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Factorization without Factorization: Complete Recipe
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The Tomasi-Kanade fact01'ization for reconstructing the 3-D shape of the feature points
tracked through a video stream is widely regarded as based on factorization of a matrix
by SVD (singular value decomposition). This paper points out that the core principle
is the affine camera approximation to the imaging geometry and that SVD is merely
one means of numerical computation. \~'e first describe the geometric structure of the
problem and then give a complete programming scheme for 3-D reconstruction.

2. Affine Camera Model

Suppose we track N feature points over .fIII frames.
Let (x~o:, YIi.O') be the coordinates of the nth point in
the Kth frame!. Stacking all the coordinates verti­
cally, we represent the entire trajectory by the fol~

lowing 2/t11-D trajectory vector:

IThe coordinate origin is arbitrary, e.g., at t.he upper-left.
corner of t.he image, as long as orthographic projection is as­
sumed. If weak perspective or paraperspect.ive projection is as­
sumed, however, we must specify the principal point (the point
that corresponds to the camera opt.ical axis), typically at the
center of t.he image frame, and take it as the coordinate origin,
because we are approximating the perspective project.ion.

2The mathematical structure is the same if we regard !'he
camera as moving relat.ive to a stat.ionary scene. However, if we
consider multiple motions [4, 5, 6, 7, 9, 10], we need to take the
camera as a reference. So, llsing !'he camera-based world frame
is more consistent than using the object-based world frame.

torization method, thereby showing that matrix
factorization by SVD does not play any essential
role.

2. From this viewpoint) we de.')cribe a complete
computational procedure for this method, de­
tailing specific optimizatiml steps for individual
camera models.

In the following, we first describe the underlying
geometric structure and the general framework of the
computation. Then, we describe the actual a.lgorithm
in detail. The derivation is summarized in the ap­
pendix.

T
XMa YMa) , (1)PO' = (Xl a YtO' X2a Y2o:
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1. Introduction

The factorization method of Tomasi and Kanade
[12J is one of the best known techniques for 3-D recon­
struction from feature points tracked through a video
stream. This method computes the camera motion
and the 3-D shape of the scene by approximating the
camera imaging geometry by an affine transforma­
tion. Its execution is very easy, requiring only linear
analysis of the trajectories of the feature points. The
reconstructed shape has sufficient accuracy for many
practical applications for which very high-precision is
not required. Also j the solt.:tion can be used as an
initial value for more sophisticated iterative methods
based on rigorous perspective projection [1].

After more than ten years since its birth
j

however
j

there is still a wide-spread misunderstanding that it
is a method for nxonstructing 3- D by matrix factor­
ization using SVD (singular value decomposition). In
reality, however, the underlying principle is only the
affine approximation to the camera imaging; factor­
ization by SVD is nothing but an (optional) means
for numerically computing the least-squares solution.

This fact should be so obvious to those using this
method that this need not particularly be mentioned.
For those who did not use this method, however, ex­
plaining this may help them really understand what
the Tomasi-Kanade factorization is.

One cause of the misunderstanding may be that
the actual procedure for the factorization method is
not given in most literature except for characterizing
it as "factorization by SVD" . In truth, the core of
this method lies in what is known as the metric con­
dition and least-squares optimization of the motion
and shape.

The purpose of this paper is two-fold:

L \~'e explain the geometric structure of the fac-
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where AI'\; and bl'\; are I respectively, a 2 x 3 matrix and
a 2-D vector determined by the position and orienta­
tion of the camera and its internal parameters at time
1<. Substituting Eq. (2), we have

Vie assume an affine cameral which generalizes
orthographic, weak perspective, and paraperspective
projections [8J: the 3-D point T,a is projected onto
the image position

scene, and let t,... and {i"", j ", k",} be, respectively, its
origin and basis vectors at time fl,. If the o1;h point
has coordinates (an 1 bn 1 cn) with respect to this coor­
dinate system, its position with respect to the world
frame at time K. is

4. Affine Space Fitting

\i\'hat is known as "factorization by SVD" is a typ­
ical numerical scheme for the first stage. The core
of the procedure is the second stage and is known as
the metric condition, which depends on what camera
model is assumed. The third stage is non-linear op­
timization, because we need to incorporate the con­
straint that {i/'i;l j lil k,...} be an orthonormal system.
The solution is given by SVD [2]. The fourth stage is
the simplest: we only need to minimize

This is a quadratic minimization in (ao~ bal CO)1 so
the solution is obtained by solving a linear equation
(the normal eq""tion).

N

J ~ L Ilpa - mo - "am, - bam2 - Cam31[2 (6)
n=1(3)

Since the absolute position of the scene coordinate
system is arbitrary, we take its origin at the centroid
of the fll feature points. Then, "L.~=1 an = L~= I bo
= "L.:=I Co = 0, so eq. (5) implies that mo coincides
with the centroid of {PliO}

where mOtil ml til m21'i' and m31'i are 2-D vectors de­
termined by the position and orientation of the cam­
era and its internal parameters at time 0,. From
Eq. (4), the trajectory vector P a in Eq. (1) can be
written in the form 1 N

PC=NLPa
0=1

(7)

As is well known, the affine space that fits {Pal op­
timally (in the sense of least squares) passes through
the centroid Pc and is spanned by the unit eigenvec­
tors {Ul l U21 U3} of C for the largest three eigenval­
ues Xl 2: A2 2: A3· It follows that the vectors Tnl, m2,
and m3 can be expressed as a linear combination of
the basis {UI, U2, U3} in the form

where mal mI, m2, and m3 are the 2NI-D vectors
obtained by stacking moK , ml"';l m21'\;1 and m3ti ver­
tically over the At{ frames , respectively.

Eq. (5) implies that the trajectory vectors {Pal
are constrained to be in the 4-D subspace spanned
by {mOl ml, m2, m3} in n2M . This fact is called
the subspace constraint 14]. Moreover, the coefficient
of ma in eq. (5) is identically 1, meaning that {Pal
are constrained to be in the 3-D affine space passing
through mo and spanned by {1nll 1n2, m3}. This
fact is called the affine space constraint [51. These
geometric interpretations play a central role in re­
covering missing data (11] and segmenting indepen­
dently moving multiple objects into individual mo­
tions [4, 5, 6, 7, 9, 10].

3. Flow of Computation

Let

and define the (second-order) moment matrix

N

C = LP~P~T.

n=1

(8)

(9)

It can be shown 1 however, that what we need for 3-D
reconstruction is not the matrix A = (A ij ) itself but
the metric matrix

The constraint on the matrix T depends on the as­
sumed camera model and is called the metric condi­
tion.

From the above observation, the procedure for re­
constructing 3-D from the data {Pal consists of the
following four stages:

1. Fit a 3-D affine space to {Pal by least squares.

2. From the fitted space, compute the vectors mo,
mI, m21 and m3·

3. From the resulting vectors ma, mI, m2, and
m3, compute the position t,.., and the orientation
{i,.,;,j,.." k,..,} of the scene coordinate system.

4. Compute the scene coordinates (aen ben co.) of in­
dividual feature points.

3

mj = LAijUi.

i=1

(10)

(11)
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5. Why "Factorization"? 6. Main Procedure

As we have seen 1 matrix factorization by SVD is
not necessary for 3-D reconstruction. However 1 we
can use it as a numerical means. In fact, we may
define the 2114 x N observation matrix

We first describe the main procedure for 3-D re­
construction independent of individual camera mod­
els. Then 1 we detail the subprocedures that depend
on the assumed camera models. The derivation is
summarized in the appendix.

The important thing to note is that two solu­
tions are obtained and that the corresponding 3-D
shapes are mirror images of each other. The two sol u­
tions cannot be distinguished under the affine camera
model: both result in identical images when projected.

Input:
• 2lvI-D trajectory vectors {Pa}, Q = 1, ... , N (lvI

is the number of frames 1 N is the number of fea­
ture points).

• the average scene depth Zc and the focal lengths
{f,) for all the frames (arbitrarily assigned if
unknown) .

Output:
• the translation vectors {tl,J (the positions of the

centroid of the feature points).

• the 3-D positions {raJ and {r~} (mirror images
of each other) of t.he individual feature points
with respect to the first frame.

• the 3-D rotations {R,} and {R~} (the orienta­
tions of the scene coordinate system).

Main procedure4 :

- Fittil1g an affine space -

1. Compute the centroid Pc of the trajectory vec­
tors {Pal byeq. (7).

2. Let Ix< and Iy < be the (2(1<-1) + l)th and (2(1<­
1) + 2)th components of Pc, respectively.

3. Fit a 3-D affine space to the trajectory vectors
{Pa}, and let {UI, U2, U3} be its basis.

4. Let U be the 211/./ x 3 matrix having Ul, U21 and
U3 as its columns, and let u~(a) be the (2(1< ­

1)+a)th column ofUT
, I< = 1, ... , lvI, a~ 1, 2.

- Computing t1le metric matrix-

5.* Compute the 3 x 3 metric matrix T.

6. Compute the eigenvalnes {AI, "'2, ",3} of T and
the corresponding orthonormal system {VII V2,

V3} of unit eigenvectors.

# T is a positive definite symmetric matrix; its
eigenvalues {All A2' A3} are all positive.

- Computing translation -

7.* Compute the translation vectors tl'>,
(txI'>,ltYI'>"tu.)T.

- Computing rotation -

4The mark * indicates that the computation depends the
assumed camera model.

(12)

(14)

(15)

p~v )

M=UA,

=MS,

W = (mj m2 m3) ( ~:
Cj

that has p~, p;, ... , P'rv as its columu. Let

W = UNdiag(iT1>iT2, ... ,iTN)VJ (13)

be its SVD, where UN and VN are, respectivelYl 2ft/I x
Nand N x N matrices consisting of an orthonormal
system of columns, and aI, a2, "'1 aN (2: 0) are the
singular values (diag(· .. ) denotes the diagonal matrix
having' .. as its cliagonal elements). It is easily seen
that the ith column of UN is the unit eigenvalue of
the moment matrix C in eg. (9) for the eigenvalue
Ai = al12, 3]. Thus, the eigendecomposition of the
moment matrix C is mathematically equivalent to the
SVD of the observation matrix W.

The computational complexity of SVD of the 2lvI x
N matrix W usually depends on min(2lvI, N). So,
SVD will be computationally more efficient when the
number 2N./ of frames is much larger than the number
N of feature points.

From eq. (5), we have p~ = aaml +bam2+com3.
Substituting this into eq. (12)1 we have

where M is the 2.NI x 3 motion matrix having mi as
its ith column, and S is the 3 x N shape matri.."C hav­
ing (ao ' b01 ca) T as its nth column. In this notation,
eq. (10) can be rewritten as

where U is a 2"1 x 3 matrix consisting of the first
three column of the matrix UN.

Tomasi and Kanade [12] expressed the affine space
constraint (5) as eq. (14) and called it the mnk 3 con­
stmint3 . Then, they applied SVD to the observation
matrix W in the form of eq. (13), determining the
motion matrix M in the form of eq. (15) using the
metric condition.

From this originates the interpretation that their
method is to do matrix factorization by SVD. How­
ever I we should not mix up the mathematical struc­
ture of the problem with numerical means for solving
it. As we noted earlier, SVD is simply an (optional)
numerical means for affine space fitting.

3If we do not center the coordinate system at the cen­
troid, we can obta.in what is kJlown as the rank 4 constraint:

(PI'" PN ) ~ (..-no Tnl Tn2 Tn3) (i: ~z) ,0>" W =
Cl CN

MS. This is a more faithful expression of our affine space con­
straint (5).
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8. Compute the following 2M-D vectors:

(ut(l)' Vi)

(ut(2)' Vi)

(u~(l)' V;)

----+--------~"'- (X, Y, Z)
(x,y

--+----'-:::::=:=:::".L---- z

(16)

9. Let M be the 211/1 x 3 motion matrix having ml,

m2, and m3 as its columns, and let m~(a) be the

the (2(1< - 1) + a)th column of M T
, I< = 1, ... ,

Ad, a = 1, 2.

10' Compute the rotations {R,}.

- Optimizing the sllape -

11:* Recompute the motion matrL"X M as follows:

M

M= 2)1~R,.
1>.=1

(17)

Figure 1: Orthographic projection.

Computing the metric matrix
1. Define the following 3 x 3 x 3 x 3 tensor B =

(Bijk,):

M

Bij" = L [(U~(1))i(U~(1)Mu~(1) h(U~(1))'
ti=l

+(U~(2))i(U~(2))j(U~(2)h· (U~(2))'

+~ ((U~(1))i(U~(2))J + (u~(2)l«u~(1))j)

((u~(l)h(U~(2))' + (u~(2)h(u~(1))'))]'
(22)

# IT, = (IT'(ij)) is a 3 x 2JV/ matrix that depends
on the assumed camera model.

12. Compute the 3-D shape vectors {so} as follows:

# (U~(a))i denotes the ith component of the 3-D

vector u~(ar

2. Define the following 6 x 6 symmetric matrix B:

- Computing tbe mirrol" image ­

13.' Compute {s~} and {R~} as follows:

# fl ti is a rotation matrLx that depends on the
assumed camera model.

- Computing tlle 3-D positions-

14. Compute the two sets of solutions {To}, {T~} as
follows:

BUll B U22 B 1l33

B 2211 B2222 B2233

B 3311 B 3322 B3333

V2B2311 V2B2322 V2B2333

V2B3111 V2B3122 V2B3133

V2B1211 V2B'222 V2B'233

V2B1123 V2B1131 V2B1112

V2B2223 V2B2231 V2B2212

V2B3323 V2B3331 V2B3312 (23)
2B2323 2B2331 2B2312

2B3123 2B3131 2B3112

2B1223 2B '231 2B1212

B=

3. Compute the following 6-D vector c:

(18)

(19)

7. Subprocedures
C=(111000)T (24)

4. Compute the 6-D vector r = (7;.) by solving the
following linear equation:

The steps with the mark * in the preceding section
depend on the assumed camera model. Here, we con­
sider three projection models and give corresponding
subprocedures.

7.1 Orthographic projection

By orthographic projection (Fig. 1), a point
(X, Y, Z) in the scene is projected onto a point (x, y)
in the image such that

Br=c.

5. Compute the metric matrix T as follows:

(25)

(26)

(21 )

The steps ,,,ith "* are computed as follows (the deriva­
tion is given in the appendix).

Computing translation
1. Let tZK. = ZCI n, = 1, ... , 2Ad.

2. Let tXK- = tXK- and tYK- = tyK.' n, = 1, ... , 2JvI.
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f

----"-'"' (X, Y, Z)

(x, y

o~'------+--------\,------+----;>.L--z
I,

Figure 2: \\Teak perspective projection.

Computing rotation
1. For each "', compute the following SVD:

2. Compute the rotation matrices {R.l as follows:

Matrices 0,.;; and n,.;;

- (U~(2»)i (U~(2»)1 (u ~(I)).(U~(I))I

+(U~(2»)i(U~(2»)j (U~(2))k (U~(2»)1

+~ ((U~(I)};(U~(2,lj(U~(1) )dU~(2»)1

+(U~(2»)i(u~( I») j (U~(I))k (U~(2»)'

+(U~(1»)i(U~(2))j (U~(2»). (u~( I »),

+(U~(2»)i(U~(I)),(U~(2»).(u~(1))1 ) ] .

(32)

2. Compute the 6 x 6 symmetric matrix B in
eq. (23).

3. Compute the 6- D unit eigenvector T = (7i) of B
for the smallest eigenvalue.

4. Compute the metric matrix T in eq. (26).

5. If detT < 0, let T <- -T.

2. Compute tx ,.;; and ty ,..; as follows:

Computing translation
1. Compute tzt>. as follows:

(34)

2

(2,.;;-1)(2~)

( 0 ... 0 1 0 0 0 ),TI K = 0··· 0 0 1 0 0 (29)

o ... 0 0 0 0 0

0. = diag(-1,-1,1) (30)

7.2 Weak perspective projection

By weak perspective pTOjeetion (Fig. 2) [8], a point
(X, Y, Z) in the scene is projected onto a point (x, y)
in the image such that5

(31) Computing rotation
1. For each "', compute the following SVD:

2. Compute the rotation matrices {R.} byeq. (28).

(37)

(36)
o
o
o

(2,.;;-1)(2,.;;)

1 0
o 1
o 0

TI. = f. ( ~ ~
t z ,.;; 0 0

0. = diag(-1, -1, 1).

( : ) ~ :, (( ; ) + (1 - ~) (:: )), (38)

Matrices 11,.;; and OK.

7.3 Paraperspective projection

By paraperspective projection (Fig. 3) [81, a point
(X, Y, Z) in the scene is projected onto a point (x,y)
in the image such that6

where t x , t y , and t z are the tree components of the
origin t of the scene coordinate system.

6 As in the case of weak perspective projection, we assume
that the principal point is specified, typically at the center of
the image frame, and take it as the coordinate origin.

where f is the focal length of the camera and t z is
the third component of the origin t of the scene co­
ordinate system.

If weak perspective projection is assumed, the focal
lengths UK}, t< = 1, ... , M, for all the frames need
to be specified. If they are unknown, they can be
arbitrarily assigned; the reconstructed shape does not
depend on their values. This is because the depth t z
is indeterminate and is normalized to be the user~

assigned value Zc in the end. The steps with * are
computed as follows (the derivation is given in the
appendix).

Computing the metric matrix
1. Compute the following 3 x 3 x 3 x 3 tensor B =

(Bijk, ):

AI

Bilkl = L [(U~(l»)i(U~(I))j(u~(I))du~(l))1
,..;=1

-(U~(1»)i (U~( I») j(U~(2»).(U~(2»)1
----:c--------=-

5We assume that the principal point (the point that cor­
responds to the camera optical axis) is specified, typically at
the center of the image frame, and take it as the coordinate
origin. This is because we are approximating the perspective
projection. See footnote 1.
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_--I-__ (X, Y, Z)

(x, y

4. Compute the 6-D unit eigenvector T ~ (Ti) of B
for the smallest eigenvalue.

5. Compute the metric matrix T in eq. (26).

6. If detT < 0, let T <- -T.

Figure 3: Paraperspective projection.

If paraperspective projection is assumed , the focal
lengths {f,..} , K = 1, ... , 111, for all the frames need
to be specified, but they can be assigned arbitrarily
if they are unknown. The reconstructed shape does
not depend on their values as in the case of weak per­
spective projection. The steps with * are computed
as follows (the derivation is given in the appendix).

Computing the metric matrix
1. Let

Computing translation
1. Compute t z", as follows:

2

a,(u~(l)' TU~(1))+ (3"(u~(2)' TU~(2»)
(41 )

2. Compute tX' and t y • byeqs. (34).

Computing rotation
1. For each "', compute the vectors

T ~(3)} as follows:

(42)

(43)

(44)

(45)

t
r "'(2)

t
r "'(3)

2. For each K, compute the following SVD:

3. Compute the rotation matrices {R.} by eq. (28).

Matrices II", and fl:",

2t,t~ _ I
IIt.11 2 .

8. Concluding Remarks

(39)K=I, ... ,1I1.

M

Bijk, = L [h~ +l)a~(U~(l»)i(U~(l)Mu~(l»)dU~(l»)'
",=1

+(,~+ 1){3~ (U~(2»)i (U~(2»)j (U~(2) )k(U~(2»)'

+(U~(,))i (U~(2») j (U~(l»)k (U~(2»)'

+(U~(1))i(U~(2»)j(U~(2»)k(U~(1))'

+(U~(2»)i(u~( I»)j (U~(l»)k (U~(2»)'

+(U~(2»)i(U~( I») j (U~(2»)k (U~(l»)'

-a",(u~( I»)i (U~(1))J (U~(1))k (U~(2»),

-a." (U~(l»)i(U~(l»)j(U~(2»)k(U~(l»)'

-a.,.(U~( l»)i (U~(2))j (U~(l»)k (U~( 1»)'

-a.,,(U~(2»)i(U~(1))j(U~(1))k(U~(1))'

- {3.,. (U~(2))i(u~(2»)j(U~(1))k (u ~(2»)'

- {3",(U~(2»)'(U~(2»)j(U~(2)),. (U~(1))'

-{3.,. (U~(l»)i(U~(2»)j(U~(2»)k(U~(2»)'

-(3",(U~(2) )i(U~( I»)j (U~(2)h (U~(2»)'

+(,~ -1 )a.,. (U~(1))'(U~( l»)j (U~(2))k (U~(2»)'

+h~-1)a"'(U~(2»)i(U~(2»)j(U~(1))dU~(1))']'
(40)

2. Define the following 3 x 3 x 3 x 3 tensor B
(Bijk'):

3. Compute the 6 x 6 symmetric matrix B in
eq. (23).

7The C program source is available at:
http://vvv.suri.it.okayama-u.ac.jp/e-program.html
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Let

Equating individual elements on both sides, we obtain

Since Rf\; is an orthogonal matrix, we have

(52)

(54)

(m~(I)' m~(2)) = O.
(53)

Ilmt 112 -Ilmt 11 2 - 11i.(1) - ,..(2) -,

where u~(a) are the vectors defined in Step 4 of the

main procedure. Substituting eq. (54) into eqs. (53),
we obtain

(AT u~(l)' A T u~(J)) = (AT U~(2)' A T u~(2)) = 1,

(A T u~(l)' A T u~(2)) = O. (55)

In terms of the metric matrix T (eq. (11)), these are
rewritten as

Computing the metric matrix

In terms of the projection matrix (47), vectors
mIl\.! m2f\;, and m3f\; in eq. (4) are written as follows:

m],.. = IIif\;' m2f\; = IIjf\;' m31'i: = Ilk,... (48)

Since M T ~ AT U T from eq. (15), we obtain

m t - ATut
Ii.(a) - f\;(a) ,

In terms of the vectors m~(a) defined in Step 9 of the

main procedure, the above equation can be written
as

(U~(l)' TU~(J)) = (U~(2)' TU~(2») = 1,

(U~(l)' TU~(2)) = O. (56)

R, = (i, J, k K ) (49)

be the matrix having the orthonormal system {i,.., j Ii. ,

k,..} as columns. This is a rotation matrix that de­
scribes the orientation of the scene coordinate system
at time fl.. Using this, we can write eq. (48) as follows:

( ml K m2K m3, ) = IIR,. (50)
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where II is the following 2 x 3 projection matrix:

The orthographic projection equation (21) can be
rewritten as

Appendix: Derivations

A. Orthographic Projection

(58)
i,j,k,l=l

Differentiating this with respect to Tij and setting the
result 0, we obta.in the simulta.neous linear equations

3

L Bijkl Tkl = dij,

So, we compute the matrix T that minimizes

M 2

J( ~ L [( (U~(J)' TU~(J)) - 1)
Ii.=l

+ ((U~(2)' TU~(2)) - I) 2 + (U~(l)' TU~(2/]'
(57)(46)

(47)
o
I
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(64)

(66)
o
1

N

J= LIIPa-rno-Msall'.
0=1

r ~(1) X r ~(2)" In the presence of noise in the data,

however, the computed vectors r~(l) and 1'~(2) may
not necessarily be orthogonal or of unit length. So,
we fit an exact orthonormal system to them. If we
compute the SVD in the form of eg. (27), the matrix
V ,;.UJ is the best approximation to R~ in the sense
of least squares [2J. In order to prevent the deter­
minant from being -1, we modify it in the form of
eq. (28) [2J.

Computing the shape

Combining the matrix II. in eq. (29) and egs. (49)
and (50)1 we can rewrite the motion matrix M de­
fined in Step 9 of the main procedure in the form
of eq. (17). Introducing the 3-D shape vector Sa =
(act:jbo,ca)T, we can write eq. (6) as

B. Weak Perspective Projection

Since mo is the centroid of {Pa }, the least-squares
solution is given by eq. (18).

Computing the mirror image solution

\>\le are considering a solution corresponding to the
sign + in eq. (60). If we choose - instead, the vectors
mi in eq. (16) will change their signs, and hence the
motion matrix M and the vectors mi, will also change
their signs. If the motion matrix M changes its sign,
the shape vectors So given by eq. (18) also change
their signs.

If the vectors ml,;" mZ';'l and m3,;. change their
signs) eq. (50) implies that we obtain a mirror im­
age solution R~ for the rotation such that IIR,;.
- IIR~. Transposing both sides and letting 11,.. =

R~R~, we obtain

This means that rl,;. is a rotation matrix that maps
vectors (I,O,O)T and (O,I,O)T onto (-I,O,O)T and
(O,-I,O)T, respectively. So, 0. = diag(-l,-l,l).

'ATeak perspective projection equation (31) can be
written in the form of eq. (46) if we define the pro­
jection matrix II by

(61)

T
V2 V3) .

(59)

Since this equals AAT, we have

where Q is an arbitrary rotation matrix, which corre­
sponds to the orientation indeterminacy of the scene
coordinate system. The dou ble-sign ± reflects the
mirror-image indeterminacy of the solution. Here, we
pick out one solution by choosing + and Q = I (the
identity). Then, the ith column of the motion matrix
Mis

( I I) TT(Im,;.(l) ml\;(2) = R,;.II = 1'1\;(1)

A ~ ± ( v I V2 V3) diag(~, ..}>:;, ..}>:;)Q

= ± (~VI y!X;V2 J>;3v3) Q, (60)

where the tensor B = (B;jk,) is defined by eg. (23).
In terms of the 6 x 6 symmetric matrix B given in
eg. (23), the 6-D vector T defined via eg. (26), and the
6-D vector c defined by eg. (24), the above eguation
can be expressed in the form given in eq. (25). Its
solution T determines the matrix T ill the form of
eg. (26).

IT
u M (2)

which is rewritten as eq. (16).
If we transpose both sides of eg. (50) and let T~(;)

be the ith column of RJ 1 we obtain from the defini­

tion of rn~(a) and eg. (17)

Computing translation

The depth information is lost through ortho­
graphic projection, so we place the origin t,;. =
(tXI\;' t y ,;., tz,;.)T of the scene coordinate system in the
distance Zc specified by the user from the XY plane.
'A'e also identify (tXI\;, tYI\;) with the centroid of the
projected feature positions, namely (lx,;., iy ,;.).

Computing rotation

The metric matrix T is expressed in terms of its
eigenvalues {)q, A2, A3} and the corresponding or­
thonormal system {v I, V2, V3} of eigenvectors as fol­
lows [21:

Hence, we obtain

(63)

Computing the metric matrix

For weak perspective projection, the vectors rnO';'l
mt,..l rn21\;, and m3to in eq. (4) can be written as

Since {r~(I)' r~(2)' r~(3)} is a right-handed orthonor­

mal system, we should theoretically have r~(3)

mal\; = IIl\;t,;.,

m2,;. = II,;.j,;.,

mIt>; = IIl\;i';'l

m3t>; = IIl\;k", (67)
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(76)

(78)

T~(2) ) .

(77)

J( = (T, BT).

Hence, we obtain

t tZI'\. tr --m
I'i.(I) - III:. 1'i.(1)'

Since [( is a sum of squares, B is a positive semi­
definite symmetric matrix. From the definition of the
vector T, the condition IITII = 1 is equivalent to the
condition IITII = 1. So, we compute the unit vector
T that minimizes the quadratic form 1< in T, and the
solution is the unit eigenvector of B for the smallest
eigenvalue [3]. From it, we obtain the solution T
in the form of eq. (26). However, eigenvectors have
signature indetenninacy, and the matrix T should be
positive semi-definite. So, if det T < 0, we change the
sign of T.

Computing translation

If the metric matrix T is computed , the first of
eqs. (73) gives tZI'i. in the form of eq. (33). which is ar­

ranged so as to preserve the symmetry between u~(l)

and u~(Z). The remaining components tXII:. and tyl'i.

are determined from the first of eqs. (67) in the form
of eqs. (34).

Computing rotation

As in the case of orthographic projection, the ith
column of the motion matrix M is given in the form
of eq. (16), and the vectors m~(a) are determined
accordingly.

If we transpose both sides of eq. (68) and let r ~(i)

be the ith column of R~, we obtain from the defini­

tion of m~(a)

multiplied by y'2, so eq. (68) implies that the vectors

mIll:., mz/'\., and m3/'\. are all multiplied by ..;2. ''''e
can see from eq. (5), however, that this magnification
can be compensated for by dividing aen ben and Co

by J2, resulting in a solution compatible ,vith all the
data. So, we do not lose generality if we normalize T
into IITII = l.

In terms of the 6 x 6 symmetric matrix B given in
eq. (23) and the 6-D vector T defined via eq. (26), we
can write eq. (75) as the following quadratic form:

(73)

(72)

(AT U~(1)'AT U~(1))

(AT U~(I)' ATU~(2))'

(71)

II I 11 2 II I 11 2 f;ml'\.(I) = mtb(Z) = t2 '

"

Equating individual elements 6n both sides, we obtain

In terms of the metric matrix T (eq. (11)), these are
rewritten as

( I I)T ( I
m"'(l) mll:.(Z) m/'\;(l)

In terms of the vectors m~(a) defined in Step 9 of the
main procedure, the above equation can be rewritten
as

( I I)(! t)f~
UII:.(I) , TUII:.(l) = U/'\.(Z) , TUf\;(2) = tZ '

"

M

J( ~ L[((u~(I),Tu~(I))- (U~(2),TU~(2»)f
/'\,=1

mIl'\. m21'\. m31'\. ) ( mI" mzl'\. m31'\. ) T

= IIKR,R~II~ = IIKII~ = ~~ I (69)
tzl'\.

Since RI'\. is an orthogonal matrix, we have

Recalling that M T = ATUT from eq. (15) and in­

troducing the vectors u~(a) defined in Step 4 of the

main procedure, we can express the vector m~(a) in
the form of eq. (54). Substituting it into eqs. (71), we
obtain

So, we compute the matrix T that minimizes

where II" is the matrix obtained by replacing f and
t z , respectively, by the values i" and t z" at time K in
eq. (66). From the definition of the rotation matrix
R, in eq. (49), we obtain

(75)

If we define the tensor B (Bijk,) by eq. (32), we
have

3

J( = L Bijkl T ijTkl.

i,j,k,I=I

Note that eqs. (73) imply that the matrix T has
scale indeterminacy. In fact, doubling T means di­
viding t z /'\. by ../2. Then, the matrix II", in eq. (66) is

Since {r~(l)l r~(2)l r~(3)} is a right-handed orthonor­

mal system, we should theoretically have r ~(3)

r ~(1) x r ~(z)" In the presence of noise in the data,

however, the computed vectors r~(I) and r~(2) may
not necessarily be orthogonal or of unit length. So,
we fit an exact orthonormal system to them. As in
the case of orthographic projection, if we compute the
SVD in the form of eq. (27), the best approximation
to R. is given by eq. (28) [21.
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(85)

(87)

(89)

Recalling that M T = ATUT from eq. (15) and in­

troducing the vectors u~(a) defined in Step 4 of the

main procedure, we can express the vector rn~(a) in
the form of eq. (54). Snbstituting it into eqs. (87) and
defining 0'li.1 {3Ii.' and !Ii. byeqs. (39), we obtain

(AT t AT t) I~
UK(l)' u/i.(1) = -t2 '

ali. z'"

( TI ATI) I~
A u.(2)' UK (2) = {3.t 2 '

Ii. Z/i.

Since R/i. is an orthogonal matrix, we have

( ml/i. m2", m3K; ) ( mlK; m2/i. m3/i. ) T

= II. ( ~T ) (R~ °T ) II~

= II. (I 0) II~

In terms of the vectors rn~(a) defined in Step 9 of the
main procedure, the above equation can be rewritten
as

where we use the following identities resulting from
the first of eqs. (83):

( Ix<) I, ( tx< ) (88)
ty/i. = tZIi. t YK .

( m~( 1) m~(2) ) T ( m~(1) m~(2) )

I~ (1 +1;.1(2,. tX<ty.lt;.) (86)
= t;", tX/i.tY/i./t;K; 1 + t~,,/t;1i. .

Equating individual elements on both sides, we obtain

12 [2
Ilm~(J)112 = t;: (1+ ;i)'

I 2 I~ ( ~.)Ilm.(2) II = t;. 1 + n '

In terms of the metric matrix T (eq. (11)), these are
rewritten as

"K(U~(I)'TU~(l)) = {3,(U~(2)' TU~(2))

(u~(I)' TU~(2)) I~
2' (90)

I/i. tZfi.

from which we obtain the following two conditions:

",(u~(I),TU~(l)) = {3,(U~(2)' TU~(2))

,. ("K(U~(I)'TU~(I)) + {3K(u~(2)' TU~(2)))

= 2(u~(J)' TU~(2))· (91)

(80)

(81)

(83)

(84)

can be

°1
If we define the projection matrix II by

This means that n", is a rotation matrix that maps
vectors (I,O,O)T and (O,I,O)T onto (-I,O,O)T and
(O,-I,O)T, respectively. So, n. = diag(-I,-I,I).

c. Paraperspective Projection

Ixll )
Iyll '

paraperspective projection equation (38)
rewritten as

Computing the shape

Combining the matrix TI. in eq. (36) and eqs. (49)
and (68)1 we can rewrite the motion matrix M de­
fined in Step 9 of the main procedure in the form
of eq. (i7). Introdncing the 3-D shape vector t s"
= (acn bo , co) T I we can write eq. (6) ill the form of
eq. (64), from which the least-squares solution is given
in the form of eq. (18).

Computing the mirror image solution

As in the case of orthographic projection, the so­
lution SO' for the shape vector gives rise to its mir­
ror image solution -SCl'! for which the vectors rn~(a)

change their signs. Then, eq. (68) implies that we ob­
tain a mirror image solution R~ for the rotation such
that II/i.R/i. = - II/i.R~. Transposing both sides and
letting n/i. = R~RJ, we obtain

(T;: ) U:) + ( iO) + eo')+ ( ~. )
(82)

Computing the metric matrix

Eq. (2) can be rewritten as

Hence, the vectors mO/i.l ml/i.' m2/i.' and m3K; III

eq. (4) can be written as

where IlK; is the matrix obtained by replacing f and
t z , respectively, by the values I/i. and tZK; at time K. in
eq. (80). From the definition of the rotation matrix
R. in eq. (49), we obtain
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tx ,.. t
- -1- T '(3) =

"
T

t tyti. t
,..(2) - -I-rti.(3) =

"

t
r ,..(1)

The solution is given by eqs. (42). In the presence

of noise in the data, however, the computed {r~(l)'

r ~(2)' r ~(3)} may not necessarily be an exact or­
thonormal system. So, we fit an exact orthonormal
system to them as in the case of orthographic and
weak perspective projections. The SVD in the form
of eq. (43) yields the best approximation to R. in the
form of eq. (28).

Computing the shape

Combining the matrix il,.. in eq. (44) and eqs. (49)
and (84), we can rewrite the motion matrix M de­
fined in Step 9 of the main procedure in the form of
eq. (17) and obtain the least-squares solution eq. (18)
as in the case of orthographic and weak perspective
projections.

Computing the mirror image solution

As in the case of orthographic and weak perspec­
tive projections: the solution So for the shape vector
gives rise to its mirror image solution - So 1 for which
the vectors m~(a) change their signs. Then , eq. (84)

implies that we obtain a mirror image solution R~

for the rotation such that II< ( ~~ ) = -II" ( ~~ ).

Transposing both sides and letting fl,.. = R~R~ 1 we
obtain

Since {r~(I)' r~(2)1 r~(3)} is a right-handed orthonor­
mal system, we obtain

t;,.. t t t t x,.. tty,.. t ()
f~ m,(I) x m'(2) = T ,(3) +I" T '(i)+ I" T ,(2)' 95

Hence, the vectors {r~(l)' r~(2)' r~(3)} are obtained
by solving the following linear equations:

This means that ,0,.. is a rotation matrix that maps
vectors (I,O,-tx,../tZti.)T and (I10,-tYK./tzn.)T onto
(-l,O,tx</lz<)T and (-1, 0, ly</lz<)T, respectively.
Noting that the vector tti = (t x,.., tyti., tZti.) T is orthog­
onal to both (1,0, -Ix,/I,,)T and (1,0, _Iy./I,,)T,
we conclude that 0,.. represents the rotation around
axis t,.. by angle 1800

. Hence, we obtain eq. (45).

(93)

(m~(i) m~(2») = ( R: °)II:
f, (t Ix< t t Iy • t )

= -t- r ,..(1) - -I-r1\;(3) r 1\;(2) - -I-r ,..(3) .
Zti Z,.. Z~

If we define the tensor B = (BiJkl) by eq. (40), the
above equation has the form of eq. (75). Since the
matrix T = (1jj ) has scale indeterminacy as in the
case of weak perspective projection, we do not lose
generality if we normalize it into IITII = l.

In terms of the 6 x 6 symmetric matrix B given
in eq. (23) and the 6-D vector T defined via eq. (26),
we can write eq. (92) in the form of eq. (76). Since
the condition IITII = 1 is equivalent to the condition
IITII = I, we compute the unit vector T that mini­
mizes the quadratic form I< in T, and the solution
is given by the unit eigenvector of B for the small­
est eigenvalue. From it) we obtain the solution T in
the form of eq. (26). However, eigenvectors have sig~

nature indeterminacy, and the matrix T should be
positive semi~definite. So, if det T < 0, we change
the sign of T.

Computing translation

If the metric matrix T is computed 1 tZI\; is given
from eq. (90). However, ,,.. in the denominator of
the last term may happen to be o. We also want to
preserve the symmetry between Q'I\; and fin.. So, we
compute tZI\; in the form of eq. (33). The remaining
components txn. and tyti are determined from (88) in
the form of eq. (34).

Computing rotation

As in the case of orthographic and weak perspec­
tive projections, the ith column of the motion matrix
M is given in the form of eq. (16), and the vectors

m~(a) are determined accordingly.

If we transpose both sides of eq. (84) and let T~(i)

be the ith column of R~, we obtain from the defini­

tion of m~(a)

These conditions are arranged so as to preserve the
symmetry between 01\; and of3. \/Ve also multiply the
second equation by /1\; in order to prevent /1\; from
appearing in the denominator, since if tXI\; or i y,.. hap­
pens to be 0, we will have /,.. = 0.

Vl/e 1I0W compute the matrix T that minimizes

M

f{ = L [(Q.(U~(i)' TU~(l)) - {3,(U~(2)' TU~(2»)f
,..=1

Hence, we obtain

t z ,.. t t t x ,.. t-m -r --Tf< ,(I) - ,(1) I
z

< ,(3)'

tZti. t t tyti. t
f, m,(2) = T ,(2) - t" T ,(3)" (94)
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