IRREDUCIBILITIES OF THE INDUCED CHARACTERS OF CYCLIC p-GROUPS

KATSUSUKE SEKIGUCHI

ABSTRACT. We denote by C_n the cyclic group of order p^n , where p is an odd prime. Let ϕ be a faithful irreducible character of C_n . In this paper, we study the p-group G containing C_n such that the induced character ϕ^G is also irreducible. The purpose of this paper is to determine such groups G in the case when G has a subgroup H containing C_n such that $C_n \triangleleft H$ and [G:H] = p.

1. Introduction

Let G be a finite group. We denote by Irr(G) the set of complex irreducible characters of G and by FIrr(G) ($\subset Irr(G)$) the set of faithful irreducible characters of G.

For a prime p we denote by C_n the cyclic group of order p^n . A finite group G is called an M-group, if every $\phi \in \operatorname{Irr}(G)$ is induced from linear character of a subgroup of G.

It is well-known that every nilpotent group is an M-group. So, for any $\chi \in \operatorname{Irr}(G)$, where G is a p-group, there exists a subgroup H of G and the linear character ϕ of H such that $\phi^G = \chi$. If we set $N = Ker\phi$, then $N \lhd H$ and ϕ is a faithful irreducible character of $H/N \cong C_n$, for some non-negative integer n. In this paper, we will consider the case when N = 1, that is, ϕ is a faithful linear character of $H \cong C_n$.

We consider the following:

Problem. Let p be an odd prime, and ϕ be a faithful irreducible character of C_n . Determine the p-group G such that $C_n \subset G$ and the induced character ϕ^G is also irreducible.

Since all faithful irreducible character of C_n are algebraically conjugate to each other, the irreducibility of ϕ^G ($\phi \in \text{FIrr}(C_n)$) is independent of the choice of ϕ , but depends only on n.

Recently, Iida [2] solved this problem in the case when C_n is a normal subgroup of G.

The purpose of this paper is to solve this problem in the case when G has a subgroup H containing C_n such that $C_n \triangleleft H$ and [G:H] = p.

The problem of this type was considered by Yamada and Iida [3]. They studied the 2-groups G such that $H \subset G$ and the similar properties of our problem hold, where $H = Q_n$ or D_n or SD_n . Here, we denote by Q_n and D_n the generalized quaternion group and the dihedral group of order $2^{n+1} (n \geq 2)$, respectively, and by SD_n the semidihedral group of order $2^{n+1} (n \geq 3)$.

Throughout this paper, **Z**, and **N** denote the rational integers and the natural numbers, respectively.

2. Statements of the results

For the rest of this paper, we assume that p is an odd prime. First, we introduce the following groups:

(i):
$$G(n,m) = \langle a, u_m \rangle$$
 with $a^{p^n} = u_m^{p^m} = 1, u_m a u_m^{-1} = a^{1+p^{n-m}}, (m \leq n-1).$
(ii): $G(n,m,1) = \langle a, u_m, v \rangle (\triangleright G(n,m) = \langle a, u_m \rangle)$ with $a^{p^n} = u_m^{p^m} = 1, u_m a u_m^{-1} = a^{1+p^{n-m}}, vav^{-1} = a^{1+p^{n-m-1}} u_m^{p^{m-1}}, v^p = u_m, vu_m v^{-1} = u_m (2m \leq n-1).$

We can see that G(n, m, 1) is an extension group of G(m, n) by using Proposition 1 below:

Proposition 1. Let N be a finite group such that $G \triangleright N$ and $G/N = \langle uN \rangle$ is a cyclic group of order m. Then $u^m = c \in N$. If we put $\sigma(x) = uxu^{-1}$, $x \in N$, then $\sigma \in Aut(N)$ and (i) $\sigma^m(x) = cxc^{-1}$, $(x \in N)$ (ii) $\sigma(c) = c$.

Conversely, if $\sigma \in Aut(N)$ and $c \in N$ satisfy (i) and (ii), then there exists one and only one extension group G of N such that $G/N = \langle uN \rangle$ is a cyclic group of order m and $\sigma(x) = vxv^{-1}$ $(x \in N)$ and $v^m = c$.

We state the theorem of Iida ([2]).

Theorem 0 (Iida [2].). Let G be a p-group which contains C_n as a normal subgroup of index p^m . Let $\phi \in \text{FIrr}(C_n)$. Suppose that $\phi^G \in \text{Irr}(G)$. Then $G \cong G(n,m)$.

In particular, when $C_n\subset G$ and $[G:C_n]=p$, C_n is always a normal subgroup of G, so we have

Corollary 0. Let $\phi \in \operatorname{FIrr}(C_n)$. Suppose that $C_n \subset G$ such that $[G:C_n]=p$ and $\phi^G \in \operatorname{Irr}(G)$. Then $G \cong G(n,1)$.

Our main theorem is the following:

Theorem. Let G be a p-group which contains C_n with $[G:C_n]=p^{m+1}$, where p is an odd prime. Let $\phi \in \mathrm{FIrr}(C_n)$. Suppose that $\phi^G \in \mathrm{Irr}(G)$, and $n-3 \geq 2m$. Further, suppose that there exists a subgroup H of G such that $H \triangleright C_n$ and [G:H]=p. Then $G \cong G(n,m+1)$ or G(n,m,1).

Corollary. Let G be a p-group which contains C_n with $[G:C_n]=p^2$. Let $\phi \in \operatorname{FIrr}(C_n)$. Suppose that $\phi^G \in \operatorname{Irr}(G)$ and $n \geq 5$. Then $G \cong G(n,2)$ or G(n,1,1).

3. Some preleminary results

In this section, we state some results concerning the criterion of the irreducibilities of induced characters and others, which we need in section 4.

We denote by $\zeta = \zeta_{p^n}$ a primitive p^n th root of unity. It is known that, for $C_n = \langle a \rangle$, there are p^m irreducible characters ϕ_{ν} $(1 \leq \nu \leq p^n)$ of C_n :

$$\phi_{\nu}(a^i) = \zeta^{\nu i}, \qquad (1 \le i \le p^n).$$

The irreducible character ϕ_{ν} is faithful if and only if $(\nu, p) = 1$. First, we state the following result of Shoda (cf [1, p.329]):

Proposition 2. Let G be a group and H be a subgroup of G. Let ϕ be a linear character of H. Then the induced character ϕ^G of G is irreducible if and only if, for each $x \in G - H = \{g \in G | g \notin H\}$, there exists $h \in xHx^{-1} \cap H$ such that $\phi(h) \neq \phi(x^{-1}hx)$. In particular, when ϕ is faithful, the condition $\phi(h) \neq \phi(x^{-1}hx)$ is equivalent to that of $h \neq x^{-1}hx$.

Using this result, we have the following:

Proposition 3. Let $\langle a \rangle = C_n \subset G$, and ϕ be a faithful irreducible character of C_n . Then the following conditions are equivalent

- 1. ϕ^G is irreducible.
- 2. For each $x \in G C_n$, there exists $y \in \langle a \rangle \cap x \langle a \rangle x^{-1}$ such that $xyx^{-1} \neq y$.

Definition. When the condition (2) of Proposition 3 holds, we say that G satisfies (EX, C).

Finally, we state the following:

Lemma 1. Let p be an odd prime and n, m, k, j be integers satisfying $0 \le m \le n$. Then, if we put $s = 1 + kp^{n-m}$, we have the following equality:

$$rac{s^{jp^m}-1}{s^j-1}\equiv p^m\pmod{p^n}.$$

4. Proof of Theorem

Let $G \supset H$ be a p-group as is stated in Theorem, and let $\phi \in \operatorname{FIrr}(C_n)$. Since $\phi^G = (\phi^H)^G \in \operatorname{Irr}(G)$, we must have $\phi^H \in \operatorname{Irr}(H)$. Therefore, by Theorem 0, we can take an element u_m in H such that $H = \langle a, u_m \rangle \cong G(n, m)$. For the sake of simplicity, we write u instead of u_m . Since [G:H]=p, we may write as

$$G = \langle H, y \rangle (\triangleright H),$$

where $y \in G - H = \{ g \in G | g \notin H \}$ and $y^p \in H$.

Note that any element in $H=\langle a,u\rangle$ is represented as a^iu^j for some $i,j\in {\bf Z}$, $0\leq i\leq p^n-1,\ 0\leq j\leq p^m-1.$ Further, if we put $s=1+p^{n-m}$, we have

$$(a^{i}u^{j})^{p^{m}} = a^{i(\frac{s^{p^{m}}j-1}{s^{j}-1})}u^{p^{m}j} = a^{p^{m}i}$$

by Lemma 1.

First, we consider the elements yay^{-1} and yuy^{-1} .

We will show the following

Claim I. We can write as

$$yay^{-1} = a^{1+kp^{n-m-1}}u^{p^{m-1}j},$$

 $yuy^{-1} = a^{p^{n-m}d}u,$

for some $k, j, d \in \mathbb{Z}$.

Proof of Claim I.. Write $yay^{-1} = a^{i_0}u^{j_0}$ and $yuy^{-1} = a^{d_0}u^{t_0}$. Since $ya^{p^m}y^{-1} = a^{p^mi_0}$,

we must have $(p, i_0) = 1$. On the other hand, since

$$1 = yu^{p^m}y^{-1} = a^{d_0p^m},$$

we have

$$d_0 \equiv 0 \pmod{p^{n-m}}.$$

Therefore, we may write $d_0 = p^{n-m}d$ and

$$yuy^{-1} = a^{p^{n-m}d}u^{t_0},$$

for some $d \in \mathbf{Z}$. Since $n - m \ge m$, by our assumption, we have

(1)
$$ya^{p^{n-m}}y^{-1} = a^{p^{n-m}i_0}.$$

Taking the conjugate of both sides of the equality, $uau^{-1} = a^{1+p^{n-m}}$ by y, we get

$$(a^{p^{n-m}d}u^{t_0})(a^{i_0}u^{j_0})(a^{p^{n-m}d}u^{t_0})^{-1}=a^{i_0}u^{j_0}a^{p^{n-m}i_0}.$$

Hence, we have

$$a^{i_0(1+p^{n-m})^{i_0}}u^{j_0}=a^{i_0(1+p^{n-m})}u^{j_0}.$$

Therefore,

$$i_0(1+t_0\cdot p^{n-m}) \equiv i_0(1+p^{n-m}) \pmod{p^n}.$$

But $(i_0, p) = 1$, so we get $t_0 \equiv 1 \pmod{p^m}$, and hence

$$yuy^{-1} = a^{p^{n-m}d}u.$$

For a normal subgroup N of G, and any $g, h \in G$, we write $g \equiv h \pmod{N}$

when $gh^{-1} \in N$.

Note that $\langle a^{p^{n-m}} \rangle$ is a normal subgroup of G, by (1). It is easy to see that

$$yuy^{-1} \equiv u \pmod{\langle a^{p^{n-m}} \rangle}.$$

 $ua \equiv au \pmod{\langle a^{p^{n-m}} \rangle}.$

Further, we have

$$ya^{l}y^{-1} = (a^{i_0}u^{j_0})^{l} \equiv a^{i_0l}u^{j_0l} \pmod{\langle a^{p^{n-m}} \rangle}.$$

for any $l \in \mathbb{N}$.

Using these relations repeatedly, we get

$$y^s a y^{-s} \equiv a^{i_0^s} u^{j_0(i_0^{s-1} + \cdot + i_0 + 1)} \pmod{\langle a^{p^{n-m}} \rangle},$$

for any $s \in \mathbb{N}$.

In particular,

$$y^p a y^{-p} \equiv a^{i_0^p} u^{j_0(i_0^{p-1} + \dots + i_0 + 1)} \pmod{\langle a^{p^{n-m}} \rangle}.$$

Hence we may write as

$$y^p a y^{-p} = a^{i_0^p + rp^{n-m}} u^{j_0(i_0^{p-1} + \dots + i_0 + 1)},$$

for some integer r.

Since $y^p \in H = \langle a, u \rangle$, we must have

$$i_0^p \equiv 1 \pmod{p^{n-m}},$$

and

(3)
$$j_0(i_0^{p-1} + \cdot + i_0 + 1) \equiv 0 \pmod{p^m}.$$

By (2), we can write as $i_0 = 1 + kp^{n-m-1}$, for some integer k. So,

$$j_0(i_0^{p-1}+\cdots+i_0+1)=j_0(\frac{i_0^p-1}{i_0-1})\equiv j_0p\pmod{p^{n-m}}.$$

Since $n-m \ge m$, by our assumption, we have

$$j_0 p \equiv 0 \pmod{p^m},$$

by (3). Therefore we can write $j_0 = p^{m-1}j$, for some $j \in \mathbf{Z}$. Thus the proof of Claim I is completed.

Hence, in order to prove the theorem, we have only to consider the following two cases:

Case I.:
$$yay^{-1} = a^{1+kp^{n-m-1}}$$
, and $yuy^{-1} = a^{p^{n-m}d}u$, Case II.: $yay^{-1} = a^{1+kp^{n-m-1}}u^{p^{m-1}j}$, $(j,p) = 1$, and $yuy^{-1} = a^{p^{n-m}d}u$,

First, we consider Case I. But in this case we can see that $G \triangleright C_n$. Hence, by Iida's result, we have

$$G \cong G(n, m+1)$$
.

Next, we consider Case II.

In this case, we have

$$y\langle a\rangle y^{-1}\cap\langle a\rangle=\langle a^p\rangle,$$

because

$$ya^{p}y^{-1} = (a^{1+kp^{n-m-1}}u^{p^{m-1}j})^{p} = a^{(1+kp^{n-m-1})p} \in \langle a^{p} \rangle.$$

Suppose that $k \equiv 0 \pmod{p}$, then there exists $s_0 \in \mathbb{Z}$, $0 \leq s_0 \leq p^m - 1$, such that

$$(u^{s_0}y)a^p(u^{s_0}y)^{-1} = a^p.$$

This contradicts the hypothesis that the condition (EX,C) holds. So, we must have

$$(k, p) = 1.$$

Next, we consider the element y^p ($\in H = \langle a, u \rangle$). Write $y^p = a^{l_0} u^{k_0}$. Since

$$ya^{p^{m+1}}y^{-1} = (a^{1+kp^{n-m-1}}u^{p^{m-1}j})^{p^{m+1}} = a^{p^{m+1}},$$

we have

$$ya^{p^t}y^{-1} = a^{p^t},$$

for any $t \geq m+1$. In particular, since $n-m-1 \geq m+1$, by our assumption, we have

$$ya^{p^{n-m-1}}y^{-1}=a^{p^{n-m-1}}.$$

By a direct calculation, we have

$$y^{p}ay^{-p} = a^{1+kp^{n-m}+p^{n-1}dj(1+2+\cdots+(p-1))}u^{p^{m}j} = a^{1+kp^{n-m}}.$$

On the other hand, we have

$$y^p a y^{-p} = (a^{l_0} u^{k_0}) a (a^{l_0} u^{k_0})^{-1} = a^{1+k_0 p^{n-m}}$$

Hence, we have

$$k \equiv k_0 \pmod{p^m}$$
,

so, we may write

$$y^p = a^{l_0} u^k.$$

We show the following

Claim II. There exists an integer e, such that $(a^e y)^p = u^k$.

Proof of Claim II. Since

$$ya^{l_0}y^{-1} \equiv a^{l_0}u^{p^{m-1}jl_0} \pmod{\langle a^{p^{n-m-1}}\rangle},$$

we have

$$a^{l_0}u^k = y^p = yy^py^{-1} = y(a^{l_0}u^k)y^{-1}$$

$$\equiv a^{l_0}u^{p^{m-1}jl_0+k} \pmod{\langle a^{p^{n-m-1}}\rangle}.$$

Therefore we have

$$jl_0 \equiv 0 \pmod{p}$$
.

But, (j, p) = 1, by our assumption, so

$$l_0 \equiv 0 \pmod{p}$$
.

Hence we may write as $l_0 = pl$ and

$$y^p = a^{pl}u^k$$

for some $l \in Z$.

By a direct calculation, we get

$$(a^{s}y)^{p} \equiv a^{ps}u^{p^{m-1}js(1+2+\cdots+(p-1))}y^{p}$$

$$= a^{ps}u^{p^{m-1}js\frac{p(p-1)}{2}}y^{p}$$

$$= a^{p(s+l)}u^{k} \pmod{\langle a^{p^{n-m-1}}\rangle},$$

for any $s \in \mathbb{N}$.

Therefore we may write as

$$(a^{s}y)^{p} = a^{p(s+l+p^{n-m-2}\beta_{p,s})}u^{k}$$

for some integer $\beta_{p,s}$. Note that $\beta_{p,s}$ is not independent of the choice of s. If we set $y_1 = a^{-l}y$, we can write as

$$y_1^p = a^{\beta p^{n-m-1}} u^k,$$

for some integer β . Further, set $e = -\beta p^{n-m-2} - l$, and

$$y_2 = a^e y = a^{-\beta p^{n-m-2} - l} y = a^{-\beta p^{n-m-2}} y_1.$$

Since $n-m-2 \ge m+1$, by our assumption, we have

$$y_1 a^{p^{n-m-2}} y_1^{-1} = a^{p^{n-m-2}}.$$

So,

$$(a^ey)^p = y_2^p = (a^{-\beta p^{n-m-2}}y_1)^p = a^{-\beta p^{n-m-1}}y_1^p = u^k.$$

Thus the proof of Claim II is completed.

Since (k,p)=1, there exists $k'\in {\bf Z}$, such that $kk'\equiv 1\pmod{p^m}$. Hence

$$y_2^{k'p} = u^{kk'} = u.$$

Therefore

$$y_2uy_2^{-1}=u$$
.

Further, we have

$$\begin{split} y_2 a y_2^{-1} &= a^{-\beta p^{n-m-2}-l} y a y^{-1} a^{l+\beta p^{n-m-2}} \\ &= a^{-l} (a^{1+kp^{n-m-1}} u^{p^{m-1}j}) a^l \\ &= a^{1+(k+ljp^m)p^{n-m-1}} u^{p^{m-1}j}. \end{split}$$

If we set $k_1 = k + ljp^m$, then

$$y_2 a y_2^{-1} = a^{1+k_1 p^{n-m-1}} u^{p^{m-1} j},$$

and

$$y_2^p = u^k = u^{k_1}.$$

Summarizing the results, we have

$$y_2 a y_2^{-1} = a^{1+k_1 p^{n-m-1}} u^{jp^{m-1}},$$

 $y_2^p = u^{k_1},$
 $y_2 u y_2^{-1} = u.$

There exists an integer l_1 , such that

$$l_1k_1 \equiv 1 \pmod{p^{m+1}}.$$

Set $y_3=y_2^{l_1}$. Since $n-m-1\geq m+1$, by our assumption, we have

$$y_2 a^{p^{n-m-1}} y_2^{-1} = a^{p^{n-m-1}}$$

Hence,

$$y_3 a y_3^{-1} = y_2^{l_1} a y_2^{-l_1} = a^{1+p^{n-m-1}k_1 l_1} u^{p^{m-1}l_1 j} = a^{1+p^{n-m-1}} u^{p^{m-1}l_1 j}.$$

and

$$y_3^p = y_2^{pl_1} = u^{k_1l_1} = u, \quad y_3uy_3^{-1} = u.$$

Take an integer s_1 , such that

$$l_1 j s_1 \equiv 1 \pmod{p}$$
.

Then

$$y_{3}a^{s_{1}}y_{3}^{-1} = (a^{1+p^{n-m-1}}u^{p^{m-1}l_{1}j})^{s_{1}}$$

$$= a^{(1+p^{n-m-1})(s_{1}+l_{1}jp^{n-1}\frac{s_{1}(s_{1}-1)}{2})}u^{l_{1}js_{1}p^{m-1}}$$

$$= a^{(1+p^{n-m-1})(s_{1}+l_{1}jp^{n-1}\frac{s_{1}(s_{1}-1)}{2}l_{1}js_{1})}u^{l_{1}js_{1}p^{m-1}}$$

$$= a^{s_{1}(1+p^{n-m-1}+k_{2}p^{n-1})}u^{p^{m-1}}.$$

where, $k_2 = \frac{s_1(s_1-1)}{2}l_1^2j^2$. Set $a_1 = a^{s_1}$, then

$$\langle a \rangle = \langle a^{s_1} \rangle$$

and

$$y_3 a_1 y_3^{-1} = a_1^{1+p^{n-m-1}+k_2 p^{n-1}} u^{p^{m-1}}$$

Further,

(4)
$$a_1^{p^n} = 1, \quad ua_1u^{-1} = a_1^{1+p^{n-m}}, \quad u^{p^m} = 1,$$

Finally, we set

$$y_4 = u^{-k_2 p^{m-1}} y_3.$$

Then,

(5)
$$y_4 a_1 y_4^{-1} = u^{-k_2 p^{m-1}} y_3 a_1 y_3^{-1} u^{k_2 p^{m-1}}$$

$$= u^{-k_2 p^{m-1}} (a_1^{1+p^{n-m-1}+k_2 p^{n-1}} u^{p^{m-1}}) u^{k_2 p^{m-1}}$$

$$= a_1^{1+p^{n-m-1}} u^{p^{m-1}},$$

and

(6)
$$y_4^p = y_3^p = u, \quad y_4 u y_4^{-1} = u.$$

Therefore, G is generated by a_1 , u and y_4 with relations (4), (5) and (6). These relations are the same as that of G(n, m, 1). Hence

$$G = \langle a_1, u, y_4 \rangle \cong G(n, m, 1),$$

as desired. This completes the proof of Theorem.

ACKNOWLEDGEMENT. The author would like to express his gratitude to the refree for his careful reading and pertinent suggestion.

REFERENCES

- [1] C. Curtis and I. Reiner: "Representation theory of finite groups and associative algebras", Interscience, New York, 1962.
- [2] Y.Iida: The p-groups with an irreducible character induced from a faithful linear character, Preprint.
- [3] Y.Iida and T.Yamada: Extensions and induced characters of quaternion, dihedral and semidihedral groups, SUT J.Math. 27 (1991), 237-262.
- [4] H. Zassenhaus: "The theory of groups", Chelsea, New York, 1949.

Katsusuke Sekiguchi
Department of Civil Engineering
Faculty of Engineering
Kokushikan University
4-28-1 Setagaya Setagaya-Ku
Tokyo154-8515 Japan
(Received January 17, 2000)