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1. GENERAL INTRODUCTION 

1.1. Time control during development 

Time-related transformations in body properties are a biological phenomenon found in many 

organisms, as illustrated by sex maturation in vertebrates, and by molting and metamorphosis, 

in which animals ranging from insects to crustaceans and amphibians undergo distinct 

morphological changes. Life begins with embryonic development, which is a four-dimensioned 

process, explicitly controlled by genes. The complexity and precision of development reflect 

the integration of spatial pattern signals with the temporal control mechanism, so that critical 

developmental transitions occur at the appropriate time. Time determination is essential for 

organisms and development without timing control would lead into a messy and disorganized 

life. For the developing organisms to achieve a suitable condition, they are required to 

coordinate various timing mechanisms. However, a little is known about how they work and 

interact to organize these developmental processes. In the mechanical world, we use clocks and 

timers: machines that tell the absolute time and can be used to measure part of the time, 

respectively. Do organisms possess devices that fulfill the same functions? Most animals have 

a biological clock; an internal mechanism that allows them to anticipate and keep in a register 

with the phenomena of the external world, such as day and night. Moreover, many studies have 

been published describing the molecular mechanisms that control how this clock works. On 

the other hand, numerous observations strongly support the existence of internal time 

measuring systems (biological timers), since many events occur at a precise time during 

development. How do organisms keep track of time and coordinate the proper chronology of 

these distinct developmental events on a molecular level? That is one of our lab’s interests in 

research. 

1.2. Drosophila as a model of animal development 

 Drosophila species are insects of the Diptera order, with a single pair of large wings. They are 

holometabolous animals that are characterized by an indirect development, with three larval 

stages on the way before undergoing a metamorphosis, which gives the fertile adult form. 

Drosophila melanogaster is widespread in the world, and its cosmopolitan distribution is 

probably related to human activities, such as increased trade, that allowed it to migrate over 

long distances (Lachaise et al., 1988). The female of Drosophila lay eggs on a medium which 

serve as food substrate to the emerging larvae. The female can lay several hundred of eggs 
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during its life. Depending on food substrate and temperature, the developmental time of the 

newly laid individuals will vary, indicating the impact of environmental contribution for 

control of Drosophila development. For instance, the entire development from embryo to adult 

at 25°C usually is about ten days; it lengthens to 20 days if the temperature is lowered to 18°C 

(Thompson et al., 1977). Among many of the model organisms, Drosophila is one which is 

extensively studied to find essential genes and mechanisms. The regulation mechanism of 

development has been studied continuously for the past several decades, and recent discoveries 

using Drosophila molecular genetics have further proceeded our information. The availability 

of genome sequences, the ease of genetic manipulation and the vast collection of mutants, all 

make Drosophila a handy model animal for studying and understanding the mechanisms 

regulating development. 

1.3. Ecdysone pulses control developmental timing in Drosophila 

Holometabolous insects provide an excellent model system of hormonal control of gene 

expression. In insect metamorphosis, larval tissues are destroyed and replaced by adult tissues. 

The differentiation of imaginal cells into adult structures is achieved by controlled cell-fate 

determination and cell movement behaviors. Metamorphosis is driven by intermittent pulse 

releases of the steroid hormone ecdysone (E), which can activate the signaling cascade required 

for these developmental events. Steroid hormones are a large family of cholesterol derived 

compounds that act as critical developmental regulators in many organisms. In vertebrates, 

steroids, such as adrenal cortical steroid hormone and neuro-steroids, play essential roles in 

various processes including reproduction, differentiation, metabolic homeostasis and brain 

function (Hosie et al., 2006). In most insects, steroidogenesis occurs in the cells of the 

prothoracic gland resulting in the conversion of food derived cholesterol to E. The glands are 

stimulated to undergo steroidogenesis in discrete and periodic surges, and this is reflected in 

the peaks of ecdysteroids observed in larvae and pupae (Warren et al., 2006). Pulses of 

ecdysteroids direct each of the major developmental transitions in the life cycle of Drosophila 

(Fig. 1) (Riddiford and Truman, 1993). The active form of E is 20-hydroxyecdysone (hereafter 

referred to as 20E) (Ashburner, 1974; Kozlova and Thummel, 2003; Riddiford and Truman, 

1993; Shi et al., 1996).  
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The first increase in 20E level occurs at the onset of metamorphosis and promotes the change 

from larvae to prepupae in the larval-prepupal transition. In this stage, the larval salivary glands 

secrete a mixture of glue proteins that are used to affix the animal to a solid surface, the cuticle 

then transforms into a puparium carrying pupal shape, which is initially soft and white. We call 

this transformation as puparium formation, and the transformed animal as white prepupa 

hereafter referred to as WPP. Because this transformation is an excellent developmental marker, 

and we represent the developmental stage from here by after puparium formation or APF by 

making short. Soon after puparium formation, the soft and white body hardens more, turning 

tan and eventually brown and brittle. During the prepupal stage, a subset of larval tissues, 

including the midgut, initiate programmed cell death, eliminating some of the larval tissues 

(Robertson, 1936). In the meantime, the leg and wing imaginal discs evert and elongate to form 

the coming adult appendages. The second ecdysteroid pulse occurs 10-12 h APF, leading to 

the prepupal-pupal transition. The morphological marks of this stage are the gas bubble 

Figure 1. Pulses of ecdysone trigger each of the major developmental 
transitions in Drosophila life cycle. Ecdysone pulses during the first and second 
larval instars signal molting of the cuticle, defining the duration of each instar. 
A high titer ecdysone pulse at the end of the third instar triggers puparium 
formation, initiating the prepupal stage of development. At the end of prepupal 
period a low titer ecdysone pulse triggers pupation marked by everting the head 
from inside the thorax. The result of these sequential ecdysone-triggered 
responses at the onset of metamorphosis is the transformation of a crawling larva 
into an immature adult fly. The ecdysone titer profile is depicted as 20E 
equivalents in whole body homogenates and the developmental transitions are 
marked by arrows. Adapted from Ou and King-Jones, (2013). 
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originates in the middle followed by truncation from the posterior to the anterior part of the 

pupal case, and the eversion of the pupal head from the larval thorax (Thummel, 1996; 

Woodard et al., 1994). These critical events form the body plan of the adult fly, with a head, 

thorax, abdomen, and appendages. Terminal differentiation then occurs over the following ~3.5 

days of pupal development, followed by eclosion of the adult insect (Fig. 1). Thus, each of the 

ecdysteroid pulses triggers changes throughout the animal to control development, and it seems 

that Drosophila is endowed with a time measuring system to measure the time for each 

developmental transition including pupation. 

1.4. Ecdysone initiates genetic cascades of gene expression to control temporal 

development in Drosophila  

In order to regulate gene expression, 20E must bind to ecdysone receptor (EcR), which 

transduces this signal as a non-covalent heterodimer with Drosophila retinoid X receptor 

ortholog, Ultraspiracle (USP) (Bond et al., 2011; Koelle et al., 1991; Kozlova and Thummel, 

2003; Yao et al., 1993). Damage or loss of either 20E or its receptors was found to be lethal to 

the animal (Kozlova and Thummel, 2003). Since ecdysteroids affect arthropod life from early 

embryogenesis to reproduction and adult life, it is not surprising that practically every organ is 

a target organ for ecdysteroids (Riddiford et al., 2000). The increase in 20E levels leads to an 

increase of receptors bounded by the hormone, which in turn leads to the transcription of genes 

that activate the transcriptional cascade (Bond et al., 2011).  

Ecdysteroid pulse occurring late during the third instar phase causes the transcription of the 

primary response “early genes” such as E74, E75A, and Broad-Complex (Br-C). These genes 

are is directly induced by 20E and are expressed from around 6 hours (h) before puparium 

formation to around 2 h APF. The molecular characterization of these three genes revealed that 

all of them encode transcription factors, although belonging to different DNA-binding protein 

families (Thummel et al., 1990). The protein products of these early genes induce the 

transcription of “late genes” which locate downstream, and late genes, in turn, execute the 

appropriate biological effects at the onset of metamorphosis (Ashburner, 1974). Mutations that 

disrupt all BR-C functions result in larval lethality, indicating that Br-C is an essential gene for 

the entry into metamorphosis (Kiss et al., 1988). The E74 gene encodes two overlapping 

transcription factors, E74A and E74B, whose function is required for both pupariation, pupation, 

and metamorphosis of both larval and imaginal tissues. E74B mutants are defective in 

puparium formation and head eversion and die as prepupae or crypto cephalic pupae, while 
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E74A mutants pupariate normally and die either as prepupae or pharate adults (Andres et al., 

1993). E75 encodes three mRNA isoforms, designated E75A, E75B, and E75C (Segraves and 

Hogness, 1990). E75A mutants die primarily during larval stages with a reduced ecdysteroid 

titer, while E75B mutants are viable, and E75C mutants die as adults (Bialecki et al., 2002).  

In addition to early genes, the Blimp-1 gene is also one of the primary response genes of 

20E, and is expressed in the high ecdysteroid periods during the embryonic and prepupal 

periods (Agawa et al., 2007), although this gene has not been reported as an early gene. It has 

shown that the timing of the end of the expression of Blimp-1 determines the timing of the 

expression of βFTZ-F1 and the length of the prepupal period (Agawa et al., 2007; Akagi et al., 

2016), indicating that the mechanism to terminate the expression of the Blimp-1 gene is 

important for development. 

Another group of genes induced at metamorphoses is “early-late genes,” which can be 

defined as genes that require both the 20E-bound EcR and an early gene product for maximal 

transcriptional induction. Early-late genes are induced just before puparium formation until 

mid-prepupal stage, including DHR3, DHR4, E78, and DHR39. DHR3 and DHR4 are 

expressed at the beginning of the prepupal stage, when the expression of early genes such as 

Br-C, E74A, and E75A is declining, and βftz-f1 expression is about to be induced. Both DHR3 

and DHR4 are sufficient to repress the early genes and are required for maximal βftz-f1 

expression in the mid-prepupal period (King-Jones et al., 2005; Lam et al., 1997); thus, these 

two factors are acting in concert to regulate the early genes and βftz-f1. Furthermore, DHR4 

mutants are small and display precocious wandering, followed by early puparium formation. 

Thus, DHR4 plays an essential role in defining the end of larval growth and the timing of 

pupariation (King-Jones et al., 2005). E78 and DHR39 are not essential for viability or fertility 

(Ayer et al., 1993; Horner and Thummel, 1997; Horner MA, Chen T, 1995; Ohno and 

Petkovich, 1993; Russell et al., 1996).  

The late genes are the group of genes which is, as mentioned above, induced by the early 

gene products. Among them, L71 gene family is activated just before puparium formation to 

around 10 h APF and requires the activity of the Br-C and E74 early genes for transcriptional 

activation (Gene et al., 1991; Karim et al., 1993; J. C. Fletcher and Thummel, 1995; Jennifer 

C Fletcher and Thummel, 1995). The L71 proteins play a role in antimicrobial cell lysis during 

metamorphosis (Wright et al., 1996).  

The next group of genes is the “mid-prepupal genes,” which are induced only after the 

decline of ecdysone levels. One of them is ftz-f1 that encodes a nuclear receptor-type 

transcription factor (Lavorgna et al., 1991; Ueda et al., 1990). The ftz-f1 gene product is 



INTRODUCTION 

 

6 
 

expressed not only during the mid-prepupal period at the onset of metamorphosis but also 

during late embryogenesis, just before larval ecdysis and eclosion (Sullivan and Thummel, 

2003; Ueda et al., 1990; Woodard et al., 1994; Yamada et al., 2000; Lavorgna et al. 1991, 1993). 

This transcription factor is the only one that has been identified as the mid-prepupal gene 

products and is necessary for the induction of late prepupal genes (Broadus et al., 1999; 

Woodard et al., 1994). 

Finally, “late prepupal genes” are directly induced by the small pulse of 20E just before 

pupation (Richards, 1976a). Molecular analysis has revealed that some of the genes expected 

to be early genes based on puffing pattern and direct induction by 20E, are late prepupal genes 

(Andres and Thummel, 1992; Kozlova and Thummel, 2003).  

The extensive research in Drosophila has led to the identification of the ecdysteroid 

functions in the developmental transitions by triggering cascades of gene expression. However, 

almost no understanding has been achieved regarding how these transitions including pupation 

are determined at a specific time. 

1.5. Spatiotemporal players coordinate the biological timer to determine pupation timing  

The drastic change from larval shape to pupal shape occurs at larval-pupal transition followed 

by pupation about 11 h APF at standard rearing condition at 25°C (Riddiford and Truman, 

1993), indicating that flies have a well-controlled timer system to determine pupation timing. 

The complexity of components and mechanisms involved in this specific biological timer was 

the core of our lab’s research work for the last several years, and many of them already 

uncovered (Fig. 2) (Agawa et al., 2007; Akagi et al., 2016). It has shown that the two ecdysone-

inducible transcription factors, Blimp-1 (Agawa et al., 2007) and βFTZ-F1 (Sun et al., 1994; 

Ueda et al., 1990), play a crucial role for the determination of pupation timing (Akagi et al., 

2016). According to these analyses, the first trigger of these events is the increase of 20E level 

at the end of the larval period, which induces Blimp-1 expression. After around 2-3 h APF, 20E 

level decreases and Blimp-1 production stops because of the termination of Blimp-1 mRNA 

production and rapid degradation of it (Akagi and Ueda, 2011). Moreover, Blimp-1 is a labile 

protein; therefore, the expressed Blimp-1 disappears rapidly (Agawa et al., 2007). Blimp-1 

works as a repressor for the βftz-f1 which encodes transcriptional activator (Agawa et al., 2007). 

βFTZ-F1 is induced after Blimp-1 disappearance at around 6 h APF and activates Shade which 

encodes E to 20E conversion enzyme, ecdysone-20-monooxygenase, in the fat body. Hence, 

pupation timing is determined by a biological timer in the fat body comprising Blimp-1, βFTZ- 
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F1, and Shade (Akagi et al., 2016), although it has been thought that pupation timing is 

determined by secretion timing of E from the prothoracic gland just before pupation (Thummel, 

1996). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.5.1. Blimp-1 

Murine Blimp-1 contains 856 amino acids and is predicted to be a 95,835 Da protein. The five 

C2H2 zinc finger motifs in the C-terminal region of Blimp-1 were clearly implicated as the 

DNA-binding domain. However, further study showed that only the first two finger motifs are 

sufficient for recognition of the PRDI region in the IFNβ promoter (Keller and Maniatis, 1991). 

The protein possesses a proline-rich region (PR), five zinc fingers, and a SET domain known 

to have a role in histone methyltransferase activity (HMT). However, the SET domain of 

Blimp-1 may not have demonstrable HMT activity, because Blimp-1 does not contain the 

NHSC(I) sequence, which is a conserved motif locates in the C-terminal half of the SET 

domain, defined as a catalytic core in HMT active proteins (Kouzarides, 2002; Marmorstein, 

2003). The PR region is present between SET and zinc finger domains, and this region along 

with the zinc fingers in some cases is required for transcriptional repression (Ren et al., 1999; 

Yu et al., 2000). Several mechanisms were identified using mammalian tissue culture system 

to understand the transcriptional repression activity of Blimp-1. In most of these mechanisms, 

Figure 2. Mechanism of time measuring system for pupation. After 2 h APF, 
induced Blimp-1 by 20E disappears rapidly soon after decline of 20E level and 
controls expression timing of βFTZ-F1. βFTZ-F1 induces shade, which encodes 
the conversion enzyme of released E to 20E in fat body, and produced 20E 
induces pupation. 

L3 

                   βFTZ-F1      Blimp-1 

Pupa 

Pupation        Pupariation 

Prepupa (~11 h) 

             Shade 

E 20 E   20 E 

Degrade 
rapidly 

How timer protein Blimp-1 degrades 
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repression activity of Blimp-1 depends upon its capability of directly recruiting multiple 

chromatin-modifying enzymes to target promoters that create a repressive or inactive 

chromatin structure (Ancelin et al., 2006; Gyory et al., 2004; Ren et al., 1999; Yu et al., 2000). 

The mechanism of action of Blimp-1 requires more study to identify real corepressors that 

required for its activity (Martins et al., 2008). Also, no transcriptional activation capability has 

been demonstrated for Blimp-1, although it remains a theoretical possibility (Savitsky and 

Calame, 2006).  

Experientially, it has been shown that Blimp-1 regulates directly or indirectly 250 different 

target genes in mammalian B-lymphocyte cells (Shaffer et al., 2002). Blimp-1 also plays an 

essential role in the terminal differentiation of B cells through direct transcriptional silencing 

of several transcription activators such as Pax5, Bcl6, and c-myc (Sciammas et al., 2006; 

Sciammas and Davis, 2005; Su et al., 2009; Yu et al., 2000). Additionally, Blimp-1 is a key 

regulator for the differentiation of myeloid lineage (Chang et al., 2000) and determination of 

germ cell lineage (Ohinata et al., 2005; Vincent et al., 2005). It has been reported that Blimp-

1 function to regulate cell growth through repression of tumor suppressor p53 transcription 

(Yan et al., 2007). In addition to the functions of Blimp-1 in mammals, it has also been shown 

that it plays important roles in many other groups of animals. In Xenopus, the frog homolog of 

Blimp-1, X-Blimp-1, controls anterior mesodermal fate (De Souza et al., 1999). In Zebrafish, 

the homolog of Blimp-1 promotes the cell fate specification of both neural crest cells and 

Rohon-Beard sensory neurons (Hernandez-Lagunas et al., 2005) and differentiation of the 

embryonic slow muscle lineage (Baxendale et al., 2004). It is also necessary for the Zebrafish 

embryo patterning and organogenesis (Wilm and Solnica-Krezel, 2005). Collectively, these 

studies indicate that Blimp-1 plays a crucial role in many cellular differentiation processes. 

In Drosophila, only a few reports are focusing on the role of Blimp-1 in the developmental 

control, up to date. The first one published in 1997 during the analysis of the cis-regulatory 

region of the ftz-f1 gene to understand how ftz-f1 expression is temporally regulated, Blimp-1 

was found binding to the upstream region of the transcriptional start site of the ftz-f1 gene and 

designated as factor I-4 (Kageyama et al., 1997). The binding site of factor I-4 was determined 

(Kageyama 1997 thesis, data published later), and using its specific binding site as a bait, factor 

I-4 was purified. Based on the information of the molecular mass of the purified protein, the 

corresponding gene was identified as Blimp-1 (Agawa 2002 thesis, data published later). 

Protein sequence homology search revealed that this protein is an ortholog of mammalian 

Blimp-1, because only these two factors have both a SET domain and five zinc fingers in 

addition to a strong amino acid sequence homology in these regions (Keller and Maniatis, 1991; 
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Ren et al., 1999; Turner et al., 1994). Furthermore, it has been shown that the mammalian 

Blimp-1 binds to a similar sequence (Keller and Maniatis, 1991) to that recognized by factor 

I-4. The second report revealed the important function of Drosophila Blimp-1 in the terminal 

differentiation of the tracheal system (Ng et al., 2006). Detection of Drosophila Blimp-1 in 

both mRNA and protein levels revealed that they are expressed during the mid-embryonic 

period at 9-15 h after egg laying (AEL). The third report demonstrated that Blimp-1 is 

expressed at the onset of metamorphosis, from around 3 h before puparium formation to 4 h 

APF and can be detected again at the end of prepupal period 10 to 14 h APF (Agawa et al., 

2007). All these periods correspond to the increase of ecdysteroid titers, and indeed, it has been 

shown that Drosophila Blimp-1 is induced directly by 20E as described above. Drosophila 

Blimp-1 was found to work as a repressor for the ftz-f1 gene. Two different approaches have 

confirmed this repression function; first, knock down this factor at the onset of metamorphosis 

leads to premature expression of βFTZ-F1. Second, prolonged expression of Blimp-1 by its 

induction after the endogenous expression period under the control of the heat shock promoter 

from the hs-Blimp-1 transgene resulted in a delay of βFTZ-F1 expression (Agawa et al., 2007). 

In the fourth report, Chavoshi et al. (2010) presented additional evidence on the 20E regulating 

the expression of Blimp-1 during embryonic development (Chavoshi et al., 2010). The fifth 

and most recent report demonstrated Blimp-1 as a key molecule to the timer system in the fat 

body to determine pupation timing. In this analysis, stabilized Blimp-1 lead to a delay in 

pupation timing, which reasoned, as described above, because of Blimp-1 repression of βftz-f1 

(Akagi et al., 2016). Although, the unstable character of Blimp-1 is the key to determine 

pupation timing, the molecular mechanisms and factors that regulate Blimp-1 turnover around 

the prepupal period are still unclear. 

1.5.2. FTZ-F1 

FTZ-F1 was initially found in a biochemical screen for embryonic proteins that bind 

specifically to the regulatory sequences of the Drosophila segmentation gene fushi tarazu (ftz) 

(Ueda et al., 1990). Cloning analysis revealed that FTZ-F1 is a transcription factor belongs to 

the nuclear hormone receptor superfamily (Lavorgna et al., 1991; Ueda et al., 1990). Two 

isoforms, α FTZ-F1, and βFTZ-F1 are produced from the same gene: they share a common C-

terminal region but contain different N-terminal regions (Lavorgna et al., 1993, 1991). The 

αFTZ-F1 is expressed in early embryos, concomitant with ftz expression (Lavorgna et al., 1993; 

Ueda et al., 1990). The βFTZ-F1 expression is detected during late-stage embryos (primarily 
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after 16 h of embryogenesis), just before larval ecdysis, mid-to-late prepupal period and before 

eclosion (Sullivan and Thummel, 2003; Ueda et al., 1990; Woodard et al., 1994; Yamada et al., 

2000). The locus containing the ftz-f1 gene forms a puff during the low ecdysteroid mid-

prepupal period (Richards, 1976b), concomitant with βFTZ-F1 expression (Lavorgna et al., 

1993; Murata et al., 1996). Likewise in Drosophila, the expression of ftz-f1 after a decline in 

ecdysone levels has also been reported to occur in several insects (Hiruma and Riddiford, 2001; 

Li et al., 2000; Sun et al., 1994). In silkworm, BmFTZ-F1, a silkworm ortholog of FTZ-F1, is 

induced by exposure to and subsequent withdrawal of 20E during the late period of each 

molting stage (Sun et al., 1994). Thus, generally, insect FTZ-F1 expression periods closely 

follow declines in ecdysone levels except at early embryonic period.  

In Drosophila, the first identified function of the FTZ-F1 protein is activating ftz, because 

mutations of the FTZ-F1 binding site result in decreased expression of the ftz-lacZ transgene 

in the early embryos (Ueda et al., 1990). Later, Yamada et al. (2000) showed that the severely 

affected ftz-f1 mutants displayed embryonic lethal phenotype, which was rescued by ectopic 

expression of βFTZ-F1. The resulted larvae were not able to molt but also were rescued by 

induction of βFTZ-F1 in the appropriate timing. Furthermore, premature expression of βFTZ-

F1 at mid-first instar or mid-second instar stages causes defects in the molting process. Ectopic, 

time-specific expression of βFTZ-F1 can also rescue a hypomorphic ftz-f1 mutant that arrests 

in the prepupal stage. These observations suggest that βFTZ-F1 regulates genes associated with 

ecdysis and metamorphosis and that the exact timing of its action in the ecdysone-induced gene 

cascade is important for proper development (Yamada et al., 2000). Moreover, another ftz-f1 

mutant showed defects in the prepupa-to-pupa transition, including failure in head eversion and 

histolysis of salivary glands (Broadus et al., 1999). Importance of βFTZ-F1 was also suggested 

by the ability of FTZ-F1 to bind to 166 loci in late prepupal salivary gland polytene 

chromosomes, 51 of which represent ecdysone-regulated puffs (Lavorgna et al., 1993). This 

observation suggests that βFTZ-F1 plays a role to regulate a wide range of genes. Accordingly, 

βFTZ-F1 may provide competence for late prepupal genes, Br-C, E74A, E75A, and E93, 

because it has been found that FTZ-F1 is necessary for the expression of these genes to respond 

to the ecdysteroid peak (Broadus et al., 1999; Woodard et al., 1994). βFTZ-F1 has also been 

reported to positively regulate the EDG84A gene which encodes protein specific to the inside 

layer of the pupal cuticle during the mid-to-late prepupal period (Murata et al., 1996). Thus, 

βFTZ-F1 expression and especially its temporally restricted expression are important for late 

embryogenesis, the normal molting process, and early metamorphosis.  
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For the temporal regulatory mechanism of ftz-f1 expression, two transcriptional regulators 

have been identified and confirmed to regulate ftz-f1 expression (Kageyama et al., 1997; Lam 

et al., 1997; White et al., 1997). The previously described early-late gene product DHR3 have 

been indicated to be a transcriptional activator for the ftz-f1 gene. Premature expression of 

DHR3 under the control of a heat shock promoter induces βFTZ-F1 (Lam et al., 1997; White 

et al., 1997), and a reduction in βFTZ-F1 expression has been reported in the DHR3 mutant 

(Lam et al., 1999). Also, DHR3 binds to three sites downstream of the transcriptional initiation 

site of the ftz-f1 gene (-150, -240, and -300), and mutations in these sites reduce the expression 

of the βftz-f1 promoter-lacZ fusion transgene (Kageyama et al., 1997). The other transcription 

factor that is known to regulate the βftz-f1 gene is the early gene product E75B, which binds 

directly to DHR3 and inhibits its activator function (White et al., 1997). However, 

identification of these two factors did not solve the regulatory mechanism of the βftz-f1 gene 

completely, and other unknown factors besides DHR3 and E75B are required to regulate the 

βftz-f1 gene based on the following observations: first, DHR3 can activate the βftz-f1 gene only 

after ecdysone levels have declined, second, the temporal pattern of the βftz-f1 gene expression 

is preserved in DHR3 and E75B mutants (Bialecki et al., 2002; Lam et al., 1999), and third, 

mutations in the DHR3 binding sites in the βftz-f1 promoter-lacZ fusion gene have no effect on 

the timing of β-galactosidase expression in transgenic flies (Kageyama et al., 1997). It has also 

been shown that DHR4 is another transcription factor that is supposed to activate the βftz-f1 

gene (King-Jones et al., 2005), based on the observation that FTZ-F1 expression is reduced in 

the DHR4 mutant, but no evidence has been shown to prove that DHR4 directly associate to 

the ftz-f1 promoter. As previously described, the transcription factor Blimp-1 has also been 

identified as one of the factors that bind the βFTZ-F1 promoter (Kageyama et al., 1997). 

1.5.3. Fat body 

The larval fat body is a critical structure for Drosophila, as it serves the same purpose as liver 

and fat tissue do in humans: storage of nutrients and metabolizing energy, providing 

nourishment to the animal as it undergoes metamorphosis (Aguila et al., 2007; Hoshizaki DK., 

2005; Liu et al., 2009; Søndergaard, 1993). It also is involved in the fly’s metabolism, with 

sensors measuring the level of available nutrients and signaling the brain to release insulin-like 

peptides (Géminard et al., 2009). In addition to its role in the fly metabolism and storage of 

nutrition, fat body was recently specified as the location of the timer system to determine 

pupation timing. It was demonstrated that βFTZ-F1 determines pupation timing by activating 
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Shade, which is expressed in the fat body at the late prepupal period and converts released E 

to 20-E, as previously described (Akagi et al., 2016).  

While most of the larval organs and tissues are destroyed during metamorphosis by 

programmed cell death, the larval fat body undergoes remodeling, providing the 

metamorphosing animal with energy as transition and into an early adult fly (Aguila et al., 

2013). Eventually, the larval fat body cells undergo programmed cell death, but only after the 

adult has emerged from the pupal casing and has found an alternate source of food (Nelliot et 

al., 2006). After coming out of the pupal case, it takes a young adult fly roughly one hour before 

its wings extend and it can fly and find an alternate source of nutrients. The fact that the larval 

fat body is still present in this young adult fly is crucial to its survival until such a reliable food 

source is found (Aguila et al., 2007). After the larval fat body cells reabsorbed, they get 

replaced by adult fat body cells, which still store nutrients but which are not as readily available 

to the fly as those of the larval fat body (Aguila et al., 2007).  

 

1.6. Factors involved in protein degradation 

1.6.1. Ubiquitin Proteasome System  

The ubiquitin-proteasome system (UPS) is one of the major post-translational regulation 

mechanisms of protein turnover. Through a series of concerted enzymatic reactions, target 

proteins are covalently marked with poly-ubiquitin chain(s) and directed to the 26S proteasome 

for degradation (Ohanian, 2008; Pickart, 2004). 26S proteasome is involved in the degradation 

of both normal, short-lived, mutated or damaged ubiquitinated proteins, serving an essential 

role in the removal of a wide variety of key nuclear and cytosolic proteins (Navon and 

Ciechanover, 2009; Rock et al., 1994; Ulrich, 2002; von Arnim, 2001; Zwickl et al., 2001). 

Structurally, 26S proteasome consists of a multi-catalytic core particle 20S bound to two 19S 

regulatory particles. The 20S proteasome is a multi-catalytic complex composed of 14 different 

subunits, arranged in four stacked, seven-membered rings (7α, 7β, 7β, 7α) that form the barrel-

shaped complex (Groll et al., 1997; Unno et al., 2002). The α subunits restrict substrate entry, 

while the β subunits contribute to the proteolytic active sites, namely the caspase-like in β1, 

trypsin-like in β2, and chymotrypsin-like activities in β5 (Kastle and Grune, 2011). The 19S 

regulatory particle consists of two particular subcomplexes; an ATP-dependent unfoldase 

referred to as the base and a scaffolding complex known as the lid. These subcomplexes of the 

19S work together to facilitate substrate recognition, translocation, unfolding, and recycling of 
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the polyubiquitin signal before peptide hydrolysis (Glickman et al., 1998; Verma et al., 2002; 

Yao and Cohen, 2002). For eukaryotic proteasomes, each subunit of the complex is encoded 

by a unique gene, and most of these genes are essential for both proteasome activity and the 

survival of the organism (Ghislain et al., 1993; Gordon et al., 1993; Rubin et al., 1998; Saville 

and Belote, 1993; Smyth and Belote, 1999).  

1.6.2. Role of UPS-dependent protein degradation in development 

UPS-mediated turnover of proteins have a critical role in protein homeostasis and is involved 

in various cellular processes such as cell growth, proliferation, differentiation, and apoptosis. 

Along with its central role in proteostasis, the UPS has roles in transcription, DNA repair, 

apoptosis, and signal transduction. Thus, changes in the UPS activity could have significant 

consequences for animal development (Finley, 2009). In mammals, aging of cells is associated 

with reduced proteasome activity (Chondrogianni et al., 2003). Moreover, the proteasome 

function was found to decline with age in fibroblast cultures originated from human donors of 

different ages (Carrard et al., 2002). 

In Drosophila, a gradual accumulation of ubiquitinated and carbonylated proteins was 

reported in the somatic tissue of aging flies, correlated with a ~50% reduction of proteasome 

expression and catalytic activities (Fredriksson et al., 2012; Tsakiri et al., 2013). 

Overexpression of Rpn11, which encodes a subunit of the 19S RP, suppressed the age-related 

reduction of the 26S proteasome activity, resulting in increased lifespan with suppression of 

the age-dependent accumulation of ubiquitinated proteins. On the other hand, the loss of 

function of Rpn11 caused early onset of reduced 26S proteasome activity and premature age-

dependent accumulation of ubiquitinated proteins (Tonoki et al., 2009), or caused a polyphasic 

lethality at larval-pupal transition (Szlanka, 2003). In addition, animals with missense 

mutations of β2 and β6 proteasome subunit genes have been reported to develop normally until 

metamorphosis, but pupae die before eclosion (Covi et al., 1999). Additionally, severe 

pathophysiological consequences were reported upon partial loss of proteasome function, such 

as the dose-dependent drop in locomotor performance of young flies exposed to the inhibitor 

and a dose-dependent reduction in flies’ lifespan.  
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1.6.3. Selective degradation of UPS-substrates  

 1.6.3.1. F-box proteins as an E3 ligases 

In the UPS pathway, ubiquitination is sequentially mediated by three enzymes: ubiquitin-

activating enzyme E1, ubiquitin-conjugating enzyme E2 and ubiquitin ligases E3 (Fig. 3). The 

two main types of E3 ligases, which is in charge of the substrate specificity, are those with 

RING (also known as HRT1, RBX1 or ROC1) or HECT-domains (Petroski and Deshaies, 

2005; Pickart, 2001). In contrast to RING ligases, HECT domain ligases form an essential 

thioester intermediate with ubiquitin as it is being transferred from the E2 enzyme to the 

substrate. The SCF (Skp1-Cullin-F-box) complex is a multi-subunit ubiquitin ligase (E3), 

assembled using the scaffold protein CUL1, whose C-terminus recruits the small RING protein 

RBX1, which directs the E2 enzyme to the E3 ligase. Then the N-terminus of CUL1 is then 

bound to SKP1 and F-box protein (Fig. 3) (Petroski and Deshaies, 2005). 

 

 

 

 

 

 

Figure 3. Schematic representation of F-box mediated protein 
ubiquitination and degradation in proteasome system. The E1 enzyme 
functions as an activator by creating a high-energy thioester bond between a 
cysteine of the E1 enzyme and the ubiquitin (Ub) molecule via ATP hydrolysis, 
which is subsequently transferred to conjugating enzyme (E2). The function of 
E2 is the transfer of activated Ub to the site of conjugation in the form of an E2-
Ub thioester intermediate. Ub is then transferred from E2 to lysine residues in 
the target through an E3-Ub ligase. Finally, the Ub proteins is recognized and 
then degraded by the 26S proteasome to several small peptides. Adapted from 
(Gong et al., 2014). 
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F-box proteins function as the substrate-recognition components of SCF complexes, thus 

conferring substrate-specificity to the UPS. Across species, a variety of F-box proteins can bind 

to the core SCF scaffold, each targeting multiple substrates, enabling SCF complexes to 

specifically label proteins for subsequent degradation (Jin et al., 2004; Skaar et al., 2009). One 

of the highly conserved F-box proteins is FBXO11 (Duan et al., 2012). In mammals, FBXO11 

is linked to developmental alterations, including facial clefting and otitis media (Hardisty-

Hughes et al., 2006). In C. elegans, DRE-1, a homolog of human FBXO11, has been shown to 

regulate the larval-to-adult transition in the epidermis of (Fielenbach et al., 2007). Interestingly, 

Blmp-1, the C. elegans Blimp-1, has been identified as a suppressor for the dre-1 mutant, which 

displays heterochronic phenotypes. 

 

1.6.3.2. Pri small ORFs as mediators for selective proteasome-mediated protein 

processing 

The polished rice (pri) Drosophila gene, also referred to as tarsal-less, polycistronically 

encodes four related small peptides (11 or 32 amino acids in length) evolutionarily conserved 

throughout all arthropods, and are mediating the function of pri during development (Fig. 4) 

(Galindo et al., 2007; Kondo et al., 2007). This unique gene is transcribed as ~1.5 kb intron-

less mRNA without obvious long ORFs and thus was initially considered as a non-coding RNA 

gene (Inagaki et al., 2005; Tupy et al., 2005). However, it has been shown that each small 

peptide, with no identified protein domain, can provide full Pri function (Galindo et al., 2007; 

Kondo et al., 2007).  

During the embryogenesis of Drosophila, pri mRNA is first expressed in seven 

anteroposterior stripes at the blastoderm stage, then it displays fast evolving patterns of 

expression at different times, and in various tissues, including the spiracles, gut, trachea and 

epidermal cells (Kondo et al., 2007). pri loss of function leads to embryonic lethality, with 

dramatic defects in the epidermis including the complete absence of trichomes both in the 

dorsal (hairs) and in the ventral (denticle belts) regions; a phenotype similar to that observed 

in mutant embryos of the transcription factor Shavenbaby (Svb). Denticle belts are chitin 

structures that require filamentous F-actin assembly for their generation (Delon and Payre, 

2004; Price et al., 2006; Walters et al., 2006). Both the denticle belts and the F-actin assembly 

are disturbed in the absence of pri, which is attributed to the lack of Svb as an activator (Katoh 

et al., 2010). In addition to its function in trachea and epidermis morphogenesis, Pri also 

functions in patterning the imaginal leg disc in the late larvae (Galindo et al., 2007; Pueyo and 
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Couso, 2008), and for the proper development of adult legs during metamorphosis (Pi et al., 

2011). In imaginal development, loss of Pri activity induces fused segments in the tarsus region 

(Pueyo and Couso, 2008). Finally, during wing and external sensory organ development, 

overexpression of Pri promotes sensory organ precursors and wing specification while 

suppressing dorsal-ventral boundary formation (Pi et al., 2011).  

In Tribolium castaneum, knockdown of the pri ortholog mille-pattes (mlpt) induces 

segmental defects associated with disorganized homeotic gene expression (Savard et al., 2006). 

Although the developmental events in which Pri is involved seem diverse, this gene may have 

roles in many aspects of fundamental biological processes, since related genes were found in 

many other insects and arthropods (Galindo et al., 2007; Savard et al., 2006).  

 

 

 

 

 

 

Figure 4. An illustration of “how the pri peptides trigger the epidermal 
differentiation events in insects, and how they direct the proteolytic cleavage of 
the transcription factor Shavenbaby”. (https://blog-biosyn.com /2013/05/07/ 
what-are-micro-peptides/). 
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2. MATERIALS AND METHODS 

2.1 Fly culture and stocks 

Flies were raised at 25°C on 10% glucose, 8% cornmeal, 4% yeast extract, and 0.7% agar 

medium containing propionic acid and butyl-p-hydroxybenzoate as antifungal agents. FBXO11 

mutant line FBXO11EY09314 and proteasome mutant lines Prosβ3G4206 and Prosα2G8948 were 

obtained from Bloomington Stock Center. FBXO11 mutant lines FBXO11NP2786 and 

FBXO11GS10050 and proteasome mutant line Prosβ61 were obtained from KYOTO Stock Center. 

RNAi lines Prosβ6NIG.4097R-1, Prosβ6NIG.4097Rz2, and Prosα4GL00341 were obtained from the 

National Institute of Genetics in Japan. ppl-Gal4 was a gift from Dr. Masayuki Miura 

(University of Tokyo, Tokyo, Japan). UAS-dicer2; Cg-Gal4 was a gift from Dr. Naoki 

Okamoto (University of California, Riverside, CA, USA). Double homozygotic line 

Prosβ6NIG.4097R-1 Prosβ6NIG.4097R-2 was used to increase RNAi efficiency. Pri mutant lines (pri4, 

priF04987) were a gift from Dr. Yuji Kageyama (Kobe University, Kobe 657-850, Japan). w or 

yw was used as a control lines. All mutant fly lines in this work were outcrossed at least seven 

times into the control background. 

2.2. Measurement of the prepupal period 

Newly formed white prepupae were collected every 30 min and transferred to a plastic Petri 

dish kept at 25°C and 80–90% relative humidity, and pupation timing was observed. The 

Kolmogorov–Smirnov test (KS-test) was used to evaluate differences in pupation timing 

between test and control animals and to determine P values. 

2.3. Western blotting 

White prepupae of the hs-Blimp-1 line carrying a heat shock-promoter, Blimp-1 cDNA and 

FLAG tag sequence fusion gene (Agawa et al., 2007) were collected at 0 h APF, heat shocked 

at 37°C for 1 h, then homogenized at various time points in a 1.5 mL microtube containing 50 

µL of 1× Laemmli sample buffer, chilled immediately in liquid nitrogen and kept at -80°C until 

use. At each time point, two independent samples of a single animal were used, and western 

blotting analysis was performed as described previously (Sultan et al., 2014). The efficiency of 

protein transfer and equal loading of protein were confirmed by staining with Ponceau-S after 

transfer to the membrane. M2 (FLAG tag) antibody (Sigma, USA) was used at a 1:2000 
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dilution, and goat anti-mouse IgG HRP (Cayman, USA) at a 1:5000 dilution was used to detect 

FLAG-tagged Blimp-1. 

2.4. MG132 treatment 

To block proteasomal activity, white prepupae of the hs-Blimp-1 line were collected at 0 h APF, 

heat shocked for 1 h at 37°C, the pupal case was peeled off in Grace insect cell culture medium 

(GIBCO), and the whole-body organs were untightened. Organs with heat shock-induced 

Blimp-1 were then cultured in Grace insect cell culture medium with shaking at 25°C with or 

without 10 μM MG132 (Cayman, USA), which is a 26S proteasome-specific inhibitor, 

dissolved in DMSO, for the indicated periods. 0.1% DMSO was used as the vehicle control. 

Culture tubes including the treated organs were centrifuged for 5 min at 5000 rpm, the medium 

was removed carefully, and the organs were then homogenized and processed for western 

blotting against FLAG-tagged Blimp-1, as described before. 
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RESULTS 

3.1. Blimp-1 is degraded in a 26S proteasome-dependent manner 

To examine whether Drosophila Blimp-1 is degraded by the proteasome, I examined whether 

the degradation speed of Blimp-1 was affected by the proteasome inhibitor MG132. FLAG-

tagged Blimp-1 was induced using the hs-Blimp-1 transgenic fly line under the control of heat 

shock at 0 h APF. Organs from Blimp-1-induced prepupae were cultured in the presence or 

absence of MG132 for various periods, and the degradation of Blimp-1 was detected by western 

blotting. Blimp-1 was clearly detectable until at least 4 h after heat shock when organs were 

cultured in the presence of MG132, in contrast to almost complete disappearance after 2 h in 

controls (Fig. 5). This result suggests that Blimp-1 is degraded by the proteasome. 

 

 

 

 

 

 

 

 

Next, I analyzed the pupation timing in mutants of 26S proteasome subunit components, 

because retardation in Blimp-1 degradation showed a delay in pupation timing (Akagi et al., 

2016). Pupation timing was significantly delayed in heterozygous mutants of 20S proteolytic 

core subunits compared with that in control animals; pupation was 0.3 h slower on average in 

mutants of α2, one of the structural subunits (Fig. 6A), and of β3 (Fig. 6B) or β6 (Fig. 6C), 

which are endopeptidase active subunits. Taken together, these results suggest that Blimp-1 is  

degraded by the 26S proteasome in the UPS, and that proteasome functionality at these stages 

is required for the accurate completion of the developmental program. 

Figure 5. Blimp-1 degradation requires a functional proteasome system. 
Blimp-1 was induced by 1 h heat shock at 0 h APF in hs-Blimp-1 prepupae and 
then their organs were cultured for the indicated period in the presence or 
absence of 10 µM MG132. The expression level of Blimp-1 before and after 
organ culture was detected by western blotting using anti-FLAG-tag antibody. 
Two independent samples from a single animal were used for each time point. 
Upper panel (-); the vehicle control (0.1% DMSO) samples. Lower panel (+); 
MG132-treated samples. Non-heat shock (Non hs) samples were neither 
cultured nor treated. 
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3.2. FBXO11 contributes to Blimp-1 degradation as an E3-ligase 

The results on the role of UPS in the degradation of Drosophila Blimp-1 led us to investigate 

whether Blimp-1 is recruited to the 26S proteasome by the same conserved E3-ligase FBXO11 

as identified previously in C. elegans and human (Horn et al., 2014). To examine this 

possibility, I examined the pupation timing in several hypomorphic loss-of-function mutations 

in FBXO11. Heterozygous FBXO11 mutants FBXO11NP2786 (Fig. 7A) and FBXO11GS10050 (Fig. 

7B) showed significant delays in pupation timing by 0.6 and 0.4 h, respectively. Of note, the 

homozygous viable mutant FBXO11EY09314 (Fig. 7C) showed an obvious dose-dependent delay 

by 0.5 h compared with 0.3 h in heterozygotes. These results suggest that the degradation speed 

of Blimp-1 was slowed down in FBXO11 mutants, and FBXO11 acted as an E3-ligase for 

Blimp-1 recognition to the SCFFBXO11 complex. 

 

 

 

 

Figure 6. 26S proteasome mutants exhibited a delay in pupation timing. 
Heterozygous mutants of 26S proteasome subunits and control (yw) animals 
were cultured at 25°C, and pupation timing was observed every 30 min. The 
Kolmogorov–Smirnov test was used to evaluate the differences between 
pupation timing and to determine P values. Prosα2G8948 line (A) was used for 
the α subunit mutant, Prosβ3G4206 (B) and Prosβ61 (C) were used for β subunit 
mutants. Av; average of pupation timing, n; number of animals examined. 
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3.3. Degradation speed of Blimp-1 is affected by proteasome subunit and FBXO11 gene 

doses 

To confirm that the degradation speed of Blimp-1 is dependent on the expression level of 

proteasome subunits or FBXO11, I examined the degradation speed of Blimp-1 in these mutant 

backgrounds. I induced FLAG-tagged Blimp-1 from the hs-Blimp-1 transgene at 0 h APF, and 

degradation speed of Blimp-1 was observed by western blotting. In the control animals, Blimp-

1 was clearly detected until 2 h after heat shock. In contrast, in the heterozygous mutant of both 

subunits of the 26S proteasome and FBXO11, Blimp-1 was detected clearly until 2.5 and 3 h 

after heat shock (Fig.8). This result further supports the idea that Blimp-1 is degraded by the 

26S proteasome, and this process is mediated by FBXO11 as the E3 ubiquitin ligase. 
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Figure 7. FBXO11 contributes to the correct determination of pupation 
timing. FBXO11 mutants and control (yw) animals were cultured at 25°C, and 
pupation timing was observed every 30 min. The Kolmogorov–Smirnov test was 
used to evaluate differences between pupation timing and to determine P values. 
Heterozygous lines FBXO11NP2786 (A), FBXO11GS10050 (B), and homozygous 
line FBXO11EY09314 (C) were used. Av; average of pupation timing, n; number of 
animals examined. 
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3.4. Pupation delay in FBXO11 mutant is caused by the identified timer system 

It has shown that prolonged Blimp-1 expression causes a delay in pupation timing due to the 

delayed expression of βFTZ-F1 (Agawa et al., 2007; Akagi et al., 2016). To investigate whether 

the delayed pupation timing in FBXO11 mutant animals is caused by altered βFTZ-F1 

expression, I examined whether temporal induction of βFTZ-F1 at the endogenous expression 

timing is sufficient to rescue the delay in pupation timing in an FBXO11 mutant. βFTZ-F1 was 

induced from the hs-βFTZ-F1 transgene (Murata et al., 1996) by heat shock in a heterozygous 

FBXO11NP2786 mutant, and pupation timing was observed. Although a difference in pupation 

timing was not observed whether or not animals carried the hs-βFTZ-F1 gene without heat 

shock in a FBXO11 heterozygous mutant (Fig. 9A,C), advancement of pupation timing was 

observed by the induction of βFTZ-F1 at 7 h APF, which is the time when endogenous βFTZ-

F1 is expressed (Fig. 9B,D). This result means that delayed pupation in the FBXO11 mutant 

was advanced by the induction of βFTZ-F1, and thus it is clear that delaying effect from the 

FBXO11 mutation is caused by affecting the timer system to determine pupation timing. 

 

 

 

 

Figure 8. Blimp-1 stability increases in the mutants of either proteasome 
subunits or FBXO11. Flag-tagged Blimp-1 was induced by 1 h heat shock at 0 
h APF in heterozygotes between hs-Blimp-1 and the mutants of proteasome 
subunit or FBXO11 and was detected after indicated time by Western blotting 
using Flag antibody. Two independent samples of a single animal were used at 
each time point. 
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Figure 9. Rescue of pupation timing delay in FBXO11 mutant by induction 

of FTZ-F1. Pupation timing of FBXO11 mutant animals with/without hs-

FTZ-F1 transgene was observed every 30 min. Non-heat shocked (A) and heat 
shocked (B) animals. Heat shock was given at 34°C for 1 h at 7 h APF. The 
Kolmogorov–Smirnov test was used to evaluate differences in pupation timing 
between test and control animals and to determine P values. Av; average of 
pupation timing, n; number of animals examined. 

0

20

40

60

80

100

10 11 12 13

P
up

a
te

d
 a

n
im

al
s 

(%
)

Time APF (h)

hs@7h APF

hs7-ywEY-39-12.1

hs7-FTZf1-EY-10-11.8

D 

FBXO11
EY09314 

/+ 
(Av=11.8h, n=10) 

FBXO11
EY09314

/hs-βFTZ-F1 
(Av=12.1h, n=39) 



RESULTS 

 

27 
 

3.5. The proteasome system in the fat body affects pupation timing 

Because it have been identified that the timer system for pupation timing is located in the fat 

body (Akagi et al., 2016), I knocked down proteasome subunit genes in the fat body using fat 

body-specific GAL4 drivers. Pupation timing was obviously delayed by 0.8 and 0.6 h upon 

knockdown of β6 subunit gene using Cg-GAL4 compared with GAL4 and UAS control lines, 

respectively (Fig. 10A). Furthermore, a slightly shorter, but still significant, delay in pupation 

timing was observed when either β6 (Fig. 10B) or α4 (Fig. 10C) subunit genes were knocked 

down using a ppl-GAL4 driver. These results indicate that the observed delay in pupation is 

caused by affecting the proteasome system in the fat body. 

 

 

 

 

 

 

 

 

 

0

20

40

60

80

100

9 10 11 12

P
u

p
at

ed
 a

n
im

a
ls

 (
%

)

Time APF (h) 

w4097 (72

dicer w 84

24

A 

Prosβ6 RNAi/+ 
(Av=10.7h, n=72) 
Cg-Gal4/+ 
(Av=10.9h, n=84) 
Cg-Gal4> Prosβ6 RNAi 
(Av=11.5h, n=32) 

** 
** 

 *p<0.05, **p<0.01  

0

20

40

60

80

100

9 10 11 12

P
u

p
a

te
d 

a
n

im
al

s 
(%

)

Time APF (h)

w 4097 72 f

ppl w 63 f

ppl4097 (n=20) F

prosβ6 RNAi/+  
(Av=10.7h, n=72) 
ppl-Gal4/+  
(Av=11.0h, n=63)  
ppl-Gal4 >Prosβ6 RNAi   
(Av=11.3h, n=20)   

** 
** 

 *p<0.05, **p<0.01 

B 



RESULTS 

 

28 
 

 

 

 

 

 

3.6. Pri is a temporal regulator of pupation. 

Given the crucial role of ecdysone in developmental timing, pri has been recently shown to 

have a role in mediating the action of ecdysone for the temporal control of morphogenesis 

(Chanut-Delalande et al., 2014), I wonder whether Pri peptides also provide temporal control 

of the pupation timing. Pupation timing analyzed the in two independent pri mutants. Slight 

but significant delay in pupation timing was observed by 0.2 h in the heterozygote pri4 mutant 

(Fig. 11A), while a more significant delay by 0.4 h was observed in the homozygote viable 

priF04987 mutant (Fig. 11B). These results indicate that Pri peptides may contribute to the time 

determination mechanism of pupation.  
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Figure 10. The fat body is responsible for the control of pupation timing by 
proteasome activity. Pupation timing was observed every 30 min in animals 
with knockdown of 20S components β6 (A, B) and α4 (C) in the fat body. The 
Kolmogorov–Smirnov test was used to evaluate differences between pupation 
timing and to determine P values versus the RNAi/+ (A, B, C), Cg-Gal4/+ (A) 
or ppl-Gal4/+ (B, C) as controls. Av; average of pupation timing, n; number of 
animals examined. 
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Figure 11. Pri peptides might contribute to the control of pupation timing 
by activating Blimp-1 processing in proteasome. Heterozygote (A) and 
homozygote (B) mutant of pri and control animals were cultured in 25°C, and 
pupation timing was observed every 30 min. The Kolmogorov-Smirnov test was 
used to evaluate differences of pupation timing between test and control animals 
and to determine P values. Av; average of pupation timing, n; number of animals 
examined. 
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4. DISCUSSION 

Here, I showed that Drosophila Blimp-1 is degraded by the 26S proteasome system and is 

recruited by FBXO11 as the substrate-recognition component of the SCF complex. 

Furthermore, I showed the importance of proteasome activity in the fat body to determine 

pupation timing. My results are correlated with previously described results that the biological 

timer system for pupation is located in the fat body (Akagi et al., 2016).  

4.1. FBXO11-mediated proteasome degradation of Blimp-1 determine pupation timing  

I observed a delay in pupation timing in all of the examined heterozygous mutants of 26S 

proteasome components. These results suggest that gene dosage effects due to loss-of-function 

mutations of these 26S proteasome components. In addition, a heterozygous mutant of recruiter 

FBXO11 also exhibited the same level of delay in pupation timing. These results indicated that 

the expression level of these components is an important factor to determine pupation timing; 

therefore, pupation timing can be controlled by the expression level of these components. Thus, 

I assumed that the UPS contributes to determine pupation timing as one of the components in 

the biological timer during the early prepupal period. Of note, a sudden increase in the 

concentration of the 26S proteasome at 0 to 4 h APF has been reported (Szlanka et al., 2003), 

suggesting the importance of protein degradation in developmental control. Furthermore, 

RNA-Seq data in the modENCODE developmental transcriptome of D. melanogaster 

(Graveley et al., 2011) showed that the expression of the FBXO11 increases gradually from 

the 3rd instar larval stage (L3) to a moderately high level at pupation and then starts to decrease 

again 24 h later. These developmental changes may allow control of the degradation speed of 

specific targets, including Blimp-1, among many UPS target proteins that must be degraded at 

appropriate time points.  

I have shown that both the Blimp-1 and βftz-f1 are induced by 20E and are temporally 

expressed in almost all organs (Akagi et al., 2016; Yamada et al., 2000), but the identified 

target genes are still limited in number. βFTZ-F1 has multiple functions in each organ during 

the mid to late prepupal period. For instance, βFTZ-F1 regulates two pupal cuticle genes that 

are expressed in slightly different parts of the epidermis (Kawasaki et al., 2002; Murata et al., 

1996), and it also regulates a protease that is expressed in the fat body and contributes to its 

morphological change (Bond et al., 2011). Furthermore, the expression of βFTZ-F1 in the inka 

cells is essential for releasing the ecdysis triggering hormone ETH, which induces pupation in 

the late prepupal period, and also βFTZ-F1 expression in muscles is necessary to determine the 
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timing of muscle apoptosis during metamorphosis (Fortier et al., 2003; Zirin et al., 2013). 

Moreover, βFTZ-F1 is a master regulator of late prepupal gene expression, which is essential 

for histolysis of the salivary gland cells during the early pupal period (Broadus et al., 1999; 

Yamada et al., 2000). In addition, the expression timing of βFTZ-F1 is not completely the same 

among different organs (unpublished results). In a large transcriptional profiling platform, 

involving 29 dissected tissues from larval, pupal, and adult stages of Drosophila (Brown et al., 

2014), FBXO11 appeared to be expressed in many tissues and/or during development with 

specific upregulation in the fat body from L3 up to pupation. I deduced that the expression 

levels of the 26S proteasome and FBXO11 may differ depending on tissue and contribute to 

the determination of timing of tissue-specific developmental events through control of the 

degradation speed of Blimp-1. 

In C. elegans, Blmp-1 was previously identified using RNAi-based suppressor screening to 

suppress dre-1 heterochronic phenotypes (Horn et al., 2014). A dre-1 mutant showed retarded 

migration of the gonad, whereas a Blmp-1 mutant showed precocious gonadal migration during 

L2 to L3 larva and was able to suppress the retarded phenotype of dre-1. In addition, precocious 

fusion and differentiation of epidermal stem cells, called seam cells, was partially suppressed 

by the Blmp-1 mutant in C. elegans. Moreover, similar genetic interactions were observed 

between DRE-1 and Blmp-1 for dauer formation (Horn et al., 2014). These observations 

suggest a conserved role of Blimp-1 degradation for the determination of developmental timing 

across taxa. 

4.2. Pri and Blimp-1 together contribute to determine pupation timing 

Here, I report a bit more analysis to the pri functions in the control of Drosophila development. 

My result raises the possibility that the Pri peptides might be involved in the accurate 

determination of pupation timing by regulating Blimp-1 degradation. A set of evidence 

supports my idea; first, the delayed pupation timing in the two independent pri mutants 

indicating a probable function of Pri in the time determination of this stage (Fig. 11). Secondly, 

the timing of both pri and Blimp-1 expression is directly regulated by ecdysone, indicating the 

crucial role of these factors for the proper developmental timing. Thirdly, Pri has found to 

induce a partial degradation of Svb protein by binding to the E3-ubiquitin ligase Ubr3. Pri 

induces a conformational change to Ubr3 and triggers proteasome-dependent maturation of 

Svb which leads to a shorter activator (Kondo et al., 2010; Zanet et al., 2015), when Pri works 

for the formation of epidermal trichomes (Chanut-Delalande et al., 2014; Stern and Franke, 
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2013). This mode of Pri acting as an E3-ligase modifier may hint the prediction of a Pri 

dependent modification of the E3-ligase FBXO11 along the way to Blimp-1 ubiquitination and 

degradation. In addition, the expression peak of pri is between 2-4 h APF (Chanut-Delalande 

et al., 2014), compared to 0-2 h APF of Blimp-1 (Agawa et al., 2007). This shift in the 

expression peak of pri does fit to a possible function of Pri in Blimp-1 processing. Furthermore, 

data obtained from transcriptome analysis (Brown et al., 2014) showed a striking increase of 

pri expression in the fat body at 0 h APF compared to that in the whole body, indicating that 

Pri might provide a more contribution to the rapid degradation of Blimp-1 in the fat body as a 

part of time measuring system. 

A characteristic feature of pri during Drosophila embryogenesis is its specific expression in 

a restricted set of developing tissues, and also the highly dynamic changes between 

developmental stages (Inagaki et al., 2005; Tupy et al., 2005). In Tribolium, the highly specific 

expression of mlpt in the posterior growth zone was the first hint of its function in the 

segmentation of the beetle embryo (Savard et al., 2006). In Drosophila, tissues which display 

altered differentiation in pri mutant embryos were initially anticipated by dynamics of pri 

mRNA. pri displays a transient wave of expression in the embryonic epidermis, and pri mutants 

display severe defects in epidermal differentiation (Chanut-Delalande et al., 2014; Galindo et 

al., 2007; Kondo et al., 2010, 2007). pri is also well expressed in the developing tracheal system 

from stages 9 to 15 (Kondo et al., 2007), and the lack of pri function leads to various defects 

in its initial formation (Galindo et al., 2007) and later differentiation (Katoh et al., 2010; 

Öztürk-Çolak et al., 2016). Hence the remarkable dynamics of pri expression is suggestive of 

functions for Pri peptides in a wide variety of tissues. Also, the spatiotemporal wave of pri 

expression seen around puparium formation may also indicate its implication in the control of 

the developmental timing of this stage. 

 

4.3. The fat body is a crucial organ for the biological timer to determine pupation timing 

It has shown recently that the pupation timer is composed of Blimp-1, βFTZ-F1 and Shade, 

however, the delays in pupation by heat induction of Blimp-1 or knockdown of either βftz-f1 or 

Shade were different (Akagi et al., 2016). Fat body is expected to incorporate the nutritional 

status of the animal and sends a cue for the final decision of pupation dependent on the 

comprised timer system. Akagi et al. (2016) has identified the fat body as an essential tissue 

necessary to drive this developmental timer system. Several reports have shown a link between 

nutrient status and developmental timing, and it has been suggested that the fat body is the 
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central tissue for coordinating this link (Colombani et al., 2003; Géminard et al., 2009; Rewitz 

et al., 2013). Here I showed a further evidence to support the previous demonstration about fat 

body’s role in pupation timing. First, the observation that fat body specific RNAi depletion of 

proteasome components lead to delay in pupation. Second, fat-body specific increase of either 

FBXO11  or Pri mRNA levels upon pupariation (Brown et al., 2014), together pointing to the 

importance of fat body in time regulation of this period.  
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5. SUMMARY 

Developmental timing can be adapted to the environmental changes such as nutrition and 

temperature, but this timing is well controlled and many developmental events occur after 

specific period of another event in organisms. During development of fruit fly Drosophila 

melanogaster, a drastic change from larval shape to pupal shape occurs at the end of larval 

stage, called puparium formation. Subsequently, pupation occurs about 11 hours after 

puparium formation at standard rearing condition at 25°C. This means that they have a system 

to determine pupation timing. The insect hormone ecdysteroids play an important role for 

these transitions. Recently, our lab shown that two ecdysone-inducible transcription factors, 

Blimp-1 and βFTZ-F1, play a crucial role for the determination of pupation timing. The first 

trigger of these events is the increase of 20E level at the end of larval period, which induces 

puparium formation and Blimp-1 expression. After 2 or 3 h of puparium formation, 20E level 

decreases. Subsequently, production of Blimp-1 stops because of the termination of Blimp-1 

mRNA production and rapid degradation of the mRNA. Blimp-1 works as a repressor for the 

βftz-f1 which encodes transcriptional activator. Thus, βFTZ-F1 is induced after Blimp-1 

disappearance at around 6 h APF and activates Shade which encodes ecdysone to 20E 

conversion enzyme, ecdysone-20-monooxygenase, in fat body. Hence, pupation timing is 

determined by a biological timer in fat body comprising Blimp-1, βFTZ-F1 and Shade. 

Although Blimp-1 is unstable, and its rapid loss is required for the proper timing of βftz-f1 

expression and pupation, the mechanism underlying its temporal control is poorly understood. 

To understand the degradation mechanism of Drosophila Blimp-1 and its contribution to 

time measuring system for pupation, I first examined whether the degradation speed of 

Drosophila Blimp-1 is affected by the proteasome inhibitor MG132, using organ culture 

system. Blimp-1 was clearly detectable until at least 4 h after heat shock, when organs were 

cultured in the presence of MG132, in contrast to almost complete disappearance after 2 h in 

controls, suggesting that Blimp-1 is degraded by proteasome. I next analyzed the pupation 

timing in mutants of 26S proteasome subunit components. Pupation timing was significantly 

delayed in the heterozygote mutants of 20S proteolytic core subunits compared to that in the 

host control animals, suggesting that proteasome functionality is required for the accurate 

completion of the developmental program at this stage. 

Proteasomes are found within the cytoplasm and nucleus of all eukaryotic cells and 

function to degrade normal, short-lived and mutated or damaged intracellular proteins that 

have been modified with polyubiquitin chains. Targeting and processing substrates of the 26S 
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proteasome require a covalent linkage to ubiquitin, a process that is controlled by a three-step 

enzymatic cascade comprising an E1, E2 and E3 ubiquitin ligase. In C. elegans, Blmp-1 has 

been shown to be regulated by the SCFDRE-1/FBXO11 complex via proteasome-dependent 

degradation and the system is conserved in human, suggesting that Drosophila Blimp-1 may 

be degraded by the same system that contributes to the correct time determination for 

pupation.  

To know how Blimp-1 was recognized by proteasome, pupation timing was analyzed in 

some mutants of FBXO11. The results revealed that the pupation timing in the mutated 

animals is delayed compared to that in host control animals. These results strongly suggest 

that Blimp-1 is targeted to a ubiquitin proteasome-dependent proteolysis system mediated by 

FBXO11 and the system is conserved among wide range of species including Drosophila. To 

confirm the Blimp-1 degradation of is dependent on the expression level of proteasome 

subunits or FBXO11, the degradation speed of Blimp-1 was examined in these mutant 

background. Induced Blimp-1 from the hs-Blimp-1 transgene could obviously be detected 

until 2 h after heat shock, compared to 2.5 and 3 h in mutants of both FBXO11 and 26S 

proteasome subunits. This result further supports the idea that Blimp-1 is degraded by 26S 

proteasome mediated by FBXO11 as E3 ubiquitin ligase, and that pupation timing is 

determined by the degradation speed of Blimp-1. If Blimp-1 works as timer molecule by 

repressing βftz-f1, I wander whether the delayed pupation timing in FBXO11 mutant animals 

is caused by delayed βFTZ-F1 expression. For that, βFTZ-F1 was induced from hs-βFTZ-F1 

transgene in FBXO11 mutant and pupation timing was observed. Results revealed that 

pupation timing was advanced by induction of βFTZ-F1 at the time endogenous βFTZ-F1 

expression. This result means that delayed pupation in FBXO11 mutant was suppressed by 

induction of βFTZ-F1, and thus it is clear that delay effect by FBXO11 mutation is caused by 

affecting the identified timer system. Since this timer system for pupation timing is located in 

fat body, I thought to knock down proteasome subunit genes in fat body using fat body-

specific GAL4 drivers. As expected, pupation timing was obviously delayed for 0.8 and 0.6 h 

in β6 subunit gene suing Cg-GAL4, and a slightly less but significant delay was observed 

when either β6 or α4 using ppl-GAL4 driver. These results indicate that observed delay in 

pupation is caused by affecting proteasome system in fat body. 

I also analyzed mutants on the micropeptides encoded by polished rice (pri), which are 

known as proteasome mediators for protein processing, and found that Pri might be a 

temporal regulator for Blimp-1. All these results support the idea that pupation timing is 

determined by the degradation speed of Blimp-1. 
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6. CONCLUSION 

My study is mainly aimed to uncover the molecular mechanisms underlying a biological timer 

to ensure that a sequence of developmental events appropriately occur at prepupal period (Fig 

12). I demonstrate that the ubiquitin proteasome system is involved in the rapid degradation of 

a labile transcriptional factor Blimp-1 that determines the onset of pupation by repression of 

the gene encoding transcriptional factor βFTZ-F1 in Drosophila (Fig 12). My study provides 

insight into the evolutionarily conservation of proteasome-dependent degradation of Blimp-1 

in the regulation of developmental timing. In addition, the result adds more evidence to support 

the previously identified timer system in fat body, shedding light for molecular complication 

of its role in development. Furthermore, a small part of my results is welcoming the 

contribution of “Pri” small peptides, The new comer to Drosophila development in regulation 

of pupation timing.  
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Figure 12. Schematic representation of the suggested proteasomal 
regulation of Blimp-1 processes by controlling its turnover in fat body. 
Proteasome function to degrade Blimp-1 in fat body specifically recognized by 
recruiter FBXO11, permitting the next developmental events. After a decline of 
the level of 20E, Blimp-1 degrade rapidly (Agawa et al., 2007; Akagi and Ueda, 
2011) allowing expression of βftz-f1, which induces Shade in the fat body in the 
late prepupal period. Then, Shade converts released E to 20E, which induces 
pupation. Pri peptides somehow contribute to determine pupation timing but the 
exact protein targets in this period  is still unclear. 
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