三朝温泉地域の地下 1m 深さにおける 温度分布並びに放射能について

岡山大学温泉研究所

相 馬 徳 蔵

|緒 宮

ここに称する三朝温泉地域は鳥取県東伯郡 をすれる 三朝町の大字三朝及び大字山田及びその近く であり、鳥取県のほぼ中央に位置し、中国山 脈の北のふもと天神川の支流の東から西へ流 れる三徳川をはさんで狭い谷間にある。

三朝温泉については現在までに 種 々 の 研 究¹⁾,特に地球化学的研究や温泉治療学的研 究²⁾があり,この方面ではよく知られている ように,温泉は放射能泉または含芒硝弱食塩 泉である.

温泉は大部分が冲積層から湧出している が,冲積層の厚さはせいぜい10mで,その下 には黒雲母花崗岩があり,一部の温泉は黒雲 母花崗岩から直接に湧出している.黒雲母花 崗岩自身も変化が多いがこのことについては 別の機会にゆずる.黒雲母花崗岩は玄武岩質 或は安山岩質の岩脈によってつらぬかれ,こ れらを安山岩乃至粗面岩質玄武岩等の熔岩流 が不整合にほぼ水平に覆っている.地質の詳 細については目下地質調査所で調 査 中 で あ る.

源泉は約100あり,三徳川をはさんで東西 約2km,南北約300mにわたって散在してい る.この全地域の地表面下1mの温度と地表 から地表下1mまでにある気体の放射能とを 測定した.測定は1955年10月の上旬から中旬 にわたって行われ,三朝温泉の地学的由来を 明らかにするための一資料となり得るとの見 地から,測定の結果並びにそれにもとづく考 察について記述する.

Ⅱ 測 定 方 法

測定を行った日は10月7, 10, 12, 17, 19, 21各日で,雨の降らない日をえらんだ.10月 の上旬~中旬,即ち測定する間の正午の気温 (温泉研究所前庭)はFig.1の如くである.

地下 1m 深さの温度並びに放射能を測定す るために直径2cm~3cm の鋼鉄の棒を地表か ら 1m の深さまで打込んだ。棒を打込む際に 石にあたって深さ1mまで達しない地点や,棒

1g. I Atmospheric Temperatures at Noo October 4 - 21, 1955

Fig. 2. Sketch map of Misasa hot spring area, showing the locations for experiments (marked by x).

を打込んであけた穴にすぐに水がたまる地点 は避けた。測定するためにえらんだ地点及び その近くの地形はFig.2の如くである。

測定に当っては、地面に穴をあけて後直 ちに Fig.3に示す様に長さ約1.1m,内径約 6mmのアルミニウム製又は真鍮製の中空パ イプを穴に差込んでから板及び土砂でふたを し、パイプの上部にはゴム管をはめてピンチ コックでおさえて約3時間放置した。そうし て穴の中の気体の放射能を後述する方法で測 定し、続いて地表下1mの温度を測定した。

(a) 温 度

地中気体の放射能を測定するための Fig. 5 の操作((b)放射能の項参照)がすんだら直 ちに寒暖計をくさりで地表面下 1m につり下 げた.寒暖計には留点寒暖計を用い Fig. 4に 示す様に太いゴム管で先端を保護した.寒暖

Fig. 3.

計を差込んでから穴を石で簡単にふたをして 外部からの影響をたち、10分後に寒暖計の目 盛りを読んだ。寒暖計の読みと実際の温度と の差はあまり大きくないものと思われる³⁾.

(b) 放射能

初めに 620 cc を入れることが出来るガラス びんを用意してこれに水を満し,前に地中に 差込んでおいたアルミニウム中空棒又は真 鍮中空棒とゴム管をとおしてつなぎ,ピンチ コックをあけて水を地中の気体と置換す る⁴⁾.

気体をガラスびんにとってから直ちにこの ガラスびんをオートラジオグラフ乾板を入れ て密封しておいたブリキカンと乾燥剤を入れ たびんを通してFig.5の様につなぐ,即ち初 田氏の方法⁴⁾の電離槽のかわりにオートラジ オグラフ乾板を入れたカンを用いただけであ る、Fig.5の様につなぐ場合には噴霧器の網 のかかった部分(ガス溜め)をつぶして空気 を追出しておいて、つないでから5分間噴霧 器のふいごを動かしてガラスびんの中の気体 を充分に全体にゆきわたらせ、5分間放置後に 再びカンの中に空気が入らない様に密封して おいて、24時間後にカンをあけてオートラジ オグラフ乾板を現像した。用いたオートラジ オグラフ乾板は富士ET-2E, コンタクト型, 乳剤の厚さ15μで、これを4分の1の大き さに切ってカンの中に入れ, 噴霧器及び乾燥 剤を入れた器とつなぐ部分のゴム管はピンチ コックでカン中の気体をとめ、カンとそのふ たとの間は真空用コンパウンドで密封した. カンはFig.6に示される。これらは京都大学 の早瀬一一氏がお貸し下さったものである。

乾板の現像はイルフォード D-19⁵, を用い 20°C で 15分間,定着はフジーフィックス で 15分間行い40分間流水で水洗して乾燥した. この乾板上に記録された a線 の飛 跡の 数 を 280倍の顕微鏡を用いて数えた.

Fig. 6.

■ 測 定 結 果

(a) 温 度

直射日光があたった時には地表下 lmよりも穴の外の方が温度が高く なり、留点寒暖計で地表下 1m の温 度を測ることが出来なかった.測定 結果をFig.7に示す.この図の中の 曲線は **№ 考察**にもとづくものであ り、図中の数字は温度(摂氏度)を 示す.

(b) 放射能

現像されたオートラジオグラフ乾 板上にある α 線の飛跡の数を数えた 結果は Fig.8に示されているが,示 されている数字には放射能の強さを あらわす様な意味はなく,地表より 地表下 1m 迄に含まれている気体が 有する α 放射能の強さのオーダーの 相対的比較にすぎない.

Ⅳ 考 察

Fig.7 において20°C, 25°C, 30°C

Fig. 7. Underground temperature distribution. Figures give the temperatures in centigrade at 1m depth.

58

Fig. 8. Radioactivities at 1m depth. Figures give $T\alpha$ (numbers of α -tracks per sec. -cm²).

の等温線を温泉の湧出口並びにその温度も考 慮して書けば同図に示されている曲線の様に なる.即ち,地表下 1m の温度分布から考え れば三徳川(三朝川)南側のいわゆる三朝区 と川の北側の山田区とでは温度の中心が互に 別々にあり,両者の中間部の三朝橋附近の温 度は低く,川の北側にある岩崎旅館の附近は 温度分布からは三朝区に入れた方がよいと考 えられる.

三朝区に於ては地表下 1m の温度の最高点 は地蔵尊 附 近(温泉研究所分室附近)にあ り、山田区に於ては桶屋旅館附近にあるもの と思われる.株湯附近で地表下 1m の温度分 布は今回の測定では不明であった。

Fig. 7 の25°Cの等温線に着目すればその線 の内側で温泉はすべて自然湧出しており,外 側で温泉が自然湧出しているものは,三朝区 では御茶屋旅館の湯と岩崎旅館の湯のみであ り,山田区では石湯とヒスイの湯(温泉の湧 出に二つあり一つは自然湧出,他の一つはボ ーリングを行ってその穴から自然湧出してい る)のみである.又,20°Cの等温線を見る とその曲線の内側,25°Cの等温線の外側で は温泉はボーリングを行って自然湧出又はポ ンプくみ上げであり,20°Cの等温線の外側で 温泉を出しているのは万翠楼の湯と厚生寮の

Fig. 9. Estimated underground temperatures.

湯のみでいずれもポンプを用いている.湯谷 の湯はボーリングを行って自然湧出している が温度が低く(約35℃)利用されていない.

若し地表下 1m の温度がもつと深い処の温 度にもとづくものであるとすれば,不確実な がら記録の残っている温泉を出すために行っ たボーリングの記録と,測定を行った地表下 1m の温度分布から考察しておよそ 三徳 川 (三朝川)に沿った線で切って断面図をつくれ ば,地下の温度分布は Fig.9のようになる.

放射能測定では人為的に出来るだけ同じ条 件になるようにして行ったが,放射能の源で あるラドン・トロンの量は日に依る変動が大 きい⁶⁾のでオートラジオグラフ乾板に記録さ れたα線の飛跡の数から測定した全地域の 放射能の強さを比較して論ずることは出来な い.ただ山田区の方が三朝区よりも概して放 射能が強いのは、山田区の方が三朝区よりも 地表下の温度が全般的に高いので地下のラド ン・トロンが逃げやすいためであろうと思わ れる.

原稿を見て下さった坪井誠太郎教授,測定するた めに種々の器具をお貨し下さった早瀬一一氏,測 定を手伝って下さった麻田斎氏に感謝する.

₩文 献

- 梅本春次:鳥取県三朝温泉の地球化学的研究(第1~第5報),日化,73,756~758, 798~802,859~861(昭27);同,日化,74,94~96(昭27).
- 2) 岡大温研報1~17号.
- 3) 初田甚一郎: 温泉の物理探査, 岡大温研報, 18, 11 (昭32).
- Hatuda, Z.: Radioactive Method for Geological Exploration, Coll. Sci. Univ. Kyoto, Mem., Ser. B, XXI, 231~271 (1954).
- Yagoda, H.: Radioactive Measurements with Nuclear Emulsions, John Wiley & Sons, Inc., New York, (1949).
- 6) 梅本春次:前出.
- 附 近時三朝橋のすぐ近くで2ヶ所(いずれも Fig. 7の20°C の等温線の外側にある) ボーリング を行って温泉を出すことが出来たが、両方とも他に比べて非常に深くまでボーリングを行い、 その深さは約100mである.

On the Underground Temperatures and Radioactivities at One Meter Depth in the Misasa Hot Spring Area

Tokuzo SOMA

Abstract

Methods and Results of Measurements: — A stick of steel was driven into the ground down to one meter depth, and a narrow pipe of aluminum or brass, closed at the upper end, was inserted and the hole covered by a board and earth. (See Fig. 3.) In Fig. 2 the locations for the experiments are shown by x. Fig. 1 gives the atmospheric temperatures at noon, October4-21,1955, when the experiments were carried out.

About three hours after the above setting had been done, the gas in the hole was replaced by a bottle of water, and was collected, by driving sprayer for five minutes with apparatus as shown in Fig. 5, in a can in which an autoradiographic plate was set. (See Fig. 6.) The temperature in the hole was read by means of a maximum thermometer hung in the hole for ten minutes at one meter depth. Fig. 7 shows the distribution of temperatures at one meter depth thus observed.

Exactly twenty four hours after the above setting, the autoradiographic plate in the can (a quarter sized Fuji ET-2E plate, 15μ thick, for contact method) was developed. For developing, the plate was immersed in Ilford D-19 for fifteen minutes, then fixed with Fuji-fix for fifteen minutes, washed with running water for forty minutes, and dried. Then those autoradiographic plate was examined under the microscope of magnification $\times 280$, to count the number of tracks of α -particles. The results obtained are shown in Fig. 8.

Underground Temperature Distribution:— On the basis of the distribution of temperatures at one meter depth (Fig. 7) and of other available boring data, the distribution of undergound temperatures is estimated as shown in Fig. 9 (vertical section along the Misasa river).