
A Software Architecture for Java Programming Learning Assistant System

Publication History:

Received: April 24, 2017
Accepted: July 25, 2017
Published: July 27, 2017

Keywords:

JPLAS, Java programming
education, Web application, MVC
model, Software architecture

Review Article Open Access

Introduction

As a reliable and portable object oriented programming language,
Java has been extensively used in industries and educated in schools.
To advance Java programming educations, we have developed a Web-
based Java Programming Learning Assistant System (JPLAS) that can
assist self-studies of students while reducing workloads of teachers
[1-4].

JPLAS has four types of problems to accommodate a variety of
students at different learning levels. The first one is the element fill-in-
blank problem which requires students to fill in correct elements in the
blanks in a given Java code. The second one is the value trace problem
which requires students to answer the actual values of important
variables in the code. The third one is the statement fill-in-blank
problem which makes students write whole statements that are blank
in the code. The last one is the code writing problem which requires
students to write whole Java codes to satisfy the given specifications.
In the former two problems, the answers of students are marked by
string matching with correct ones, and in the latter two, they are
marked by unit tests using test codes on JUnit. The difficulty level of
the problems is designed to increase in this order of the four problems.

As a laboratory project, JPLAS has been continuously implemented
and modified by a number of students who studied at different years
in our group. Furthermore, several functions in JPLAS have been
extended each year. Through this project, we expect that students have
experienced programming for practical systems that have been used
in Java programming courses in universities. Unfortunately, JPLAS
has plenty of redundant classes and methods in the code that have
substantially the same functions. Because most of the students did
not have sufficient knowledge and experiences on Java programming,
they implemented new functions by copying the whole existing code
and modifying/adding the related part. They commented out or did
not call unnecessary parts of the code that remain in the JPLAS code.
As a result, a large number of clone codes [5] have been accumulated
in the code of JPLAS, which make it long and redundant.

In this paper, we propose a software architecture for JPLAS that can
avoid clone codes to the utmost, even when new students implement

*Corresponding Author: Dr. Nobuo Funabiki, Department of Electrical and
Communication Engineering, Okayama University, Okayama, Japan; E-mail:
funabiki@okayama-u.ac.jp

Citation: Ishihara N, Funabiki N, Kuribayashi M, Kao WC (2017) A Software
Architecture for Java Programming Learning Assistant System. Int J Comput
Softw Eng 2: 116. doi: https://doi.org/10.15344/2456-4451/2017/116

Copyright: © 2017 Ishihara et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

new functions in JPLAS. This architecture closely follows the MVC
model as the common architecture for Web application systems
including JPLAS. Our architecture basically uses Java for the model
(M), HTML/CSS/JavaScript for the view (V), and JSP for the controller
(C). It is emphasized that Servlet is not used in this case to avoid
the possible redundancy that could happen between Java codes and
Servlet codes where the same functions may be implemented. More
specifically, in the model, a design pattern called responsibility chain is
adopted to handle marking functions in the problems, and the specific
functions for database access are implemented such that the controller
does not handle them. In the view, the user interface is dynamically
controlled with Ajax, to reduce the number of JSP files.

For evaluations of our proposal, we implement JPLAS from scratch
by following this software architecture. First, the number of code files
is compared with the previous implementation, which shows that
the number of code files becomes 25%. Then, the number of newly
added code files is counted when two functions are added to JPLAS,
which shows the number of new files is extremely small for either new
function.

The rest of this paper is organized as follows: Section II reviews the
outline of the current JPLAS and notes its problems. Sections III and IV
present the software architecture for JPLAS and the implementation,
respectively. Section V shows evaluations. Section VII concludes this
paper with future works.

Review of Current JPLAS

In this section, we review the outline of current JPLAS.

International Journal of
Computer & Software Engineering

Nobuya Ishihara1, Nobuo Funabiki1*, Minoru Kuribayashi1 and Wen-Chung Kao2

1Department of Electrical and Communication Engineering, Okayama University, Okayama, Japan
2Department of Electrical Engineering, National Taiwan Normal University, Taipei, Taiwan

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 2. 2017. 116

 Ishihara et al., Int J Comput Softw Eng 2017, 2: 116
 https://doi.org/10.15344/2456-4451/2017/116

Abstract

For advancements of Java programming educations, we have developed a Web-based Java Programming
Learning System (JPLAS). JPLAS provides four problems with different levels, namely, element fill-in-
blank problem, value trace problem, statement fill-in-blank problem, and code writing problem, to cover
students at different learning stages. Unfortunately, since JPLAS has been implemented by a number of
students who studied in our group at different years, the code has become complex and redundant, which
makes further extensions of JPLAS extremely hard. In this paper, we propose a software architecture for
JPLAS to avoid redundancy. Based on the MVC model, our proposal uses Java for the model (M), HTML/
CSS/JavaScript for the view (V), and JSP for the controller (C). Besides, adopting a design pattern,
the marking functions of the four problems are implemented uniformly. For evaluations, after JPLAS
is implemented with this architecture, the number of code files is compared with that of the previous
implementation, and the number of additional files is examined for two new functions.

Special Issue: Software Architecture

https://doi.org/10.15344/2456-4451/2017/116
https://doi.org/10.15344/2456-4451/2017/112
https://doi.org/10.15344/2456-4451/2017/116

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 2. 2017. 116

Software platform

In JPLAS, Ubuntu is adopted for OS of JPLAS running on VMware.
Tomcat is used as a Web server using JSP/Servlet. JSP is a script with
embedded Java code within the HTML code, where Tomcat could
return a dynamically generated Web page by JSP to the client. Servlet
is a Java code that will dynamically generate a Web page. MySQL is
adopted as a database for managing the data.

Four problems in JPLAS

In JPLAS, the four types of problems are provided. For each
problem, JPLAS implements various functions which not only for
teachers to generate and register new problems but assist students in
answering them.

1) Element Fill-in-blank Problem: This problem requires students to
fill in the blank elements in a given Java code. The correctness of the
answers are marked by comparing them with their original elements
in the code that are stored in the server. The original elements are
expected to be the unique correct answers for the blanks. To help a
teacher generate a feasible element fill-in-blank problem, the blank
element selection algorithm has been proposed [4].

2) Value Trace Problem: This problem requires students to trace the
actual values of important variables in a code when it is executed [2].
The correctness of the answers are also marked by comparing them
with their correct ones stored in the server.

3) Statement Fill-in-blank Problem: This problem asks students to
fill in the blank statements in a code. The correctness of the code is
marked by using the test code on JUnit that is an open source software
for the test-driven development (TDD) method [6]. To help a teacher
select blank statements from a code, the program dependency graph
(PDG) has been used [3].

4) Code Writing Problem: This problem asks students to write a whole
code from scratch that satisfies the specifications. The correctness of
the code of students are also marked by the test code [1].

Support functions for teacher

JPLAS provides several support functions for a teacher to register
a new Java code, generate a new problem using the corresponding
algorithm, and register a new assignment by selecting problems and
writing the problem statement.

Markers in database

In the database, each problem has been stored in a single text field
as a string with the markers in Table 1:

Citation: Ishihara N, Funabiki N, Kuribayashi M, Kao WC (2017) A Software Architecture for Java Programming Learning Assistant System. Int J Comput Softw
Eng 2: 116. doi: https://doi.org/10.15344/2456-4451/2017/116

 Page 2 of 7

Support Functions for Student

Likewise, JPLAS provides several support functions for students
to answer problems. The answer from a student is processed at the
JPLAS server by the following steps:

(1) When a student accesses to JPLAS, the list of the assigned problems
to the student is displayed.
(2) When a problem is selected by the student, the corresponding
problem text in the database is displayed using the marker in Table 1.
(3) The student writes the answers in the corresponding forms.
(4) The answers submitted by the student are marked
in the server, and both the answer and the marking
results will be saved in the database.
(5) JPLAS offers feeds back to the student.
(6) If necessary, the student could repeat the steps from (3).

Marking Functions

Each problem possesses a unique marking function in the server.

1) Element Fill-in-blank and Value Trace Problems: In the element
fill-in-blank and value trace problems, each answer from a student is
compared with the corresponding correct word or number stored in
the database.

2) Statement Fill-in-blank Problem: In the statement fillin- blank
problem, first, the answer from a student is inserted into the blanks
in the problem code, to make a complete code. Then, the two-step
marking is applied to this code after creating a working folder on the
server: 1) the syntax of the code is verified by compiling it, and 2) only
when the compile succeeds, the logic or behavior of the code is tested
by the unit test for JUnit. In 1), the syntax errors will be informed to
the student if they are found. In 2), the error message from JUnit will
be returned to the student if any test items in the test code fail.

3) Code Writing Problem: In the code writing problem, the same two-
step marking is applied to the code of a student.

Marker description

//@JPLAS answer
//@JPLAS statement
//@JPLAS test code
//@JPLAS output
_(under line)
//@JPLAS blank
null

the following paragraph contains correct answers
the following paragraph contains the problem statement
the following paragraph contains the test code
the following paragraph contains the output of the code
the corresponding element is blanked
the following statement is blanked
problem code

Table: Markers in problem text.

Figure 1: Overview of problem-answering procedure in JPLAS.

https://doi.org/10.15344/2456-4451/2017/116

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 2. 2017. 116

Drawbacks in implementation

As discussed in Section I, JPLAS has been implemented by plural
students who studied in our group at different years. In addition,
each of the three problems has been implemented by a different
student. The code for the code writing problem was first implemented
by a student who started the JPLAS project. Then, the code for the
element fill-in-blank problem was implemented by another student
through copying this existing code and modifying it. The code for the
statement fill- in-blank problem was implemented by another student
in the similar way.

Therefore, a considerable number of clone codes have been
accumulated in the codes for JPLAS and made them long and
redundant. Besides, the documents for the code implementations
are not properly managed. Furthermore, these implementations did
not follow the MVC model explicitly, and did not consider new Web
technologies such as Ajax, HTML5, and CSS3. To be specific, Java was
used for the model, JSP is of the view, and Servlet is for the controller
as shown in Figure 2. Particular functions in the model controls the
view directly. As a result, it could be a challenge for new students to
make further extensions under the limited time and skills.

In JPLAS, numerous user interfaces have common items such
as the menu. Unfortunately, in the existing codes for JPLAS, the
corresponding code part of the common items will be always included
in the JSP code for each interface, which causes the redundancy of
codes. As well, students need sufficient time to learn the programming
by Servlet and the setup of Tomcat for the use. Thus, it is better to
implement JPLAS without Servlet.

Proposal of Software Architecture for IJPSL

In this section, we present the software architecture for JPLAS to
solve the drawbacks in the current JPLAS implementation.

Adopted languages for MVC model

The proposed software architecture tries to follow the MVC model
as strictly as possible as the standard architecture for a Web application
system. As illustrated in Figure 3, Java is used for the model, HTML/
CSS/JavaScript(JS) are in the view, and JSP is for the controller. Using
HTML, CSS, and JavaScript for the view, advanced user interfaces
can be implemented using animations and dynamic content changes.
Using JSP only for the controller, students ’loads in learning Servlet
and Tomcat configurations can be reduced.

Thus, by using suitable languages for each of the MVC model, it is
expected to make the implementations of the corresponding codes
easy, simple, and flexible. Particularly, by adopting JavaScript for the
view, the common parts for several interfaces can be described in one
HTML file, while the different parts are realized using Ajax, which
can significantly reduce redundant descriptions of the same function
called code clones.

Citation: Ishihara N, Funabiki N, Kuribayashi M, Kao WC (2017) A Software Architecture for Java Programming Learning Assistant System. Int J Comput Softw
Eng 2: 116. doi: https://doi.org/10.15344/2456-4451/2017/116

 Page 3 of 7

Software architecture for model

In the proposed software architecture, the model implements the
logic functions of JPLAS using Java. For the independence from the
view and the controller, any input/output to/from the model uses a
string or its array that does not contain HTML tags.

1) Database Access: In the MySQL database server adopted in
JPLAS, plural databases can be defined, where each database can
have plural tables. JPLAS uses one database to store the information
on users, problems, and answers in the corresponding tables. To
avoid the redundant codes for implementing common functions in
database access in the upper classes, we prepare three classes to handle
it. Figure 4 shows the relationships between them.

The database class manages the information necessary for database
access, such as the server IP address, the port number, the database
name, the system ID that is used to connect to the database server in
JPLAS, and the password. The system ID and the password are hidden
in private variables in this class.

The table class makes a model of each table for users, problems,
and answers so that it can be handled by Java. This class deal with
the data access to/from the database using SQL commands. If the
corresponding table does not exist, this class automatically generates
the table using the initialization method.

The abstract class provides the common procedures for database
access such as closing the data linkage, and unifying the data type for
output. The table class implements this class.

2) Overview of Marking: JPLAS provides four different problems
where each problem needs a different marking function. To
automatically select the proper marking function to the answer from
a student, the responsibility chain design pattern is adopted. Then,
it is predicted that JPLAS will be easily extended by implementing
new Java programming problems and new marking functions with
combinations of existing marking functions.

Figure 2: Languages for MVC model in existing JPLAS.

Figure 3: Languages for MVC model in new JPLAS.

Figure 4: Three classes for database access.

https://doi.org/10.15344/2456-4451/2017/116

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 2. 2017. 116

As displayed in Figure 5, the specified next marking process is
automatically selected when the current process cannot handle the
received data of the answer by using the responsibility chain. The class
for each marking process has the method to check whether the answer
can be handled or not, the method to mark the answer if it can be
handled, and the method to specify the next marking process if not.

To give the integrated names to these methods, an abstract class
is prepared such that any class for marking becomes its child class.
Then, the methods in these marking classes have the names in the
abstract class.

For each marking class, the answer data from a student and the
correct answer/test code from the database are the inputs, and the
strings and the score are the outputs. The output strings are the data
coming from the marking class to offer students useful information to
complete the answer. They include the compiler error messages, the
JUnit output messages, and the marking results. The word matching
test is specified as the first marking process.

3) Word Matching Test: When the data from the database contains the
correct answer words of the problem, the word matching test is applied.
In this marking, each answer is compared with the corresponding
correct word in the database. When they are the same, it returns
correct. Otherwise, it returns wrong. In this marking function, the
grade can be given by the rate of the number of correct answer words
to the total number of correct answer words. Then, the unit test is
specified as the next marking process.

4) Unit Test: When the data from the database contains the test code
for the problem, the unit test is applied. In this marking, each answer
code is first saved on the disk of the server with the test code. Then,
the required commands to the unit test are called.

In the unit test, the answer code is compiled by the Java compiler.
If it is successfully compiled, the test code is compiled. After that,
the unit test using JUnit is called by calling the command, and the
standard output and the log file are obtained by strings. In this
marking function, the grade will be given by the rate of the number of
successful tests to the total number of tests in the test code. Then, the
compiling test is specified as the next marking process.

5) Compiling Test: When none of the previous tests were applied, the
compiling test is applied. In this marking, each answer code is first
saved on the disk of the server with the test code. Then, the command
to compile the code is called. If it is successfully compiled, the score of
one hundred can be given. Otherwise, the score will be zero. There is
no next marking process.

Software architecture for view

The view implements the user interfaces of JPLAS by using a CSS

Citation: Ishihara N, Funabiki N, Kuribayashi M, Kao WC (2017) A Software Architecture for Java Programming Learning Assistant System. Int J Comput Softw
Eng 2: 116. doi: https://doi.org/10.15344/2456-4451/2017/116

 Page 4 of 7

framework to provide integrated interfaces using cascading style sheet
(CSS) in the Web standard. In this paper, SkyBlue [8]is adopted in the
CSS framework, because it can provide proper layouts for multi-size
displays without JavaScript codes.

1) Overview: Figure 6 illustrates the overview of the software
architecture for the view. In a Web page for the user interface in
JPLAS, the layout is described by HTML and CSS, where it consists
of the title, the menu, and the main body of the assignment. As the
feature of this architecture, the fixed parts of the interface are made
by HTML with CSS, while the changeable parts of the interface are
realized by JavaScript for Ajax. By using different languages for the
fixed parts and the changeable parts in the interface, this design can
reduce the code size including code clones, and simplify the code
architecture.

2) Communications for Answer Interface: The communications
between the server and the browser for the assignment answer
interface are as follows:

1) JavaScript in the browser requests the assignment list to JSP for the
control in the server.
2) JSP on the server sends the list in the table to JavaScript.
3) JavaScript updates the assignment list in the interface.
4) JavaScript requests the details of the clicked assignment submitted
by the student to JSP.
5) JSP sends the requested data after embedding the scripts for ”input
field”, ”answer button,” and ”result display field”.
6) JavaScript updates the interface.
7) When the student clicks the ”answer button”, JavaScript collects
the answers from the student, send them to the server, and requests
marking them to JSP.
8) JSP marks the answers.
9) JavaScript receives the marking results and shows them in the
interface.

Control

The control in JPLAS is implemented by JSP. When it receives a
request from the view, it sends it to Java in the model and requests
the corresponding process. When Java in the model returns the
processing result by strings, the control changes the format for the
view using HTML. The procedure is elaborated as follows:

Figure 5: Marking functions by responsibility chain.

Figutre 6: Software architecture for view.

https://doi.org/10.15344/2456-4451/2017/116

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 2. 2017. 116

1) To show the assignment list in the view, JSP in the control receives
the list with strings in the two dimensional array, changes them into
the table format in HTML, and sends them to JavaScript in the view.
2) To demonstrate the selected assignment in the view, JSP receives
the details with strings, changes them into the table in HTML, and
sends it to JavaScript.
3) To mark the answers from the student, JSP receives them from
JavaScript in the view and sends them to Java in the model. After
completing the marking in the model, JSP receives the marking results
from Java, changes them into the table format in HTML, and sends it
to JavaScript in the view.

Implementation of JPLAS by Proposal

In this section, we describe the implementation of JPLAS by
following the proposed software architecture. In this paper, only the
functions which allow students to use JPLAS are implemented. For
example, the assignments were registered in the server database using
SQL commands directly. Also, the implementation of the functions
for teachers will be explored in future works.

Overview of implementation

Figure 7 exhibits the flow chart of data communication between the
student, the user interface on the browser, the server, and the database.

(1) is executed by JavaScript after the browser receives the initial
HTML file ”index.html” from the server.
 (2) is executed by JavaScript when a problem is chosen by the student.
Detailed data are provided by the server.
(3) is executed by JavaScript when the answer is submitted by the
student.
 (4) and (5) are executed in the server by Java via JSP.

Implementation of database access

Figure 8 shows the set of classes to provide the database access
functions corresponding to D) in Figure 7. In this figure, ”Db.class”
represents the parent class for the database access function, which
corresponds to ”Database class” in Figure 4. ”TableDb.class” gives
the template to implement each table class, which corresponds to
”Abstract class”. ”UserTableDb.class” implements the table containing
the information about the students, ”QuestionTableDb.class”
processes the table containing the assignments, and ”AnswerTableDb.
class” does the table containing the answers from the students, which
correspond to ”Concrete class”.

1) Problem Table and Group Table: In the JPLAS database, all the
registered problems in the four type problems are managed in
the ”problem table” where each problem is numbered with ”ID”.

Citation: Ishihara N, Funabiki N, Kuribayashi M, Kao WC (2017) A Software Architecture for Java Programming Learning Assistant System. Int J Comput Softw
Eng 2: 116. doi: https://doi.org/10.15344/2456-4451/2017/116

 Page 5 of 7

Subsequently, several problems among them in a group are given to
students as one assignment of JPLAS in a Java programming course
by the teacher. The problem groups are managed in the ”group table”
where each group is numbered with ”tag”. Each line in this table
describes a pair of a tag and an ID to represent the problem IDs in
each group tag.

2) Implementation of Table Update: The updates of these tables are
implemented using the three classes for database access. First, a class
named ”TagTableDb.class” was implemented for the new table by
implementing the template class ”TableDb.class”. In ”TableDb.class”,
one method ”createDBTabale()” is used for declaring the fields of the
database table, and another method ”appendRecord()” is for calling
SQL commands to add the records.

”createDBTabale()” has the field definition of the database. If the
accessed table does not exist, the corresponding table will be
created according to this definition. Thus, it is not necessary for the
programmer to directly access the database and manually define the
table.

Implementation of marking function

Figure 9 revelas the set of classes to provide the marking functions
corresponding to E) in Figure 7. Each of the three marking functions
in JPLAS was implemented by a class that adopts the abstract class
named ”Mark.class”. The word matching test was implemented in
”BlankMark.class”, the compiling test was in ”CompileMark.class”,
and the unit test was in ”TestMark.class”. In ”Mark.class”, the method
”canMark ()” judged the feasibility of the corresponding test, and the
method ”setNext ()” automatically selects the next test. The applying
order of the three tests is word matching test, unit test, and compiling
test.

Implementation of Uploading/Downloading binary file

JPLAS offers functions to allow a user to download the problem
statement, the problem code, the test code, and the correct answer to
the PC, and to upload the answer and the marking results in the PC to
the server. These data files are compressed into one binary file using
the zip format before downloaded or uploaded.

Figure 7: Data communication flow in JPLAS.

Figure 8: Classes for database access.

Figure 9: Classes for marking.

https://doi.org/10.15344/2456-4451/2017/116

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 2. 2017. 116

In a database, a binary file is stored as BLOB [9]. To download the
binary file, the JSP file needs to put the corresponding header on it. To
upload the binary file, the ”Commons FileUpload” package is used in
the JSP file. IT transforms the binary file into the stream to Java classes
[10]. To transmit the binary file on the fly (without storing in the file
system) by using the stream as in Figure 10, the following procedure
is applied:

1) A User selects the files for uploading/downloading with <input
type = ”file”> element in the HTML <form> element.
2) The files are transmitted with the POST method.
3) The JSP file describes the destination.
4) The JSP file receives the request and analyzes the original file name
for each file.
5) The JSP file transforms the file into an object of ”Input-Stream” to
the Java binary code.

Evaluation

In this section, we evaluate the proposed software architecture and
implementation for JPLAS.

Number of program files in implementation

First, we compare the number of program files between the
new implementation in the previous section and the original
implementation of JPLAS. Table 2 shows the number of files in Java,
JSP, CSS, JavaScript, and HTML, respectively. More specifically,
the numbers of files for database access functions in Java and JSP
are also presented.. To make accurate comparisons, the number
of files is counted merely for the student functions in the previous
implementation. This table manifests that the number of required
files is reduced by 70% of our proposal in this paper. Only one file is
necessary for the database functions in the proposal.

Number of program files for new functions

Next, we evaluate the number of additional program files required
to implement two new functions into JPLAS.

Citation: Ishihara N, Funabiki N, Kuribayashi M, Kao WC (2017) A Software Architecture for Java Programming Learning Assistant System. Int J Comput Softw
Eng 2: 116. doi: https://doi.org/10.15344/2456-4451/2017/116

 Page 6 of 7

1) Coding Rule Learning Function: As the first one, we evaluate the
number of additional program files when we implemented the coding
rule learning function [11]. This function will examine whether the
code written by the student follows the coding rules or not by using
open source software Checkstyle [9] and PMD [10]. To improve the
readability and quality of the code, following the coding rules to write
a code is considered as an effective method.

2) Offline Answering Function: Then, as the second one, we evaluate
the number of additional program files when we implemented the
offline answering function [12]. This function allows the students to
answer the assignments for the element fill-in-blank and value trace
problems using the browser even when they cannot connect to the
Internet.

3) Number of Additional Files for Two Functions: Table 3 shows the
number of additional program files required to implement the two
functions in JPLAS. In both functions, no new program files are
necessary for the database access. The implementation of the offline
answering function needs only five JavaScript files additionally.
However, the implementation of the coding rule learning function
requires a number of additional program files. In future works, we will
analyze the reason and consider the improvements of the proposed
software architecture that can minimize the number of additional
program files.

Related Works

In this section, we show our short survey of Web application
software structures using Java in a Web server.

In [13], the IBM Knowledge Center introduced the Struts
framework and the model-view-controller design pattern. They
suggest two JSP models, named Model 1 and Model 2, that can separate
content generations or business logics from content presentations
using HTML files. Model 1 uses only JSP pages and Java beans codes.
Model 2 is the MVC model, where Struts helps to develop application
software architectures on it.

In [14], Tani et al. proposed a method of implementing the front-end
of a Web application using XSLT. It is implemented as a framework,
that is, a collection of Servlet classes tobecome components of the
target Web software, where the overall logic is written with XSLT.

In [15], Nagao et al. offered Web Distributed MVC (WD- MVC)
architecture for realizing real-time Web applications. WD-MVC
uses Ajax to convey messages from the Web server to the browsers
asynchronously.

In [16], Ree et al. proposed EcoFW for end-user-initiative
development projects. EcoFW focuses on the controller- configuration
in frameworks such as Struts, which not only separates the view and
the model, but realizes the view by components using Ajax and the
JSON-format.

Figure 10: Binary files uploading/downloading.

file extension original proposal

java
database access

81
7

21
1

jsp
database access

61
16

12
0

css 9 6
js 40 38

html 122 11
Table 2: Number of program files in two implimentations of JPLAS.

file extension original proposal

java 1 0
jsp 10 0
css 17 0
js 31 5

html 3 0
Table 3: Number of additional program files for two
new functions.

https://doi.org/10.15344/2456-4451/2017/116

Int J Comput Softw Eng IJCSE, an open access journal
ISSN: 2456-4451 Volume 2. 2017. 116

Conclusion

In this paper, we presented the software architecture for Java
Programming Learning Assistant System (JPLAS) that reduces
redundancy in the codes and follows the MVC model using Java for
the model (M), HTML/CSS/JavaScript for the view (V), and JSP for
the controller (C), and showed the JPLAS implementation following
this architecture. For evaluations, we compared the number of
program files with the previous implementation and examined the
number of additional files to implement new features/functions in
JPLAS. In future works, we will improve the architecture to minimize
the number of additional program files and apply it to implement new
features/functions in JPLAS.

Competing Interests

The authors declare that they have no competing interests.

Competing Interests

This work is partially supported by JSPS KAKENHI (16K00127).

References

1.	 Funabiki N, Matsushima F, Nakanishi T, Watanabe K, Amano N (2013) A
Java programming learning assistant system using test-driven development
method. IAENG. Int J Computer Science 40: 38-46.

2.	 Zaw KK, Funabiki N, Kao WC (2015) A proposal of value trace problem for
algorithm code reading in Java programming learning assistant system.
Inform Eng Express 1: 9-18.

3.	 Ishihara N, Funabiki N, Kao WC (2015) A proposal of statement fill- in blank
problem using program dependence graph in Java programming learning
assistant system. Inform. Eng Express 3: 19-28.

4.	 Funabiki N, Tana, Zaw KK, Ishihara N, Kao WC () A graph- based blank
element selection algorithm for fill-in-blank problems in Java programming
learning assistant system. IAENG Int J Computer Science 44: 2.

5.	 Higo Y, Yoshida N (2011) An introduction to code clone refactoring.
Computer Software 28: 43-56.

6.	 Beck K (2002) Test-driven development: by example, Addison-Wesley,
2002.

7.	 jQuery. Internet : http://jquery.com/ , Access April 1, 2017

8.	 SkyBlue. Internet https://stanko.github.io/skyblue/, Access April 1, 2017

9.	 The BLOB and TEXT Types. Internet https://docs.oracle.com/cd/
E17952_01/mysql-5.6-en/blob.html, Access April 1, 2017

10.	 Commons FileUpload. Internet https://commons.apache.org/proper/
commons-fileupload/, Access April 1, 2017

11.	 Funabiki N, Ogawa T, Ishihara N, Kuribayashi M, Kao WC (2016) A
proposal of coding rule learning function in Java programming learning
assistant system. Proc. VENOA-2016, pp. 561-566.

12.	 Funabiki N, Masaoka H, Ishihara N, Lai IW, Kao WC (2016) Offline
answering function for fill-in-blank problems in Java programming learning
assistant system. Proc ICCE-TW, pp. 324-325.

13.	 Struts framework and model-view-controller design pattern. Internet :
https://www.ibm.com/support/knowledgecenter/SSRTLW_6.0.1/com.ibm.
etools.struts.doc/topics/cstrdoc001.html, Access April 1, 2017

14.	 Tani Y, Mitsuda N, Ajisaka T (2004) A modular method and framework for
Web application development using XSLT. IPSJ Tech. Report 2003-SE-
144, pp. 131-138.

15.	 Nagao T, Tsuchiya Y, Morimoto S, Chubachi Y (2007) Realtime distributed
MVC architecture using Ajax. Trans IPSJ-PRO 48: 200-200.

16.	 Ree S, Takeshi C (2011) Web application framework for end-user- initiative
development. Proc FIT2011 1: 271-274.

Citation: Ishihara N, Funabiki N, Kuribayashi M, Kao WC (2017) A Software Architecture for Java Programming Learning Assistant System. Int J Comput Softw
Eng 2: 116. doi: https://doi.org/10.15344/2456-4451/2017/116

 Page 7 of 7

This article was originally published in a special issue:

Software Architecture

Handled by Editor(s):

 Dr. Mohammad Alshayeb
 Information and computer science Department
 King Fahd University
 Saudi Arabia

https://okayama.pure.elsevier.com/en/publications/a-java-programming-learning-assistant-system-using-test-driven-de
https://okayama.pure.elsevier.com/en/publications/a-java-programming-learning-assistant-system-using-test-driven-de
https://okayama.pure.elsevier.com/en/publications/a-java-programming-learning-assistant-system-using-test-driven-de
http://www.iaiai.org/journals/index.php/IEE/article/view/39
http://www.iaiai.org/journals/index.php/IEE/article/view/39
http://www.iaiai.org/journals/index.php/IEE/article/view/39
http://www.iaiai.org/journals/index.php/IEE/article/view/40
http://www.iaiai.org/journals/index.php/IEE/article/view/40
http://www.iaiai.org/journals/index.php/IEE/article/view/40
http://www.iaeng.org/IJCS/issues_v44/issue_2/IJCS_44_2_14.pdf
http://www.iaeng.org/IJCS/issues_v44/issue_2/IJCS_44_2_14.pdf
http://www.iaeng.org/IJCS/issues_v44/issue_2/IJCS_44_2_14.pdf
https://www.jstage.jst.go.jp/article/jssst/28/4/28_4_4_43/_article
https://www.jstage.jst.go.jp/article/jssst/28/4/28_4_4_43/_article
http://jquery.com/
https://stanko.github.io/skyblue/
https://commons.apache.org/proper/commons-fileupload/
http://ieeexplore.ieee.org/document/7791944/
http://ieeexplore.ieee.org/document/7791944/
http://ieeexplore.ieee.org/document/7791944/
http://ieeexplore.ieee.org/document/7521045/
http://ieeexplore.ieee.org/document/7521045/
http://ieeexplore.ieee.org/document/7521045/
http://www.ibm.com/support/knowledgecenter/SSRTLW%206.0.1/com.ibm.etools.struts.doc/topics/cstrdoc001.html.
http://ci.nii.ac.jp/naid/110006291068
http://ci.nii.ac.jp/naid/110006291068
https://doi.org/10.15344/2456-4451/2017/116

