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ENUMERATIVE COMBINATORICS ON DETERMINANTS

AND SIGNED BIGRASSMANNIAN POLYNOMIALS

Masato Kobayashi

Abstract. As an application of linear algebra for enumerative com-
binatorics, we introduce two new ideas, signed bigrassmannian polyno-
mials and bigrassmannian determinant. First, a signed bigrassmannian
polynomial is a variant of the statistic given by the number of bigrass-
mannian permutations below a permutation in Bruhat order as Reading
suggested (2002) and afterward the author developed (2011). Second,
bigrassmannian determinant is a q-analog of the determinant with re-
spect to our statistic. It plays a key role for a determinantal expression
of those polynomials. We further show that bigrassmannian determi-
nant satisfies weighted condensation as a generalization of Dodgson,
Jacobi-Desnanot and Robbins-Rumsey (1986).

1. Introduction

The purpose of this article is to introduce two new ideas, signed bigrass-
mannian polynomials and bigrassmannian determinant as an application of
linear algebra for enumerative combinatorics. We begin with explaining our
motivation.

1.1. Reading’s problem (2002): bigrassmannian statistic. Permuta-
tion statistics has been of great importance in enumerative combinatorics;
in particular, Mahonian and Eulerian statistics, such as inversions and de-
scent numbers, are fundamental in the theory. Here what we deal with is a
certain new statistic β, which we call bigrassmannian statistic. Reading [11]
suggested the following problem:

Problem 1.1. Let β(w) be the number of join-irreducible (equivalently, bi-
grassmannian) permutations weakly below a permutation w in Bruhat order.

Find its generating function
∑

w∈Sn

qβ(w).

He gave examples of such generating functions for smaller n’s:

1 + q (S2)
1 + 2q + 2q3 + q4 (S3)

1 + 3q + q2 + 4q3 + 2q4 + 2q5 + 2q6 + 4q7 + q8 + 3q9 + q10 (S4)
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Unfortunately, we failed to find any patterns of these coefficients nor factors
of such polynomials. Instead, in this article, we study the following signed
statistic (as signed Mahonian or signed Eulerian statistics):

Bn(q) =
∑

w∈Sn

(−1)ℓ(w)qβ(w)

where ℓ(w) is the number of inversions; let us call {Bn(q) | n = 1, 2, 3, . . . }
signed bigrassmannian polynomials. Fortunately, we could find satisfactory
descriptions of such polynomials. It turned out that it is also worthwhile
to study these polynomials with a connection to tournaments and Vander-
monde determinant. Since each Bn(q) is a signed sum over the symmetric
group, it is natural to come to this idea:

Main idea. Use the determinant to find Bn(q).

The determinant is usually a function which outputs a scalar. For our
purpose to find Bn(q), we introduce its q-analog (Section 4); we call it
bigrassmannian determinant.
As main results, we will prove three theorems:

• Theorem 3.11: a factorization of Bn(q).
• Theorem 4.4: a determinantal expression of Bn(q).
• Theorem 4.6: weighted condensation for bigrassmannian determi-
nant.

In addition, we observe a corollary after each of these theorems.

1.2. Overview. In Section 2, we review some classic results on tournaments
and Vandermonde determinant as mentioned above. These facts will play
a fundamental role in the sequel. In Section 3, we introduce β-statistic
for tournaments as well as permutations. Then, we find factors of Bn(q)
using weighted Vandermonde determinant. Section 4 continues to study
Bn(q) (from a little different aspect); we give a definition of bigrassmannian
determinant for square matrices as a q-analog of the original one. This new
idea leads to a determinantal expression of Bn(q) as we shall see. Further,
we prove that bigrassmannian determinant satisfies weighted condensation.
It slightly generalizes the construction of Robbins-Rumsey’s λ-determinants
[13]. We end with some comments for future work in Section 5.

2. Tournaments and Vandermonde determinant

We begin with combinatorics of tournaments and Vandermonde determi-
nant.
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2.1. Tournaments.

Definition 2.1. A tournament is a complete digraph with vertices labeled
by 1, 2, . . . , n. We denote by Tn the set of all tournaments.

Example 2.2. Here are eight elements in T3:
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Since there are two choices of direction for each pair (i, j) such that 1 ≤ i <

j ≤ n, we have |Tn| = 2n(n−1)/2 in total.

In what follows, the letter G means an element of Tn unless otherwise
specified (G is for Graph).

Definition 2.3. An inversion of G is a directed edge j → i with j > i. The
length ℓ(G) is the number of inversions of G. An upset of an inversion j → i
is the vertex j. Define ωG(j) to be the outdegree of j.

2.2. Cycle and transitivity. Below, we just say a “cycle” to mean a 3-
cycle (which is the only kind of cycles we treat).

Definition 2.4. Let (i, j, k) be a triple such that i < j < k. Suppose i, j, k
form a cycle in G. Say the cycle is positive if k → j → i → k; it is negative
if i → j → k → i. Besides, say G is transitive if it does not contain any
cycles.

Observe that precisely six tournaments in Example 2.2 are transitive.

2.3. Permutations. By Sn we mean the symmetric group on [n] = {1, 2, . . . , n}.
The set of inversions of w ∈ Sn is

N(w) = {(i, j) ∈ [n]× [n] | i < j and w−1(i) > w−1(j)}.

Define the length ℓ(w) to be |N(w)|. Let G(w) be the tournament such that
j → i is an inversion of G(w) ⇐⇒ (i, j) ∈ N(w). Say the tournament G(w)
is induced from a permutation w ∈ Sn. Let us make sure the following:

Fact 2.5. Bressoud [2, Exercise 2.4.2] There is a bijection between Sn and
transitive tournaments in Tn.

Thanks to this result, we naturally view Sn ⊆ Tn in what follows. In
particular, ℓ(G(w)) = ℓ(w).
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2.4. Vandermonde determinant.

Definition 2.6. Let x1, . . . , xn and λ be commutative variables. The n-th
Vandermond λ-determinant is

Vn(x, λ) =
∏

1≤i<j≤n

(xi + λxj).

This is a polynomial in xi’s (the bold letter x means such variables for
short) and λ. We must explain why we used the word “determinant”: Fol-
lowing Robbins-Rumsey [13], we recursively define a determinant-like func-
tion | |λ for square matrices as follows. First, we formally define | |λ for
the 0 by 0 matrix to be 1 and for a 1 by 1 matrix (a11) to be a11 itself. Now

let A be an n by n matrix for n ≥ 2. Let Aj
i denote the matrix that remains

when we delete the i-th row and j-th column of A. If we wish to delete
more than one row (column), the numbers of the deleted rows (columns) are
listed as subscripts (superscripts). The λ-determinant of A is

|A|λ =
|A1

1|λ|A
n
n|λ + λ|A1

n|λ|A
n
1 |λ

|A1n
1n|λ

(a rational function of λ)

provided | |λ of all minors of A are nonzero. In particular, λ = −1 recovers
the original determinant (going back to Dodgson and Desnanot-Jacobi).
From this point of view, we can understand Vn(x, λ) as the λ-determinant
of the Vandermonde matrix: Vn(x, λ) = |xn−i

j |λ.

Definition 2.7. TheVandermonde monomial forG is ρ(G) = λℓ(G)
∏

j∈[n] x
ω(j)
j .

Proposition 2.8. We have

Vn(x, λ) =
∑

G∈Tn

ρ(G).

Proof. To a tournament G, assign a monomial with the choices of xi or
λxj from each factor of

∏

i<j(xi + λxj). Then λ in the monomial counts
inversions and xj records the outdegree.

�

Now, split the sum into two parts, transitive or not:
∑

G∈Tn

ρ(G) =
∑

G∈Sn

ρ(G) +
∑

G∈Tn\Sn

ρ(G).

Fact 2.9.
∑

G∈Tn\Sn

ρ(G)

∣

∣

∣

∣

∣

∣

λ=−1

= 0.

Proof. See Bressoud [2, Exercise 2.4.4]. �
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3. Signed bigrassmannian statistic

3.1. Bigrassmannian statistic.

Definition 3.1. Define the bigrassmannian statistic for a tournament G as
β(G) =

∑

j→i
j>i

(j − i).

Table 1 shows this (and inversion) statistic over S4.

Remark. This statistic is named after the bigrassmannian permutations;
say w ∈ Sn is bigrassmannian if there exists a unique pair (i, j) ∈ [n− 1]×
[n − 1] such that w−1(i) > w−1(i + 1) and w(j) > w(j + 1). We refer to
Lascoux-Schützenberger [10], Geck-Kim [7], Reading [11] and the author [9]
for combinatorics of these permutations.

Define Bruhat order ≤ on Sn as the transitive closure of the following
binary relation: v → w meaning w = vtij , for some i < j, tij a transposition
and ℓ(v) < ℓ(w). Let B(w) = {u bigrassmannian | u ≤ w} and set β(w) =
|B(w)|. The author [9] showed that

β(w) =
∑

(i,j)∈N(w)

(j − i).

Thus, we can compute β simply as weighted enumeration of inversions:

β(3412) = (3− 1) + (3− 2) + (4− 1) + (4− 2) = 8,

for example (Figure 1). From this point of view, our definition above is a
natural extension of β for tournaments. This statistic implicitly appeared
also in the Gessel-Viennot’s lattice path counting context [2, Theorem 3.7]
as the quantity

∑n
i=1 i(i − w(i)):

Proposition 3.2. For each w ∈ Sn, we have

(1) β(w) =
∑n

i=1(i− w(i))2/2 =
∑n

i=1 i(i− w(i)).
(2) β(w) = β(w−1).

Table 1. statistics of ℓ and β over S4

ℓ β ℓ β ℓ β ℓ β
1234 0 0 2134 1 1 3124 2 3 4123 3 6
1243 1 1 2143 2 2 3142 3 5 4132 4 7
1324 1 1 2314 2 3 3214 3 4 4213 4 7
1342 2 3 2341 3 6 3241 4 7 4231 5 9
1423 2 3 2413 3 5 3412 4 8 4312 5 9
1432 3 4 2431 4 7 3421 5 9 4321 6 10
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Figure 1. Bruhat order of bigrassmannian permutation in S4
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Proof. (1) See [9] for the first equality. It follows that

β(w) =
1

2

n
∑

i=1

(i− w(i))2 =
1

2

n
∑

i=1

(i2 − 2iw(i) + w(i)2) =

n
∑

i=1

i(i− w(i)).

Next, (2) follows from the facts that (a) u 7→ u−1 is an order-preserving
automorphism in Bruhat order on Sn, (b) u is bigrassmannian ⇐⇒ so is
u−1; we do not go into details here because the proof is not so important
for our discussions below. �

Definition 3.3. Let x1, . . . , xn, λ and q be commutative variables. The

weighted Vandermonde monomial for G is χ(G) = λℓ(G)qβ(w)
∏

j∈[n] x
ω(j)
j .

Definition 3.4. The n-th weighted Vandermonde determinant is

Vn(x, λ, q) =
∏

1≤i<j≤n

(xi + λqj−ixj).

Example 3.5.

V3(x, λ, q) = (x1 + λqx2)(x1 + λq2x3)(x2 + λqx3)

= x21x2 + λqx1x
2
2 + λqx21x3 + (λ2 + λ)q2x1x2x3

+ λ2q3x22x3 + λ2q3x1x
2
3 + λ3q4x2x

2
3.

Proposition 3.6. We have

Vn(x, λ, q) =
∑

G∈Tn

χ(G).

Proof. The idea is similar to Proposition 2.8. �

Lemma 3.7.
∑

G∈Tn\Sn

χ(G)

∣

∣

∣

∣

∣

∣

x1=···=xn=1,λ=−1

= 0.
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To prove this lemma, we need a further definition and proposition.

Definition 3.8. For i < j < k, define a map Cijk : Tn → Tn as follows: if
i, j, k form a cycle in G, then Cijk(G) is the tournament with all three edges
in the cycle reversed and all other edges unchanged. If i, j, k do not form a
cycle in G, then simply set Cijk(G) := G.

Observe that Cijk is an involution.

Proposition 3.9. Let i < j < k. If i, j, k form a cycle in G, then ℓ(Cijk(G)) ∈
{ℓ(G) − 1, ℓ(G) + 1} and β(Cijk(G)) = β(G).

Proof. A positive cycle contains two inversions whereas a negative cycle
contains one. The map Cijk interchanges these so that lengths differ by one.
However, β is invariant because of the equality k− i = (k− j) + (j − i). �

Proof of Lemma 3.7. Consider the lexicographic order on {(i, j, k) ∈ [n]3 |
i < j < k}. We will construct a perfect matching on the set Tn \ Sn.
First, choose all tournaments G from Tn such that (1, 2, 3) is a cycle in
G. It is either positive or negative; hence G ↔ C123(G) gives a matching.
Next, choose all tournaments H from the remaining tournaments such that
(1, 2, 4) is a cycle in H. Again, H ↔ C124(H) gives a matching. Continue
this procedure up to (n−2, n−1, n). We certainly exhausted all tournaments
in Tn\Sn with the perfect matching constructed. As shown above, each pair
has lengths of opposite parity and the same β. Thus x1 = · · · = xn = 1 and
λ = −1 yield zero. �

3.2. Signed bigrassmannian polynomials.

Definition 3.10. Let n be a positive integer. The n-th signed bigrassman-
nian polynomial is

Bn(q) =
∑

w∈Sn

(−1)ℓ(w)qβ(w).

Theorem 3.11. For all n ≥ 1, we have

Bn(q) =

n−1
∏

k=1

(1− qk)n−k.

Proof. As before, split Vn(x, λ, q) into two parts:
∏

1≤i<j≤n

(xi + λqj−ixj) = Vn(x, λ, q) =
∑

G∈Sn

χ(G) +
∑

G∈Tn\Sn

χ(G).



166 M. KOBAYASHI

With x1 = · · · = xn = 1 and λ = −1, the second sum vanishes as shown
in Lemma 3.7. As a result, we obtain

∏

1≤i<j≤n

(1− qj−i) =
∑

w∈Sn

(−1)ℓ(w)qβ(w)

or

Bn(q) =
n−1
∏

k=1

(1− qk)n−k.

�

Corollary 3.12. For n ≥ 3, we have
∑

w∈Sn

(−1)ℓ(w)β(w) = 0.

In other words, the β-statistic is sign-balanced.

Proof. Note that Bn(q) has a factor (1− q)n−1 with n− 1 ≥ 2. Differentiate
it once and let q = 1. Then we get zero, as required. �

Example 3.13. (cf. Reading’s examples in Introduction)

B2(q) = 1− q,

B3(q) = (1− q)2(1− q2) = 1− 2q + 2q3 − q4,

B4(q) = (1− q)3(1− q2)2(1− q3)

= 1− 3q + q2 + 4q3 − 2q4 − 2q5 − 2q6 + 4q7 + q8 − 3q9 + q10.

4. Bigrassmannian determinant

4.1. Definition. Next we want to understand Bn(q) as a new sort of a
determinant as mentioned in Introduction. From now on, we assume that
A = (aij) = (aij(q)) is an n by n matrix with entries being complex rational

functions in q1/2 (i.e., elements of C(q1/2)). The reason why we introduce

q1/2 and q−1 will be clearer in the next subsection.

Definition 4.1. The bigrassmannian determinant of A is

bdet(A) =
∑

w∈Sn

(−1)ℓ(w)qβ(w)
n
∏

i=1

aiw(i).

We formally define bdet of the 0 by 0 matrix to be 1.
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For example, bdet(a11) = a11, bdet

(

a11 a12
a21 a22

)

= a11a22 − qa12a21 and

bdet





a11 a12 a13
a21 a22 a23
a31 a32 a33



 = a11a22a33 − qa12a21a33 − qa11a23a32

+ q3a12a23a31 + q3a13a21a32 − q4a13a22a31.

4.2. Matrix deformation. We now give a more explicit description of the
bigrassmannian determinant in terms of the original one. For this purpose,
let us introduce a special term: a deformation of A = (aij) is a new matrix
fA := (fij(q)aij) for some indexed family of rational functions f = {fij(q) ∈

C(q1/2) | (i, j) ∈ [n]× [n]}. Note that the operation aij 7→ fij(q)aij may not

be C(q1/2)-linear in any rows nor columns. Hence it is in general difficult
to predict how determinants change under such an operation. However, as
seen below, there are some nice cases:

Definition 4.2. Let b = {bij(q)} = {q(i−j)2/2}. The bigrassmannian defor-
mation of A is bA.

Proposition 4.3. det(bA) = bdet(A).

Proof. By Proposition 3.2, we have

det(bA) =
∑

w∈Sn

(−1)ℓ(w)
n
∏

i=1

q(i−w(i))2/2aiw(i)

=
∑

w∈Sn

(−1)ℓ(w)qβ(w)
n
∏

i=1

aiw(i)

= bdet(A).

�

Theorem 4.4 (a determinantal expression of Bn(q)). We have

Bn(q) = det(q(i−j)2/2).

Proof. Bn(q) = bdet(1)ni,j=1 = det(b1) = det(q(i−j)2/2). �

Observe determinantal expressions of B3(q) and B4(q):

det





1 q1/2 q4/2

q1/2 1 q1/2

q4/2 q1/2 1



 = (1− q)2(1− q) and
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det









1 q1/2 q4/2 q9/2

q1/2 1 q1/2 q4/2

q4/2 q1/2 1 q1/2

q9/2 q4/2 q1/2 1









= (1− q)3(1− q2)2(1− q3).

We should now recognize that different deformations may give the same
determinant: given a family f , there possibly exists g such that g 6= f and
det(fA) = det(gA) for all matrices A. In particular, this is the case for b:

Let b′ = {b′ij} = {qi(i−j)} and b′′ = {b′′ij} = {qj(j−i)} (here we need q−1).

Then det(bA) = det(b′A) = det(b′′A) as shown just below; since we could
not find any references mentioning this little invariance, we here record it
as a Corollary.

Corollary 4.5. (little invariance of the determinant)

det(q(i−j)2/2aij) = det(qi(i−j)aij) = det(qj(j−i)aij).

Proof. We only prove the first equality.

det(qi(i−j)aij) =
∑

w∈Sn

(−1)ℓ(w)
n
∏

i=1

qi(i−w(i))ai,w(i)

=
∑

w∈Sn

(−1)ℓ(w)qβ(w)
n
∏

i=1

ai,w(i) = det(q(i−j)2/2aij).

�

Such “equivalent” deformations may be useful for evaluating and under-

standing combinatorial determinants (interpret q(i−j)2/2 as area of the trian-
gle (i, i), (i, j) and (j, j) in Z

2); see Bressoud [2, Section 3.3], Gessel-Viennot
[8] and Stembridge [14], for details on Schur functions and nonintersecting
lattice path counting by determinants. We will develop this idea in subse-
quent publications.

4.3. Weighted condensation. Our next task is to prove weighted conden-
sation for bigrassmannian determinants; this is a natural idea as an analogy
of the original determinant (and Robbins-Rumsey [13]). Let A be an n by

n matrix with n ≥ 2. Recall that Aj
i denotes the submatrix with the i-th

row and j-th column deleted.

Theorem 4.6.

bdet(A)bdet(A1n
1n) = bdet(A1

1)bdet(A
n
n)− qn−1bdet(A1

n)bdet(A
n
1 ).

Some comments before the proof: Let A = (aij), C = bA = (cij) and

cij = q(i−j)2/2aij. For simplicity, we use | | for the original determinant.
We will confirm the following five statements.
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(1) |C1n
1n | = bdet(A1n

1n).
(2) |C1

1 | = bdet(A1
1).

(3) |Cn
n | = bdet(An

n).

(4) |C1
n| = q(n−1)/2bdet(A1

n).

(5) |Cn
1 | = q(n−1)/2bdet(An

1 ).

Once we do this, then the conclusion follows from condensation for the
original determinant:

|C||C1n
1n | = |C1

1 ||C
n
n | − |C1

n||C
n
1 |.

Proof. (1) |C1n
1n | = bdet(A1n

1n): an (i, j)-entry of C1n
1n is ci+1,j+1.

|C1n
1n | = |ci+1,j+1|

n−2
i,j=1 = |q((i+1)−(j+1))2/2ai+1,j+1|

= |q(i−j)2/2ai+1,j+1| = bdet(A1n
1n).

(2) |C1
1 | = bdet(A1

1): an (i, j)-entry of C1
1 is ci+1,j+1.

|C1
1 | = |ci+1,j+1|

n−1
i,j=1 = |q((i+1)−(j+1))2/2ai+1,j+1|

= |q(i−j)2/2ai+1,j+1| = bdet(A1
1).

(3) |Cn
n | = bdet(An

n):this is similar to (2).

(4) |C1
n| = q(n−1)/2bdet(A1

n): an (i, j)-entry of C1
n is ci,j+1.

|C1
n| = |ci,j+1|

n−1
i,j=1 = det(q(i−(j+1))2/2ai,j+1)

= |q((i−j)2−2(i−j)+1)/2ai,j+1| = q−
∑

i+
∑

jq(n−1)/2|q(i−j)2/2ai,j+1|

= q(n−1)/2bdet(A1
n).

(5) |Cn
1 | = q(n−1)/2bdet(An

1 ): this is similar to (4).
�

Now we see an immediate consequence which is, however, not so obvious
from the definition of Bn(q).

Corollary 4.7. Signed bigrassmannian polynomials can be defined recur-

sively as follows: B1(q) = 1, B2(q) = 1− q and Bn(q) =
Bn−1(q)

2

Bn−2(q)
(1− qn−1)

for n ≥ 3.

Proof. Apply the weighted condensation to A = (1)ni,j=1. All four determi-

nants in the numerator are Bn−1(q) while the denominator is Bn−2(q). �
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5. Concluding remarks

In this article, we introduced two new ideas, signed bigrassmannian poly-
nomials and bigrassmannian determinant. We made use of tournaments as
well as Vandermonde determinant to find Bn(q). Then we introduced bdet
as a q-analog of determinant as q → 1 recovers the original one. Thanks
to formulas of β-statistic, we obtained a determinantal expression of Bn(q).
Moreover, we established weighted condensation as an analogy of Robbins-
Rumsey. After all, we did not find the unsigned statistic

∑

w∈Sn

qβ(w). Now
an easy guess is to use the permanent instead. We leave this problem here
for our future research.
We end with some more comments for subsequent work.

• What is missing in our discussion is an alternating sign matrix
(ASM) [3, 12]. Since inversions and bigrassmannian statistics also
make sense for ASMs, we want to generalize some of our results to
these matrices (note: we can extend β for ASMs as the rank function
of a distributive lattice. For example, what can we say about bdet
for ASMs which are not permutations?

• We can also define “λq-determinant” by replacing λ with λqn−1 in
Robbins-Rumsey condensation (provided all such minors are nonzero).
Then we would obtain polynomials of the form

∏

(1 + λqk)n−k,
say Bn(λ, q). Then we can show as Corollary 4.7 that polynomi-
als {Bn(λ, q)} satisfies

Bn(λ, q) =
Bn−1(λ, q)

2

Bn−2(λ, q)
(1 + λqn−1).

Recently, there appeared such recursions and polynomials in the lit-
erature on Aztec diamonds, perfect matchings and domino tilings;
see Brualdi-Kirkland [4], Ciucu [5] and Elkies-Kuperberg-Larsen-
Propp [6], for example. It would be nice to give an explicit con-
nection between such work and our results.

• As we mentioned Bruhat order, symmetric groups are Coxeter groups
of type A. It makes sense to speak of a signed bigrassmannian statis-
tic even in other situations: let (W,S,≤) be a finite Coxeter system
with Coxeter generators S specified and ≤ Bruhat order. Define
ℓ(w) = min{l ≥ 0 | w = s1 · · · sl, si ∈ S} and the sign of w to

be (−1)ℓ(w). Say w is bigrassmannian if there exists a unique pair
(s1, s2) ∈ S × S such that ℓ(s1w) < ℓ(w) and ℓ(ws2) < ℓ(w). Define
B(w) = {u bigrassmannian | u ≤ w} and β(w) = |B(w)| in the same

way. Find a statistic
∑

w∈W qβ(w).
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Figure 2. Rothe diagram for 35241

◦ ◦ • ◦ ◦

◦ ◦ ◦ ◦ •

◦ • ◦ ◦ ◦

◦ ◦ ◦ • ◦

• ◦ ◦ ◦ ◦

• We can think that each permutation w gives a partition of an integer
β(w) with ℓ(w) parts as β(w) =

∑

(i,j)∈N(w)(j − i); see Andrews-

Eriksson [1] for the theory of integer partitions. Then, it is natu-
ral to come to the following idea: Rothe diagram for w is the set
{(i, j) ∈ [n] × [n] | i < w−1(j) and j < w(i)}. As is well-known,
the cardinality of this set is ℓ(w). Figure 2 shows an example; seven
circles which does not cross any lines are elements of Rothe diagram
for w = 35241 (with β(w) = 15). Is there any formula to compute β
from Rothe diagrams?

Acknowledgement

The author thanks the anonymous referee for careful reading and advisory
comments.

References

[1] G. E. Andrews and K. Eriksson, Integer partitions, Cambridge University Press,
Cambridge, 2004.

[2] D. Bressoud, Proofs and confirmations, The story of the alternating sign matrix
conjecture, Cambridge University Press, Cambridge, 1999.

[3] D. Bressoud and J. Propp, How the alternating sign matrix conjecture was solved,
Notices Amer. Math. Soc. 46 (1999), no. 6, 637–646.

[4] R. Brualdi and S. Kirkland, Aztec diamonds and digraphs, and Hankel determinants
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