H
7
3

N
√
M2 +N2 = 0. (2.18)

Equations (2.16)-(2.18) are the governing equations for our numerical scheme for simu-
lating the tsunami wave propagation.

2.2 Numerical Formulation

The domain in the xy-plane is subdivided into triangular elements with the total number
of nodes m and total number of elements l. The element with a triangle shape is the
most widely used in finite element analysis. A basis function associated with the ith node
is a piecewise linear continuous function. A piecewise linear function ϕj which satisfies
ϕj(xi, yi) = δij will be derived for the triangular elements. Let a linear case polynomial
is used to interpolate a function u associated to two-dimensional coordinate (x, y), given
by [18]

u(x, y) = α1 + α2x+ α3y. (2.19)

Here, α1, α2, and α3 are the constants.
Suppose that (xi, yi), (xj, yj), and (xk, yk) are the coordinate of nodes i, j, and k

of element e, respectively. The interpolation function u associated nodes i, j, and k is
expressed by

u(xi, yi) = α1 + α2xi + α3yi, (2.20)

u(xj, yj) = α1 + α2xj + α3yj, (2.21)

u(xk, yk) = α1 + α2xk + α3yk. (2.22)

Those functions are satisfies the conditions

u(xi, yi) = ui, u(xj, yj) = uj, u(xk, yk) = uk, (2.23)

where ui, uj, and uk are the values of u(x, y) at the vertices i, j, and k, respectively.
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Figure 2.1: Triangular element e.

The value of function u(x, y) for element e (Fig. 2.1) is expressed by [19]

u(x, y) = uiϕ
(e)
i (xi, yi) + ujϕ

(e)
j (xj, yj) + ukϕ

(e)
k (xk, yk). (2.24)

Here, ϕ
(e)
i , ϕ

(e)
j , and ϕ

(e)
k are the piecewise linear functions for the triangular element, given

by

ϕ
(e)
i =

1

2Ae

(αi1 + αi2xi + αi3yi), (2.25)

ϕ
(e)
j =

1

2Ae

(αj1 + αj2xj + αj3yj), (2.26)

ϕ
(e)
k =

1

2Ae

(αk1 + αk2xk + αk3yk). (2.27)

Here, Ae is the area of the triangle e which given by

Ae =
xi(yj − yk) + xj(yk − yi) + xk(yi − yj)

2
. (2.28)

Constants αi1, αi2, and αi3 are expressed by

αi1 = xjyk − xkyj, αi2 = yj − yk, αi3 = xk − xj. (2.29)

Index i, j, and k satisfies i ̸= j ̸= k and i, j, k are changes order on clockwise direction.
Thus, the piecewise function ϕ

(e)
j (xi, yi) is given by

ϕ
(e)
j (xi, yi) =

{
1 if i = j

0 if i ̸= j
. (2.30)
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The partial derivatives of approximation (2.24) for any function u with respect to x
and y is expressed with

∂u

∂x
= ui

yj − yk
2Ae

+ uj
yk − yi
2Ae

+ uk
yi − yj
2Ae

, (2.31)

∂u

∂y
= ui

xk − xj

2Ae

+ uj
xi − xk

2Ae

+ uk
xj − xi

2Ae

. (2.32)

The approximate value of ∂u
∂x

and ∂u
∂y

at the ith node, are the weighted average value of
their partial derivations over the element which shared the same node i.(∂u

∂x

)
i
=

1

Σl
k=1(Ae)k

Σl
k=1(Ae)k

(∂u
∂x

)(k)

, (2.33)

(∂u
∂y

)
i
=

1

Σl
k=1(Ae)k

Σl
k=1(Ae)k

(∂u
∂y

)(k)

. (2.34)

Here,
(

∂u
∂x

)(k)

and
(

∂u
∂y

)(k)

are the approximate value of the partial derivative
(

∂u
∂x

)
i
and(

∂u
∂y

)
i
in the k-th element, respectively.

2.3 Transformation to a Rectangular Coordinate

The Gauss-Krugër projection is a mapping of a coordinate reference ellipsoid of the earth
onto a plane coordinate, where the equator and central meridian remain as straight lines
and the scale along the central meridian is constant [20]. The ellipsoid is a surface of
revolution created by rotating an ellipse about its minor axis. Fig. 2.2 shows an ellipsoid
with center O, the rotation axis north-south NS, and the equatorial plane EAE

′
[21].

The segment OA = OE = a is the major radius of the ellipsoid, and ON = b is the minor
radius. The geometrical constants of the ellipsoid are given by

f =
a− b

a
, e =

√
a2 − b2

a2
, e

′
=

√
a2 − b2

b2
, e2 =

e
′2

1 + e′2
, e

′2 =
e2

1− e2
. (2.35)

Here f is the flattening constant, e and e
′
are the first eccentricity and the 2nd eccentricity,

respectively.
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Figure 2.2: The ellipsoid of the earth [21].

The value of the major radius is given by a = 6378137.0 m and the value of the
flattening constant is given by f = 1

298.257223563
. The meridian curvature radius M is the

arc of the meridian. Its measured from the equator to the point of latitude φ.

M =
a(1− e2)

(1− e2 sin2 φ)
3
2

, (2.36)

where φ is the curvilinear coordinate latitude. The radius of the curvature N ,

N =
a√

1− e2 sin2 φ
=

a2√
a2 cos2 φ+ b2 sin2 φ

. (2.37)

Parameter R is the average of the curvature radius

R =
√
MN. (2.38)

The Gauss-Krugër projection converts the curvilinear coordinates to (x, y) coordinate.
Furthermore, the (x, y) coordinate plane converted to (X, Y ) coordinate plane. Here,
x and X represent the length in the north-south NS (latitude) direction, and y and Y
represent the direction in the east-west EW (longitude) direction. Consider the derivative
ds of the arc of a meridian ellipse. The derivative is a circle of the meridian curvature
radius M . Let M is the length of the arc of dφ, expressed by

ds =
a(1− e2)

(1− e2 sin2 φ)
3
2

dφ. (2.39)

The length of the arc between two points latitude φ1 and φ2 is

s =

∫ φ2

φ1

a(1− e2)

(1− e2 sin2 φ)
3
2

dφ. (2.40)
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The integration by using series expansion is utilized

s = B −B0. (2.41)

Here B is the measurement meridian arc length, given by

B = a(1− e2)
[
A

′
φ2 −

B
′

2
sin 2φ2+

C
′

4
sin 4φ2 −

D
′

6
sin 6φ2+

E
′

8
sin 8φ2 −

F
′

10
sin 10φ2 + ...

]
,

(2.42)

where B0 expressed by

B0 = a(1− e2)
[
A

′
φ1 −

B
′

2
sin 2φ1+

C
′

4
sin 4φ1 −

D
′

6
sin 6φ1+

E
′

8
sin 8φ1 −

F
′

10
sin 10φ1 + ...

]
.

(2.43)

The constants A
′
, B

′
, C

′
, D

′
, E

′
, and F

′
are given by

A
′
= 1 +

3

4
e2 +

45

64
e4 +

175

256
e6 +

11025

16384
e8 +

43659

65536
e10, (2.44)

B
′
=

3

4
e2 +

15

16
e4 +

525

512
e6 +

2205

2048
e8 +

72765

65536
e10, (2.45)

C
′
=

15

64
e4 +

105

256
e6 +

2205

4096
e8 +

10395

16384
e10, (2.46)

D
′
=

35

512
e6 +

315

2048
e8 +

31185

131072
e10, (2.47)

E
′
=

315

16384
e8 +

3465

65536
e10, (2.48)

F
′
=

693

131072
e10. (2.49)

Let λ0 is the longitude as the origin of the curvilinear coordinate when converting the
ellipsoid coordinate of an arbitrary point. Considering the transformation of (λ, φ) into
the plane coordinate (x, y), and

l = λ− λ0. (2.50)

The transformation formula of (λ, φ) to (x, y) is given by

x = B +
Nl2

2
sinφ cosφ+

Nl4

24
sinφ cos3 φ(5− t2 + 9η2 + 4η4)

+
Nl6

720
sinφ cos5 φ(61− 58t2 + t4 + 270η2 − 330t2η4)

+
Nl8

40320
sinφ cos7 φ(1385− 3111t2 + 543t4 − t6) + ...,

(2.51)
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y = Nl cosφ+
Nl3

6
cos3 φ(1− t2 + η2)

+
Nl5

120
cos5 φ(5− 18t2 + t4 + 14η2 − 58t2η2)

+
Nl7

5040
cos7 φ(61− 479t2 + 179t4 − t6) + ....

(2.52)

Here, t = tanφ, η2 = e
′2 cos2 φ, N is the radius of the curvature, and M is the radius of

the meridian curvature. Note that the converted x is in the north-south direction and y
is in the east-west direction.

A formula to converts the (x, y) coordinate into the coordinate (X, Y ) is given by

X = m0k(x−B0) +X0, (2.53)

Y = m0ky + Y0. (2.54)

Here m0 is a meridian where longitude defined as zero (0o), B0 is the meridian from the
equator to the origin latitude of the plane coordinate system. Coefficient k given by

k = 1 +
h0

r0
, r0 =

√
M0N0, (2.55)

where h0 is the height of the coordinate plane from the ellipsoid plane and r0 is the
average radius of curvature of the origin, obtained by equation (2.38). Those projection
are utilized to transform our bathymetry data into (X.Y ) coordinate. Fig. 2.3 shows the
visualization of the Mentawai bathymetry data transformed by the previous Gauss-Krugër
projection.

Figure 2.3: The visualization of the Mentawai bathymetry data.
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2.4 Okada Formulation

Okada formulation is a model to calculate the displacement of water surface ui and its
spatial derivative ∂ui

∂xj
at an arbitrary point. It gives the displacement at an arbitrary

point on the surface or inside of the semi-infinite medium due to a point source or a
finite rectangular fault [16,17]. The deformation field ui(x1, x2, x3) due to a dislocation
∆uj(ξ1, ξ2, ξ3) over a surface Σ for a point source is given by

ui =
1

F

∫ ∫
Σ

∆uj

[
λδjk

∂un
i

∂ξn
+ µ

(∂uj
i

∂ξk
+

∂uk
i

∂ξj

)]
vk dΣ, (2.56)

where δjk is the Kronecker delta, λ and µ are Lame’s constants, vk is the direction cosine
of the normal to the surface element dΣ. The function ∂uj

i is the i-th component of
the displacement at (x1, x2, x3) due to the j-th direction point force of magnitude F at
(ξ1, ξ2, ξ3) [16]. The coordinate (ξ1, ξ2, ξ3) is the coordinate of the point on the surface,
and (x1, x2, x3) is the coordinate of the observation point. The displacement ui(x1, x2, x3)
is considered in an isotropic medium. An isotropic medium is an object or substance
which having a physical property that has the same value when measured in the different
directions. The dislocation is the distance of a relative motion between fault plane.

A calculation of the strain and stress in the medium expressed as

εij =
1

2

(∂ui

∂xj

+
∂uj

∂xi

)
, (2.57)

τij = λεkkδij + 2µεij. (2.58)

The Cartesian coordinate system (Fig. 2.4) is utilized. The medium occupies the region of
z ≤ 0. Axis x is taken to be parallel to the strike fault (U1) direction. The dislocations U1,
U2, and U3 are define as the strike-slip, dip-slip, and tensile components of dislocation. A
strike-slip is the nearly vertical fractures where the blocks have mostly moved horizontally.
A dip-slip is the inclined fractures where the blocks have mostly shifted vertically. A
tensile is the force required to pull something to the point where it breaks. The location
of the point source is (0, 0,−d).

14



Figure 2.4: Geometry of the source model [16].

For a finite rectangular fault source with length L and width W , the deformation field
can be derived by taking

x = x− ε
′
, y = y − η

′
cos(δ), d = d− η

′
sin(δ). (2.59)

The integration∫ x−L

x

dε

∫ p−L

p

dη, (2.60)

was performed, where x− ε
′
= ε, p− η

′
= η, and p = y cos δ + d sin δ. The substitution

f(ε, η) ∥= f(x, p)− f(x, p−W )− f(x− L, p) + f(x− L, p−W ), (2.61)

is used to obtained the displacement field in a rectangular fault source.
The surface deformation correspond to x, y, and z components is given by

u(x, y, 0) = uB(x, y, 0), (2.62)

∂u

∂x
(x, y, 0) =

∂uB

∂x
(x, y, 0), (2.63)

∂u

∂y
(x, y, 0) =

∂uB

∂y
(x, y, 0), (2.64)

∂u

∂z
(x, y, 0) = 2

∂uA

∂z
(x, y, 0) +

∂uB

∂z
(x, y, 0) + uC(x, y, 0). (2.65)
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Here uA, uB, and uC are the formula of the finite medium related to part A, a surface
deformation related to part B, and a depth multiplied part C [17]. The deformation
formula in an finite medium can be expressed by a term u0

A(x, y,−z) for point source and
fA(ε, η,−z) ∥ for finite rectangular fault source. Term u0

A(x, y,−z) is refer to a function
of displacement due to a point source at (x, y,−z). Term fA(ε, η,−z) ∥ is refer to a
funtion of displacement due to a finite rectangular source at (ε, η,−z). Fig. 2.5 shows
the result of the water surface deformation of the Indian Ocean 2004 tsunami, calculated
by Okada formula.

Figure 2.5: The result of water surface deformation by Okada formula.
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Chapter 3

Numerical Techniques

3.1 Governing Equations

The numerical model is based on the nonlinear shallow water equations [13,22]. The
following system of partial differential equations (3.1)-(3.3) were solved numerically to
generate a simulation of the tsunami propagation.

∂η

∂t
+
(∂M
∂x

+
∂N

∂y

)
= 0, (3.1)

∂M

∂t
+

∂

∂x

(M2

H

)
+

∂

∂y

(MN

H

)
+ gH

∂η

∂x
+ Fx = 0, (3.2)

∂N

∂t
+

∂

∂x

(MN

H

)
+

∂

∂y

(N2

H

)
+ gH

∂η

∂y
+ Fy = 0. (3.3)

Here, H(x, y, t) is the total depth where H(x, y, t) = h(x, y) + η(x, y, t), z = −h(x, y)
is sea depth and η(x, y, t) is the water surface elevation from the mean sea level. The
constant g is the gravitational acceleration. Functions M(x, y, t) and N(x, y, t) are the
discharge fluxes, the integrations of x-component of the velocity u, and of y-component
of the velocity v, respectively. Those functions is written by

M(x, y, t) =

∫ η

−h

u dz, N(x, y, t) =

∫ η

−h

v dz. (3.4)

Terms Fx and Fy, where

Fx =
gn2

H
7
3

M
√
M2 +N2, Fy =

gn2

H
7
3

N
√
M2 +N2, (3.5)

are the x-component and y-component of the bottom friction, respectively. The constant
n is the Manning’s roughness coefficient. The value of η is too small compared to h when
the wave traveled in the deep sea. Thus the momentum equations become linear, due to
the disregard of the nonlinear advection and bottom friction terms.



3.2 Discretization of Linearized Equations Over Tri-

angular Mesh

Let the linearized of the system equations (3.1)-(3.3) without bottom friction terms is
given by

∂η

∂t
+
(∂M
∂x

+
∂N

∂y

)
= 0, (3.6)

∂M

∂t
+ g(η + h)

∂η

∂x
= 0, (3.7)

∂N

∂t
+ g(η + h)

∂η

∂y
= 0. (3.8)

A basis function Φj associated with the ith node with coordinate (xi, yi), is a piecewise
linear function over the domain, which satisfies

Φj(xi, yi) = δij =

{
1 if i = j

0 if i ̸= j
. (3.9)

Suppose that the functions M(x, y, t), N(x, y, t), η(x, y, t) and h(x, y) are approximated
by a linear combinations of the basis functions Φj.

M(x, y, t) =
m∑
j=1

Mj(t).Φj(x, y), (3.10)

N(x, y, t) =
m∑
j=1

Nj(t).Φj(x, y), (3.11)

η(x, y, t) =
m∑
j=1

ηj(t).Φj(x, y), (3.12)

h(x, y) =
m∑
j=1

hj.Φj(x, y). (3.13)

Here Mj, Nj, ηj, and hj are unknown coefficients. The constant m is the total number of
nodes.

Substituted the equations (3.10)-(3.13) into the system equations (3.6)-(3.8). Then
the system equations (3.6)-(3.8) becomes

m∑
j=1

∂η

∂t
Φj +

(∂M
∂x

+
∂N

∂y

)
= 0, (3.14)
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m∑
j=1

∂M

∂t
Φj + g

∂η

∂x

m∑
j=1

(ηj + hj)Φj = 0, (3.15)

m∑
j=1

∂N

∂t
Φj + g

∂η

∂y

m∑
j=1

(ηj + hj)Φj = 0. (3.16)

Setting (x, y) = (xi, yi) as for every node i, the system equations (3.14)-(3.16) becomes

dηi
dt

= −
(∂M
∂x

+
∂N

∂y

)
, (3.17)

dMi

dt
= −g

∂η

∂x
(ηi + hi), (3.18)

∂Ni

∂t
= −g

∂η

∂y
(ηi + hi). (3.19)

The collocation method is implemented in analysis of the system equations for dis-
cretization on a triangular mesh. Each partial derivative of the system equations (3.17)-
(3.19) on the right-hand side is approximated. The approximate value of a partial deriva-
tive at each node is based on the average values of the partial derivative over the elements
which share the node as a common vertex. The following equations (3.20)-(3.21) are the
partial derivative at the i-th node.(∂η

∂x

)
i
=

1∑l
k=1Ak

l∑
k=1

Ak

(∂η
∂x

)(k)

, (3.20)

(∂η
∂y

)
i
=

1∑l
k=1 Ak

l∑
k=1

Ak

(∂η
∂y

)(k)

. (3.21)

Here A1, A2, ..., Al are the areas of the elements which share the i-th node as a common

vertex. The term
(

∂η
∂x

)(k)

( Eq. 3.23) is an approximate value of the partial derivative(
∂η
∂x

)
at the k-th element.

3.3 Discretization of Governing Equations Over Tri-

angular Mesh

Let Hi = (ηi + hi) is the total depth at node i. The discretization for the nonlinear
equations (3.1)-(3.3) over a shallow water area for every node i is written as

dηi
dt

= −
(∂M
∂x

+
∂N

∂y

)
, (3.22)
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dMi

dt
= − ∂

∂x

(M2

H

)
− ∂

∂y

(MN

H

)
−g

∂η

∂x
Hi−Fx, (3.23)

∂Ni

∂t
= − ∂

∂x

(MN

H

)
− ∂

∂y

(N2

H

)
−g

∂η

∂y
Hi−Fy. (3.24)

Here

Fx =
gn2

H
7
3
i

Mi

√
(M2

i +N2
i ), (3.25)

Fy =
gn2

H
7
3
i

Ni

√
(M2

i +N2
i ). (3.26)

The partial derivative on the right-hand side of the system equation (3.22)-(3.24) are
approximated with

∂

∂x

(M2

H

)
= 2

Mi

Hi

∂M

∂x
− M2

i

H2
i

∂H

∂x
, (3.27)

∂

∂y

(N2

H

)
= 2

Ni

Hi

∂N

∂y
− N2

i

H2
i

∂H

∂y
, (3.28)

∂

∂x

(MN

H

)
=

Ni

Hi

∂M

∂x
+

Mi

Hi

∂N

∂x
− MiNi

H2
i

∂H

∂x
, (3.29)

∂

∂y

(MN

H

)
=

Ni

Hi

∂M

∂y
+

Mi

Hi

∂N

∂y
− MiNi

H2
i

∂H

∂y
. (3.30)

With the previous approximations, the system equations of partial differential equa-
tions (3.1)-(3.3) is reduced to a system of ordinary differential equations (ODE). The
descritization of dη

dt
at node i expressed as

dηi
dt

= −
(∂M
∂x

+
∂N

∂y

)
, (3.31)

while the descritization of dM
dt

at node i is given by

dMi

dt
= − ∂

∂x

[
2MMi

Hi

− HM2
i

H2
i

+ gηHi

]
− ∂

∂y

[
MNi

Hi

+
NMi

Hi

− HMiNi

H2
i

]
− Fx, (3.32)

and the descritization of dNi

dt
at node i is

dNi

dt
= − ∂

∂x

[
MNi

Hi

+
NMi

Hi

− HMiNi

H2
i

]
− ∂

∂y

[
2NNi

Hi

− HN2
i

H2
i

+ gηHi

]
− Fy. (3.33)
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Here

Fx =
gn2

H
7
3
i

Mi

√
M2

i +N2
i , (3.34)

Fy =
gn2

H
7
3
i

Ni

√
M2

i +N2
i . (3.35)

The system equations of ordinary differential equations (3.31)-(3.33) are solved numer-
ically using a standard ODE solver. Inthis study the fourth-order Adam-Bashforth-
Moulton predictor-corrector in PECE mode in conjunction with the Runge-Kutta method
were employed [23].
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Chapter 4

Numerical Results

4.1 Verification of the Numerical Techniques

The characteristic feature of exact solutions by Sampson et. al. [14, 15] involves moving
shoreline. Consider the case where the motion of shallow water in a basin [14, 24] is
governed by the equations:

∂ζ

∂t
+

∂(h+ ζ)U

∂x
+

∂(h+ ζ)V

∂y
= 0, (4.1)

∂U

∂t
+ U

∂U

∂x
+ V

∂U

∂y
+ τU + g

∂ζ

∂x
= 0, (4.2)

∂V

∂t
+ U

∂V

∂x
+ V

∂V

∂y
+ τV + g

∂ζ

∂y
= 0. (4.3)

Here, ζ(x, y, t) is the height of the water surface above mean sea level, the water surface
z = −h(x, y) expresses the bottom surface, U(x, y, t) and V (x, y, t) are the depth-averaged
x and y velocity components, repectively. The constant τ is the bottom friction parameter,
and constant g is the gravity acceleration. Consider the flow takes place in the parabolic
canal:

h(x, y) = h0

(
1− x2

a2

)
, (4.4)

where h = 0 and a are positive constants.

The exact solutions for τ <
√

8gh0

a2
are given by:

U(x, y, t) = Be
−τt
2 sin(st), (4.5)

V (x, y, t) = 0, (4.6)

ζ(x, y, t) = ζ0(x, y, t) + xζ1(x, y, t), (4.7)



where

ζ0(x, y, t) =
a2B2e−τt

8g2h0

[
−sτ sin(2st) +

(τ 2
4

− s2
)
cos(2st)

]
− B2e−τt

4g
, (4.8)

ζ1(x, y, t) =
[e−τt

2

g

(
Bs cos(st) +

τB

2
sin(st)

)]
. (4.9)

Here,

s =

√
p2 − τ 2

2

and

p =

√
8gh0

a2

. The numerical techniques of the finite element analysis were applied to the equations
(4.1)-(4.3), and yields:

∂ζ

∂t
= −∂ζ

∂t
u+

2h0x

a2
u, (4.10)

∂u

∂t
= −

(
τu+ g

∂ζ

∂x

)
, (4.11)

∂v

∂t
= −g

∂ζ

∂y
. (4.12)

To obtain the numerical results, initial conditions (4.13)-(4.15) were set.

u(t0) = Be
−τt0

2 sin(st0), (4.13)

v(t0) = 0, (4.14)

ζ(t0) = ζ0(t0) + xζ1(t0), (4.15)

where

ζ0(t0) =
a2B2e−τt0

8g2h0

[
−sτ sin(2st0) +

(τ 2
4

− s2
)
cos(2st0)

]
− B2e−τt0

4g
, (4.16)

ζ1(t0) =
[e−τt0

2

g

(
Bs cos(st0) +

τB

2
sin(st0)

)]
. (4.17)
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The exact solution and a numerical solution were considered in a parabolic canal which
has constants value a = 3 km, h0 = 10 m for motion in which B = 5 m s−1. The exact
solutions which compared with the numerical results are the exact solutions obtained for
τ = 0.001 s−1 [14].

Fig. 4.1 (a) and (b) show profile of the initial water surface for a numerical solution
and exact solution, respectively. The comparison of the water surface profiles between a
numerical result and the exact solutions at the first 800 seconds are illustrated. Fig. 4.2
(a) shows the comparison of the water surface movement at the time t = 200 seconds.
Fig 4.2 (b)-(d) show the comparison of the water surface movement at the time t = 400
seconds, t = 600 seconds, and t = 800 seconds, respectively. The comparison between
exact solutions and numerical results shows an acceptable agreement for every time step
for the first 800 seconds. However, numerical results for water elevation ζ start to increase
enormously around the water surface boundaries and become uncontrollable.

a) Numerical techniques b) Exact solutions

Figure 4.1: Profiles of the initial water surface.
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a) t = 200 sec. b) t = 400 sec.

c) t = 600 sec. d) t = 800 sec.

Figure 4.2: Comparison of the water surface movement between numerical techniques
(Green) and exact solutions (Blue).
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Chapter 5

Numerical Simulation of Tsunami
Propagation

5.1 The Algorithm of The Simulation

The simulation process consists of eight steps.

1. Collecting the bathymetry data.
In this case, obtained data is the complete data set gives global coverage on a one
arc-minute grid. An arc-minute is a unit of the angular measurement which is equal
to 1

60
of one degree. A minute of arc is 1

21600
of a turn or π

10800
of a radian. The data

is in the form of 2D (two-dimensional) netCDF data sets (.nc). Each file consists
of two sections, the CF header and the data section. The CF header is split into
a number of components; dimensions, variables and global attributes. The data
section is the section contains the actual values for each dimension and variable.
The data values represent elevation in metres, with negative values for bathymetric
depths and positive values for topographic heights.



Figure 5.1: An example of the 2D netCDF data sets display.

2. The Matlab is used to convert the 2D netCDF data sets into the latitude, longitude,
and elevation data values.

3. The Gauss-Krugër projection is applied for conversion of the curvilinear coordinates
into the Cartesian coordinates with a C programming.

4. A triangular mesh over the topographical domain is generated and yields numbers
of nodes and elements which used in the discretization of the model. The process
consists the numbering of the nodes and the elements .

5. The topographical feature is generated with a C programming and visualized.

6. Okada formulation [16,17] is used to calculation the water surface displacement. The
calculation based on Okada model is required nine parameters of the source fault
plane. Those parameters are the latitude, longitude, length, width, and depth of the
source fault plane. Moreover, the strike angle, the rake angle, the dip angle, and the
slip amount distribution of the source fault plane also inputted into the calculation.
A C programming has been used. The calculated water surface displacement is set
as the initial water surface displacement for the tsunami wave generation. Thus the
initial water surface diplacement is visualized.
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7. The calculation of the numerical solutions and the simulation of the tsunami wave
propagation are obtained by using a programming. The numerical solutions consists
of the wave heights elevation per time simulation (second).

8. The graphical visualization of the numerical solutions is generated with AVS/Express
data visualization toolkit.

Those previous steps are repeated for both cases simulation, the Mentawai 2010 tsunami
and the Indian Ocean 2004 tsunami.

5.2 Simulation of the Mentawai 2010 Tsunami

Topographical data of the Mentawai Islands regency were stretched from 85.0°E to
106.0°E and 6.0°N and 15.0°S. Those data were obtained from British Oceanographic
Data Centre (BODC), General Bathymetric Chart of the Oceans (GEBCO) in form of
One Minute Grid (GRIDONE) [25]. A C programming has been used to simulate the
tsunami wave for a rectangular domain of 1260 sub-rectangles in the x-direction and 1260
sub-rectangles in the y-direction. Each sub-rectangle was further divided into 2 triangles.
A triangular mesh of the Mentawai 2010 tsunami simulation has 1,590,121 total nodes
and 3,175,200 total elements.

Figure 5.2: The illustration of the nodes and the elements numbering process.

The initial water surface displacement based on Okada [16, 17] was set. A source
fault plane lie at 99.86567°E to 100.10976°E and 2.55268°S to 4.34144°S. Nine parameters
of source fault planes were obtained from Satake, et.al [6]. The source fault plane were
divides into 28 sub-faults with 30 km length and 30 km width. The dip angle was set to
7.5° for sub-faults with depth 2-5.92 km and 12° for sub-faults with depth 9.83-16.07 km.
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The strike angle and rake angle were set to 326° and 101°, respectively. The slip amount
distribution ranged from 0.0 m and 6.10 m. The results of the calculation show that the
water height of surface displacement were range to 0 m to 3 m. The maximum water
surface displacement up to 3 m (sub-fault 4) appeared near Pagai islands.

Figure 5.3: The initial water surface displacement of 28 sub-faults [29].

Figure 5.4: The simulation of the initial water surface displacement.
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The propagation of the Mentawai 2010 tsunami for 5100 seconds or for the first 85
minutes was simulated . The initial water surface displacement for the simulation was set
(Fig. 5.4). The initial wave was collapsed and reached shoreline area at the time prior to
600 seconds or from the first 10 min. after the earthquake. Mikami et.al. [26] stated that
the first tsunami wave arrived at 10-20 min. after the earthquake occured. The arriving
time of our numerical results also similar to the confirmation by the eye-witnesses [27],
which stated that the first wave reached shoreline area at 5-15 min. after the earthquake.
The Indonesia Meteorological Climatological, and Geophysical Agencies (BMKG) issued
a national warning for a local tsunami five minutes after the earthquake [6].

The simulation of the Mentawai 2010 tsunami was illustrated in the figures below.
Fig. 5.5 (a) shows the tsunami wave propagation at the time of up to 15 minutes. In this
phase, the initial wave reached the shoreline areas of the Mentawai Islands regency. The
Pagai islands were the first part of the Mentawai Islands which were attacked by tsunami
wave. The next part of the Mentawai Islands which was hit by tsunami wave was Siberut
island, as shown in Fig. 5.5 (b). It happened for the last 30 minutes of simulation, and
there was a small ripples that reached the shoreline area of the Sumatra Island. Fig.
5.5 (b)-(f) show the propagation of the tsunami wave for the time up to 45 minutes, 60
minutes, 75 minutes, and the last 85 minutes, respectively.

The numerical results yields the maximum wave height is up to 3 m and occured at
the shoreline of the South Pagai Island (Fig. 5.6) at the time greather than 2000 seconds.
Tsunami waves up to 2 m also occured at the shoreline of the South Pagai island. The
tsunami wave height at several points in the Mentawai Islands regency were observed.
Those points are at Sipora Island, Malakopa, Simagandjo and Tua Pejat. The Sipora
Island area was reached by greather than 1 m of the tsunami wave. A tsunami wave
with height up to 3 m was appeared at the Malakopa, South Pagai Islands. There are
no significant water surface displacement occured at the Simagandjo, North Pagai and at
the capital city of the Mentawai Islands regency, Tua Pejat. Fig. 5.7 and Fig. 5.8 show
the wave height changes at Sipora Islands and South Pagai Islands. The highest wave
at the observed point in the Sipora Islands was greater than 1.5 m at the Sipora area.
The average wave height at those observed points were ±0.5 m. At the same time, the
maximum wave height changes at the observed points in the South Pagai islands occured
at Malakopa. The wave height changes at the Beleratsok and Sibigau Island were ±1 m,
while no wave height change at Tiop, Bulasat, and Sibigau island were observed.
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Figure 5.6: Wave height changes at several points in the Mentawai Islands regency.

Figure 5.7: Wave height changes at Sipora islands in the Mentawai Islands regency.
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Figure 5.8: Wave height changes at South Pagai islands in the Mentawai Islands Regency.

Fig. 5.9, 5.10 and 5.11 show the comparison between numerical results and gauge sta-
tion data. Tide gauge station data were obtained from the United Nations Educational,
Scientific and Cultural Organization (UNESCO), Intergovernmental Oceanographic Com-
mission (IOC), Sea Level Station Monitoring Facility website [28]. Those data were col-
lected by the time 21:42 WIB (Western Indonesia Time) to 23:12 WIB. Three tide gauge
station at the vacinity of the Mentawai Islands regency were chosen. Those station are
Tanahbala station which located at 98.5°E and 0.53°N, Teluk Dalam station which located
at 97.822°E and 0.554°S, and Enggano station which located at 102.2781°E and 5.3461°N.
This results also mentioned in [29, 30].
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Figure 5.9: Wave changes comparison between the Tanahbala station (red) and numerical
results (green).

Figure 5.10: Wave changes comparison between the Teluk Dalam station (red) and nu-
merical results (green).
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Figure 5.11: Wave changes comparison between the Enggano station (red) and numerical
results (green).

5.3 Simulation of the Indian Ocean 2004 Tsunami

Topographical data of the Indian Ocean 2004 tsunami were stretched from 75.0°E to
103.0°E and 10.0°N and 18.0°S [23]. The simulation of the tsunami wave consist a rect-
angular domain with 1680 sub-rectangles in the x-direction and 1680 sub-rectangles in
the y-direction. Each sub-rectangle was divided into 2 triangles. A triangular mesh of
the Indian Ocean 2004 tsunami simulation has 2,825,761 total nodes and 5,644,800 to-
tal elements. The initial water surface displacement [16,17] was generated for an initial
condition. The source fault plane of the Indian Ocean tsunami 2004 consisting 22 sub-
faults. It stretched from 91.51°E to 96.23°E and 1.75°N and 13.51°N. The dip angle was
set to 10°, the strike angle ranged from 0° to 350°, and the rake angle ranged from 85°
to 130°. The value of the slip amount distribution ranged from 0.1 m to 30.3 m [5]. The
numerical results based on Okada formulation [16,17] showed that the maximum water
surface displacement was approximately 20 m. Fig. 5.12 shows the initial water surface
displacement of the Indian Ocean 2004 tsunami simulation.
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Figure 5.12: The initial water surface displacement of 22 sub-faults [30].

Figure 5.13: The initial water surface displacement of the Indian Ocean 2004 tsunami.

The propagation of the Indian Ocean 2004 tsunami for the first 3600 seconds or 1
hour was simulated. The initial waves were collapsed and approached shoreline area of
Aceh province after five to fifteen minutes. The study by Syamsidik et. al. [10] reported
the arriving times of tsunami waves at the several areas in Aceh province, Indonesia.
The tsunami wave reached Sabang area twenty two minutes after the earthquake, while
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Banda Aceh area was reached at the time 35 min. after the earthquake. The tsunami
wave reached the Lageun, Calang, and Teunom Aceh Jaya at the time 25-62 min., 29-72
min., and 29-72 min., respectively. The tsunami wave reached the Tapaktuan, South
Aceh 24-37 min. after the earthquake. The tsunami wave reached Singkil at the fifty
three minutes after the earthquake.

Figure 5.14: Wave height changes at several points in Aceh province, Indonesia.

Fig. 5.14 shows numerical results the wave height changes at several points in the
Aceh province, Indonesia. Fig. 5.15, Fig. 5.16, Fig. 5.17, and Fig. 5.18 show that the
arriving time of tsunami waves at Banda Aceh after 41 minutes, Lampuuk beach after 25
minutes, Aceh Jaya after 33 minutes, and Sabang after 16 minutes after the earthquake.
Meanwhile, tsunami waves approached the shoreline area of Lhok Nga at 33 min. after
the earthquake (Fig. 5.19). Tsunami waves reached the shoreline area of Tapaktuan and
Meulaboh at the first 42 min. in Fig. 5.20 and Fig. 5.21, respectively.
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Figure 5.15: Wave height transition at Banda Aceh in the Aceh province, Indonesia.

Figure 5.16: Wave height transition at Lampuuk beach in the Aceh province, Indonesia.
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Figure 5.17: Wave height transition at Aceh Jaya, Aceh province, Indonesia.

Figure 5.18: Wave height transition at Sabang in the Aceh province, Indonesia.
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Figure 5.19: Wave height transition at Lhok Nga in the Aceh province, Indonesia.

Figure 5.20: Wave height transition at Tapaktuan in the Aceh province, Indonesia.
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Figure 5.21: Wave height transition at Meulaboh in the Aceh province, Indonesia.

Fig. 5.12 shows the numerical results of the water surface displacement of the Indian
Ocean 2004 tsunami. Fig. 5.13 shows that most of the source fault plane were generated
in the vicinity area of the Aceh Province sea. Three sub-faults with the maximum water
surface displacement were genertaed at the west coast of Aceh Province. Fig. 5.22 (a)-
(f) show tsunami wave propagation of the Indian Ocean 2004 tsunami. Profiles of the
tsunami wave at the time 10 minutes, 20 minutes, 30 minutes, 40 minutes, 50 minutes,
and 60 minutes was illustrated. The maximum wave height for the numerical simulation
was reset to 30 m, that is, the wave height was set equal to 30 m when it exceeds 30 m.
These results also mentioned in [29, 30].
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a) t = 15 min. b) t = 30 min.

c) t = 45 min. d) t = 60 min.

e) t = 75 min. f) t = 85 min.

Figure 5.5: Tsunami wave propagation of the Mentawai 2010 tsunami.
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a) t = 10 min. b) t = 20 min.

c) t = 30 min. d) t = 40 min.

e) t = 50 min. f) t = 60 min.

Figure 5.22: Tsunami wave propagation of the Indian Ocean 2004 tsunami [30].
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Chapter 6

Conclusion and Future Research

6.1 Conclusions

The simulation of the Mentawai 2010 tsunami and the Indian Ocean 2004 tsunami was
illustrated. The simulation was generated in conjunction with the application of moving
shoreline techniques. Our numerical results were tested againts the exact solutions of
the two-dimensional nonlinear shallow water equations for flow above parabolic bottom
topography. The comparison shows an acceptable agreement between our numerical tech-
niques and the exact solutions for approximately the first 800 seconds. Numerical results
of the water elevation became increase enormously around the boundary area. However,
the uncontrollability did not appear in the simulation of the Mentawai 2010 data and the
Indian Ocean 2004 data.

The propagation of tsunami waves of the Mentawai 2010 tsunami were simulated for
the first 85 minutes after the earthquake. The source fault plane was divided into 28
sub-faults. The maximum water surface elevation was up to 3 m and located at the west
side of the Pagai islands. The numerical results show that the initial waves collapsed and
reached the shoreline area of the Mentawai islands in approximately ten minutes after the
earthquake. Tsunami wave height at several points in the Mentawai islands were observed
and illustrated in the figures. Three tide gauge station data were compared with the
numerical results. The maximum wave height up to 3 m appeared at the shoreline area
of the South Pagai Island.

Tsunami waves propagation of the Indian Ocean 2004 tsunami were simulation for
one hour after the earthquake. Twenty two sub-faults were generated from the nine
parameters source fault plane data. Three highest water surface displacement of the
twenty two sub-faults were generated in the west coast of the Aceh province, Indonesia.
The maximum water surface displacement was up to 20 m. The simulation show that the
initial waves ruptured and approached the shoreline area of the Aceh province at the first
5-50 min. after the earthquake. Several points at the Aceh province were observed and
their wave height were illustrated in the figures. The maximum wave height was set to 30
m and appeared at the several points in the Aceh coast area. Tsunami wave with height
up to 3 m was appeared in the shoreline of the Aceh provice, Indonesia.



6.2 Future Research

The future research will be conducted to investigate the comparison between numeri-
cal results and exact solutions. The uncontrollability of the numerical solutions at the
time after 800 seconds will be tackled for flow above parabolic bottom topography. The
refinement of a triangular mesh will be applied for improvement of numerical approxima-
tion. The results obtained will be used as a basic framing for the system of the tsunami
early warning. Those results will also be used as a basis planning for the tsunami hazard
assessment. Another tsunami event cases will be considered.
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