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Introduction. The differentiable classification theory of C*® stable
map germs of (R”.0) into (R”.0) has been developed in [7]. However,
very little is known about topological invariants for the topological classi-
fication of C= stable map germs in dimensions # > p.

In this paper we will define the i-homological multiplicity of a C*
map germ for every nonnegative integer / which is a topological invariant
for C* map germs. In dimensions # < p J. Damon and A. Galligo [3]
have defined the real multiplicity for a C* map germ. The 0-homological
multiplicity turns out to coincide with the real multiplicity for C* stable
map germs. By using the real multiplicity J. Damon has shown that the
‘kernel rank kr(f) of a C*= stable map germ which is the dimension of
Ker(df) at the origin is a topological invariant when # < p ([1, Theorem
3]). As an application of the homological multiplicities we will give
another proof of the following theorem which is a part of [2, Theorem 2].

Theorem ([2]). For C= stable map germs f:(R2.0) - (R”.0) the
kernel rank kr(f) is a topological invariant in dimensions n > p.

Let f be a C* map of a differentiable manifold N into a differentiable
manifold P. Let S‘(¥) denote the set of all points x of N such that the
dimension of Ker(dfyx) is i.

The following is a consequence of Theorem.

Corollary. Let f. g: N—— P denote proper C= stable maps. If f
is topologically equivalent to g, then Si(f) is homeomorphic to Si(g).

We will give preliminaries and notations in Section 1 and define the
homological multiplicities of C* map germs in Section 2. In Section 3 we
will show by using the normal forms of C* stable map germs that in
dimensions # = p the homological multiplicities distinguish the topological
type of a C® stable map germ with kernel rank #—p from that of a C®
stable map germ with kernel rank n—p+1. This is the first step of the
induction in the proof of the above theorem in Section 4.

All manifolds will be paracompact Hausdorff and C* manifolds.
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After the first draft of the paper was written, the author was informed
of the reference [2] by S.Izumiva.

1. Preliminaries. We consider C® map germs f: (Nx) — (Py)
which are germs of differentiable maps from a manifold N into a manifold
P with f(x)=y. Two C® map germs f:(Nx)— (Py). g:(N'x)—
(P'y) are called topologically equivalent if there exist germs of homeo-
morphisms 4: (N.x)— (N x") and £ :(Py)— (P"y") such that two C*
map germs kof and gok are equal. Let C denote a certain class of C=
map germs. An invariant associated to a C® map germ is called a
topological invariant for C if for any two topologically equivalent C*
map germs of C, their invariants are equal.

Let x be a point of a manifold V. Let X and Y be subsets of N
which are contained in neighbourhoods U/ and V of x respectively. Then
X and Y are called equivalent at the point x when there exists a
neighbourhood W of x such that WC UN Vand XNW=Y NW. For
a subset X and a point x of N, we define the set germ of X at a point x,
denoted by X, as the equivalence class of a subset X at x. We consider
another set germ Y, for a manifold M, its subset Y and a point v. We
will also say that two set germs Xx and Y, are topologically equivalent
if there is a germ of a homeomorphism of N into M with source x and
target ¥ such that X is mapped onto Y near x.

Next we give an example of a set germ associated to a C* map germ
F:(Nx)— (Py). Let f': U— P be a representative of /. We define
Si(F) to be the set of all points @ of U such that the dimension of Ker(dfz)
is 7. It is clear that the set germ Si(f)x depends only on the C* map
germ f. Therefore we denote it by S¥(f)x. Let J(N.P) denote the space
of ljets. Let 3Y(N.P) denote the set of all elements z of J'(N.P) whose
kernel rank of a representative map germ is 7 (see [6]). Then by the
definition of Si(f) we have

Sy = G UECUP)).

We will say that a C* map germ f: (N.x)}) — (P.y) is transverse to 2N, P)
at a point x if a representative 1-jet j!(f") is transverse to 2 U.,P) at a
point x. This definition does not depend on a choice of a representative
f. By a standard argument in differential topology we have the following
lemma.

Lemma 1.1. Let F:(Nx)— (Py) be a C map germ whose kernel
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rank at x is . If fis transverse to ZHN,P) at x, then the set germ
Si(f)x is not empty for max(0, n—p)<j< L

Remark 1.2. We remark that a C* stable map germ f:(Nx)—
(P.y) is transverse to X ‘(N.P) at x. This will be shown easily, for
example, by [7. Proposition 1.8]. ‘

Next we recall the construction of the normal forms of C* stable map
germs in [7]. In the paper we will only need the normal forms of C*
stable map germs with kernel rank #—p+1 for # = p. Let R[[xp.**.xn]]
denote the ring of formal power series in indeterminates xp.-:-.x» and let
m denote its unique maximal ideal. Let g be a polynomial in xp,** . Xn.
Let ¢¥(¢) denote the ideal of m generated by d¢/oxp.--*,0q/0x, and q. We
put

¢ = c(g) = dim{m/¢(q)).

Then we can choose a set of ¢ elements of m, #,-*-,v¢c such that their
canonical images form a basis of the vector space m/¢¥(g). Suppose that
¢ < r and every u; is a polynomial. Define a C* map germ f:(R"0)
— (R”0) with £ = (fi,--.fp) as follows.

X 0<i<p-1)
* i = < .
) s q+j§x;vj (i = p).
Then f becomes a C* stable map germ and every C* stable map germ
with rank p—1 at the origin is written as above (see [7, Theorem 5.10]).

2. The homological multiplicities. Let f:(R".0)— (R”0) be a C*
map germ. Let f :U—— R” be a representative of f defined in a
neighbourhood U of the origin. For any neighbourhood V of the origin
in U we define »m;(f. V) to be the maximum of all ranks of HA{(f) a)
N V: Z) where « is a point of R?. If no such maximum exists, then we
put m(f V)= oo. We define (/") to be the minimum of all (", V)
where V is any neighbourhood of the origin in U. Similarly m{f’) may
be . Consider the restriction map f | v: ¥V —— R?” for a neighbourhood
V of the origin in /.. Then we have

m{(f | v) = m(f).

Definition 2.1. For a C* map germ f:(R".0)— (R*0) we define
the i-homological muldtiplicity m(f) as

mi(f) = max{m:f)| f is a representative of f}
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Remark 2.2. J.Damon and A.Galligo [3] have also defined the real
multiplicity m(f) of a C* map germ in dimensions n < p by considering
the number of points of (/)" (@) N V. If n < p and the real multiplicity
is finite, then the 0-homological multiplicity #0(f) coincides with m(f).
Especially both of multiplicities are equal for a C* stable map germ, since
it is shown in [3, Proposition 2.4] that m(f) is finite for a C* stable map
germ f. However it is easily seen that those multiplicities are not equal
in general.

Lemma 2.3. The i-homological wudtiplicity m(f) is a topological
invariant for C* map geims f.

Proof. Let two C* map germs f and g be topologically equivalent.
Then there exist their representatives f :U——Wand g : U — W
homeomorphisms /: U—— U and k:W—— W such that the following
diagram commutes :

’

U——W
J h , l k
, g
% W
Then for any V C U and v € W we have
WU M) N V) = (g) k() N A(V).
This shows that m;(f") = m:g"). Hence we have m:{f) = mg).

Lemma 24. Let f:(R".0) — (R”0) be a C* map germ with
rank min(n,p). Then
1 =0,
0 otherwise.

m{(f) = {

Proof Let f: U—— R, be any representative of £ Then there
exists a neighbourhood V of the origin in U where there exist local
coordinates x;,**, x». null at 0 and y..-*-.y¥». null at 0 such that

{yi°f = X 1 <7< min(n,p)
vief =0, n+l1<i<pwhen n<p

First we suppose that # > p. Then for any neighbourhood W of the origin
in V, we can take an open e-ball D. with center 0 in W such that
(F) @) N De is either diffeomorphic to an open ball of dimension n—p
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or empty. Therefore we have that mo(f | 5.) =1 and m,(f"| 5.) = 0 for
/> 0. On the other hand we have m;(f'| 5,) = m:(f). Since mf) is
the maximum of all m;(f) where f/ is a representative of 7, we obtain
that wo(f) =1 and mi{f) = 0 for i > 0. The proof for the case p = n
is similar.

3. C= stable map germs and homological multiplicities. In this sec-
tion we will show that the homological multiplicities distinguish the
topological type of a C~ map germ with rank p from that of a C*® stable
map germ with rank p—1 when »n > p.

Lemma 3.1. Let f:(R"0)—— (R.0) be the C= function germ
given by xt+ - +xF—(xi 4+ - +x32). Then

. 1 if r>1
mr(f) = {9 l{, : —
and
1 if n—r >1
nn-r—{f) = {2 if n—r=1.

Proof. For ¢ >0 and 6 > 0. we let
Ve = {(x1.-x7) | xf+ - +x2 < €%}
Us = {(.\‘r+1,"',xn) | x',%,,l—i— _;.x}2l < 82}_

We consider the function x?+ -+ +x2—(x2-,+ - +x2) on V.X Us which
is denotedoby /. Then for any a with 0 < a<e, (f)'(a) is diffeomorphic
to S"T-!x D""" by the following map

p: Sr—le)n—r_, VEX L’é’
defined by
.D((xlf",xr)‘ (—‘\'r+l-‘".—\'n)) = (\/E'*' b2(1¥$+1+ +x121)(x1.'“,xr). b(xr+1~"'.«‘~'n))

where b is min(8. ve?—a®). Let W be any neighbourhood of the origin in
VeX Us. Then there exist € > 0 and & > 0 such that VeX Us C W. For
any @ with 0 < ¢ < € we have

VA if »>1

Heel () 1(@) N (VexUs%Z)z{zeBz it r=1

and the inclusion

)TN (Vex Us)— (f) @) N W
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induces the injective homomorphism
bt He () Ma) N (Vex Us); Z)— Heo\(F) W) N W Z),

We can also show that () '(a’) N (VeX Us) is empty when &' > ¢ and
homeomorphic to S™! when @ = &. If ¢ =0, then it is contractible.

For a negative real number @, we have similarly that (f)~'() is
diffeomorphic to S"7"'X D" when 0 < |a| < 8, to S"" "' when lal =6 and
empty otherwise. Thus we have shown that for any representative f
there exists a restriction f” with m,,(#") =1 if » > 1 and m,,(f") = 2
if #=1. This shows the lemma for m,_,(f). The case of mn_r_(f) can
be shown similarly.

Lemma 3.2. Let U be a neighbourhood of the origin of R™' and
f:U—— R® be the C° map given by

o xni) = (xnar, x4+ - +xd—xdo— - —xBoi+xE+H xnrix0).
Then
ms(f) =1, mp-s1(f) =1 and mo(f)=3 if n=1.

Proof. We consider the range of (a,b) where the equation x3+ax,+ b
= (0 has three real roots #(a,0), r2(a.b) and »s(a.b) with »(a,b) < (a.b)
< 73(a,b). Let V be any neighbourhood of the origin U/, We will show
that there exists such a that the ranks of H () '((a,0) N V:Z) and
Hys1i((f)H(a,0)) N V; Z) are greater than 0. Then we have

ms(F, V) =1 and mp_s(f, V) =1,

which is what we want by the definition of m;(#"). In fact, if we take a

“sufficiently small negative number «, then we can show that the set con-
sisting of (x1, **, Xn+1) € V such that xs., =+ =25, =0, Xns1 = @ and
Xn is either #(a, xt+ -+ +x2) or 7s(a, 23+ -+ +x2) is homeomorphic to
Ss. It is easily seen that the inclusion map

1: 85— () (aO) NV
induces the injective homomorphism
ix 1 Ho(S%; Z)— H((f)'((a.0)) N V; Z).

Hence we have ms(f) = 1.

For m,-s—1(f") we consider similarly the set consisting of (x), =, Xn+1)
€ V such that x; = =xs=0, Xps1=a and x, is either »(a,
—x341— = —x%-1) or rfa, —xka— -~ —x%.1). Then we have that it is
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homeomorphic to S*757! and that the inclusion map
(2875 — () (a0 NV
induces the injective homomorphism
in: Huos1(S"571 1 Z)— Hus o ((F) (2 0)) NV Z).

Thus we have mu_s_1(f) = 1. The proof for the case » =1 is clear.

Proposition 3.4. Let f, g:(R"0)— (R”0) (n = p) denote C stable
map germs with ranks p—1 and p respectively. Then f is not topologically
equivalent to g.

Proof. We will show that there exists an integer 7 such that #2,(f)
and m(g) are different. The homological multiplicity m.(g) is given in
Lemma 2.4. We can choose a representative f": U — R? of f which is
written as (*) in Section 1. First we remark that () '(a1.-.ap) is
homeomorphic to (/5)"!(a») N U. where U, denotes the subset of U with
X = a1 Xp_1 = ap-1. Let » denote the rank of the Hessian of g(xp,"**.xn).
Then by the splitting lemma (see, for example, [4,(4.3)]) we may suppose
that in a neighbourhood V of the origin in U/, g is written as follows

. — 2 -2 . .2 .
q(xpxn) = X2+ = Fxpis—Xbese1— 0 —Xber1+ @ (XperXn),

where s < r—1, ¢’ € m™® and m’ is the ideal generated by Xpir,"** . Xn.
If ¥ = n—p+1, then the number ¢ is zero. It follows from Lemma
3.1 and the above remark that

malf) = {1 fs>0

2 ifs=0
1if n—p—s>1

Hln—p—s—l(f) = {2 if n—p—s=1

Next we consider the case of » < n—p+1. Then the module m/¢(q)
is isomorphic to #'/¢¥(q") where ¥(g’) is the ideal generated by ¢’ and
8q'/dxp-r+*,0q /0xn. Then we may choose a set of ¢ elements vy, v In
(*) of Section 1 such that v+, vs are all monomials of degree 2 in '
which span #22 modulo m"® together with 0g"/0xpsr.-**.0q"/ 0% and ves1,**,vc
are other elements of m’. Then the following two cases are possible.
The rank of the Hessian of aiv1+a2v2+ -+ +a.v: is generically either
n—p—r+1or n—p—r for (a..as).

If the rank of the Hessian of ayv,+ - + a,v, is generically n—p—7»+1
for (a1,-**,a:), then in a neighbourhood V of the origin in U the polynomial
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{
q + 21 a:v;
=
is written as

2 -2 2
Xbert o T XBureu— Xbarsu— o0 —XE

under a change of coordinate of (xp+n ', xn). Hence it follows from
Lemma 3.1 and the above remark that

d=1for stu+1>0

) > 7
ms+us1(f) 2 d  where {a’ =2 for s+u+1=0

and
, =1 for n—p—s—u>2
—DeS—u- = i
Mn-p-s-u-2{f) = d’ where {d’ = 2 otherwise.

Now consider the other case. Then ¢’ is not an element of m’¢. Hence
we may suppose by the well known result (see [4.(4.6)]) that
¢ +an+ - +av is written as

. N2 "
XBart oo FXPariu— Xbareus1— —xig+x3

under a change of coordinate of xp+r,"*.xn. Moreover we may take x, as
ves1 in (*) of Section 1. Now we consider fpiy for aue==ap =10
under the coordinate of R™ which is written as

Xpt A xbis—Xbasa1— v —Xbarat g taivit+ o Y awit anaxn
Then by Lemma 3.2 we can verify that
77’1s+u+2(f,) =1 and mn—s—u—D-Z(f’) = 1.

Therefore we have shown the proposition by Lemma 2.3 and Lemma 2.4.

4. A proof of Theorem. In this section we give a sketch of the proof
of Theorem, since Proposition 3.4 enables us to follow the proof of [I,
Theorem 3).

Let X% be the subset of Hom(R” R?) of the linear homomorphisms
with kernel rank 7. We have a bundle homomorphism of constant rank
n—i, h:YIXR"— XX R? defined by

W((fv)) = (ff(V)).
Let X and C denote the bundles Ker(%) and Cok(%) respectively. Then
there is a map ¢ : Hom(K,C) — Hom(R” R”) given by

p((fg)=r+g

where f is an element of ¢ and g an element of Hom(K,C) over f. We
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here identify g with an element of Hom(R" R”) by the composition map

, Drojection g

R’ K C G R”

We can show that ¢ gives a diffeomorphism of a small tubular neighbourhood
Z of the zero-section of Hom(K,C) onto a small neighbourhood of X7 in
Hom(R" R”).

Let S(X) and S(C) denote the associated sphere bundles of X and C
respectively. We consider a Z-action on S(K)XS(C) by mapping (v.v")
onto (—v,—v’") where » € S(K) and v' € S(C) and denote its quotient
space by S(K)X 4,S(C). Let C(S(K)XzS(C)) be the open mapping
cylinder of S(K)X4,S(C) over 2L Let /> max(0, n—p). Then (Zi!
U 2% N ¢(Z) is homeomorphic to C(S(K) X z,S(C)).

Proof of Theorem. The case of n < p has already been treated in
[1]. So we suppose that n = p. We prove the following statement by
induction on ¢: Let f be a C™ stable map germ of kernel rank ;. Then f
is not topologically equivalent to any C* stable map germ of kernel rank
J with 7 < i.

Let i = n—p+1. Then the statement foliows from Proposition 3.4.
Next we suppose that the above statement is true for every 7 with 7 < k
(k> n—p+1). Soppose that a C* stable map germ f of kernel rank % is
topologically equivalent to a C* stable map germ g of kernel rank j with
7 < k. Then there exist representatives /" : Uy—— V, and g : U;—— V,
of f and g respectively and homeomorphisms h:U,— ¥V, and
k: Us—— Vs such that the following diagram commutes :

v—L—v,
h !
P

Since f is a C= stable map germ, we know by Lemma 1.1 that the set
germ S7(f)o is not empty for » < £ Let x be any element of S™(f") with
r < k. Let fx:(Upx)— (V1.f'(x)) be a C* map germ determined by f'.
Similarly we consider a C* map germ gux): (U h(x)) — (Va,g=k(x)).
If x is sufficiently near the origin of R” then both of /x and gux become
C= stable map germs. By the construction fx and giw) are topologically
equivalent. Hence it follows from the assumption of induction that 4(x)
belongs to S7(g’). This shows that the set germ S7(f)o is equivalent to
the set germ S7(g)o for » < k& Hence S7(g)o is not empty. If j < £—1,

Produced by The Berkeley Electronic Press, 1982



Mathematical Journal of Okayama University, Vol. 24 [1982], Iss. 1, Art. 5

34 Y. ANDO

then S#* '(g)y is empty. Therefore we may suppose that j = #—1. By
the above argument we know that S7(f)s is equivalent to S7(g)y for
r < k—1. Hence S* '(f)y U S#(f)o must be equivalent to S*~'(g)o. Since
S*(g)e is a set germ of the differentiable manifold S*"'(g’), we have that

Z, { =dim S*(g)

X k-1 . =
HA{S* (&) ; Z2hoc {() otherwise

(see the definition of H;(%: Zx)we in [1, Section 2]).
Now we consider /' : U—— V for which j'{(f): U— JY (U, V) is
transverse to 2*(U, V) at the origin. When U and V are sufficiently

small neighbourhoods, we may identify J'(U, V) with U X VX Hom(R” R?).

Then we can prove that S*~1(f)¢ U S*(f)s is equivalent to the set germ of
RIX C(S* ' X 4, SP~7+%-1) at 0X (*) where 0 is the origin, (*) a cone point
and, / =dim S*(f)e. It follows from [1, Lemma 3.2] that R‘x C(S%"!
X g, SP77+4-1) is homeomorphic to C(S!(S* !X, SP 7% 1)) where S'
denotes the /fold suspension of S*~!xXS5#-7+4-1 Hence we have that

H;5(S*(f)o U S* Y fos Zahoe = HI(S*1 Xy, SPT22711 7).
It is easily seen that
H\(S* ' X g, SP=m+h=1: 7)) # {0}
for #—1 and p—n+%—1 = 1. This contradicts to the fact that
Hio(S* 1 g)o; Z2)oe = {0},

since /+2 < dim S* ' g)e = (k—1)+(p—n+4,—1)+7+1. This completes
the proof.

Proof of Coroliary. Since f and g are proper C= stable maps, it
follows from [8, Theorem 4.1] that for any point x of N, the germs
fx i (Nx)— (Pf(x)) and gx:(N.x)— (P.g(x)) determined by f and g
are C*= stable map germs respectively. Moreover fx and gx are topologically
equivalent. Hence it follows from Theorem that kr(#) and kr(gx) are
equal. Therefore if #: N— N and k: P—— P are homeomorphisms
such that gek = kof, then % maps Si(f) onto S¥(g). This is what we want.

5. Examples. We consider the special case of Corollary. Let f be a
proper submersion of N into P. If g is a proper C* stable map and
topologically equivalent to #, then it follows from Corollary that g must
be a submersion of N into 2 We now construct such examples. Let X
be an exotic sphere of dimension % (see [5]). By a standard argument
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in differential topology and the A-cobordism theorem (see [9]) we can
prove that 5 X D* is diffeomorphic to 57X D* for a sufficiently large
integer k2. By attaching two copies of XX D* and S? X D* on their
boundaries respectively we obtain a diffeomorphism A : 2 X S*—— S7? X S*%.
Now we consider two projections p;: S?X S* —— S% and p,: X X S —— S*.
Then we have two submersions, pi, psch™!: S?"XS*—— S* Since X is
homeomorphic to S™ (n# = 5). we have that p; and p,=/"! are topologically
equivalent. However they are not differentiably equivalent since the fibre
of p2oh™! is the exotic sphere X.
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