Mathematical Journal of Okayama University

Volume 24, Issue 1 1982 Article 5

JUNE 1982

An application of certain multiplicities of $C\infty$ map germs

Yoshifumi Ando*

Copyright ©1982 by the authors. *Mathematical Journal of Okayama University* is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

^{*}Yamaguchi University

Math. J. Okayama Univ. 24 (1982), 25-35

AN APPLICATION OF CERTAIN MULTIPLICITIES OF C^{∞} MAP GERMS

Dedicated to Professor K. Murata on his 60th birthday

Yoshifumi ANDO

Introduction. The differentiable classification theory of C^{∞} stable map germs of $(\mathbf{R}^n,0)$ into $(\mathbf{R}^p,0)$ has been developed in [7]. However, very little is known about topological invariants for the topological classification of C^{∞} stable map germs in dimensions n > p.

In this paper we will define the *i*-homological multiplicity of a C^{∞} map germ for every nonnegative integer i which is a topological invariant for C^{∞} map germs. In dimensions $n \leq p$ J. Damon and A. Galligo [3] have defined the real multiplicity for a C^{∞} map germ. The 0-homological multiplicity turns out to coincide with the real multiplicity for C^{∞} stable map germs. By using the real multiplicity J. Damon has shown that the kernel rank kr(f) of a C^{∞} stable map germ which is the dimension of Ker(df) at the origin is a topological invariant when $n \leq p$ ([1, Theorem 3]). As an application of the homological multiplicities we will give another proof of the following theorem which is a part of [2, Theorem 2].

Theorem ([2]). For C^{∞} stable map germs $f:(\mathbb{R}^n,0) \to (\mathbb{R}^p,0)$ the kernel rank kr(f) is a topological invariant in dimensions n > p.

Let f be a C^{∞} map of a differentiable manifold N into a differentiable manifold P. Let $S^{i}(f)$ denote the set of all points x of N such that the dimension of $Ker(df_{x})$ is i.

The following is a consequence of Theorem.

Corollary. Let $f, g: N \longrightarrow P$ denote proper C^{∞} stable maps. If f is topologically equivalent to g, then $S^{i}(f)$ is homeomorphic to $S^{i}(g)$.

We will give preliminaries and notations in Section 1 and define the homological multiplicities of C^{∞} map germs in Section 2. In Section 3 we will show by using the normal forms of C^{∞} stable map germs that in dimensions $n \geq p$ the homological multiplicities distinguish the topological type of a C^{∞} stable map germ with kernel rank n-p from that of a C^{∞} stable map germ with kernel rank n-p+1. This is the first step of the induction in the proof of the above theorem in Section 4.

All manifolds will be paracompact Hausdorff and C^{∞} manifolds.

After the first draft of the paper was written, the author was informed of the reference [2] by S.Izumiya.

1. Preliminaries. We consider C^{∞} map germs $f:(N,x)\longrightarrow (P,y)$ which are germs of differentiable maps from a manifold N into a manifold P with f(x)=y. Two C^{∞} map germs $f:(N,x)\longrightarrow (P,y)$, $g:(N',x')\longrightarrow (P',y')$ are called topologically equivalent if there exist germs of homeomorphisms $h:(N,x)\longrightarrow (N',x')$ and $h:(P,y)\longrightarrow (P',y')$ such that two C^{∞} map germs $h\circ f$ and $g\circ h$ are equal. Let C denote a certain class of C^{∞} map germs. An invariant associated to a C^{∞} map germ is called a topological invariant for C if for any two topologically equivalent C^{∞} map germs of C, their invariants are equal.

Let x be a point of a manifold N. Let X and Y be subsets of N which are contained in neighbourhoods U and V of x respectively. Then X and Y are called equivalent at the point x when there exists a neighbourhood W of x such that $W \subset U \cap V$ and $X \cap W = Y \cap W$. For a subset X and a point x of N, we define the set germ of X at a point x, denoted by X_x , as the equivalence class of a subset X at X. We consider another set germ Y_y for a manifold X, its subset X and a point X. We will also say that two set germs X_x and X_y are topologically equivalent if there is a germ of a homeomorphism of X into X with source X and target X such that X is mapped onto X near X.

Next we give an example of a set germ associated to a C^{∞} map germ $f:(N,x)\longrightarrow (P,y)$. Let $f':U\longrightarrow P$ be a representative of f. We define $S^i(f')$ to be the set of all points a of U such that the dimension of $\operatorname{Ker}(df'a)$ is i. It is clear that the set germ $S^i(f)_x$ depends only on the C^{∞} map germ f. Therefore we denote it by $S^i(f)_x$. Let $J^1(N,P)$ denote the space of 1-jets. Let $\sum_i i(N,P)$ denote the set of all elements z of $J^1(N,P)$ whose kernel rank of a representative map germ is i (see [6]). Then by the definition of $S^i(f')$ we have

$$S^{i}(f') = (j^{1}f')^{-1}(\sum_{i} (U,P)).$$

We will say that a C^{∞} map germ $f:(N,x) \to (P,y)$ is transverse to $\sum^{i}(N,P)$ at a point x if a representative 1-jet $j^{1}(f')$ is transverse to $\sum^{i}(U,P)$ at a point x. This definition does not depend on a choice of a representative f'. By a standard argument in differential topology we have the following lemma.

Lemma 1.1. Let $f:(N,x) \longrightarrow (P,y)$ be a C^{∞} map germ whose kernel

rank at x is i. If f is transverse to $\sum_{i=1}^{n} (N_i P)$ at x, then the set germ $S^j(f)_x$ is not empty for $\max(0, n-p) \le j \le i$.

Remark 1.2. We remark that a C^{∞} stable map germ $f:(N,x) \longrightarrow (P,y)$ is transverse to $\sum^{i}(N,P)$ at x. This will be shown easily, for example, by [7. Proposition 1.8].

Next we recall the construction of the normal forms of C^{∞} stable map germs in [7]. In the paper we will only need the normal forms of C^{∞} stable map germs with kernel rank n-p+1 for $n \geq p$. Let $R[[x_p, \dots, x_n]]$ denote the ring of formal power series in indeterminates x_p, \dots, x_n and let m denote its unique maximal ideal. Let q be a polynomial in x_p, \dots, x_n . Let $\psi(q)$ denote the ideal of m generated by $\partial q/\partial x_p, \dots, \partial q/\partial x_n$ and q. We put

$$c = c(q) = \dim(\mathfrak{m}/\psi(q)).$$

Then we can choose a set of c elements of m, v_1, \dots, v_c such that their canonical images form a basis of the vector space $m/\psi(q)$. Suppose that $c \leq r$ and every v_i is a polynomial. Define a C^{∞} map germ $f:(\mathbf{R}^n,0) \longrightarrow (\mathbf{R}^p,0)$ with $f=(f_1,\dots,f_p)$ as follows.

(*)
$$f_i = \begin{cases} x_i & (0 \le i \le p-1) \\ q + \sum_{j=1}^{c} x_j v_j & (i = p). \end{cases}$$

Then f becomes a C^{∞} stable map germ and every C^{∞} stable map germ with rank p-1 at the origin is written as above (see [7, Theorem 5.10]).

2. The homological multiplicities. Let $f:(R^n,0) \longrightarrow (R^p,0)$ be a C^∞ map germ. Let $f':U \longrightarrow R^p$ be a representative of f defined in a neighbourhood U of the origin. For any neighbourhood V of the origin in U we define $m_i(f',V)$ to be the maximum of all ranks of $H_i((f')^{-1}(a) \cap V; \mathbb{Z})$ where a is a point of R^p . If no such maximum exists, then we put $m_i(f',V)=\infty$. We define $m_i(f')$ to be the minimum of all $m_i(f',V)$ where V is any neighbourhood of the origin in U. Similarly $m_i(f')$ may be ∞ . Consider the restriction map $f'|_V:V \longrightarrow R^p$ for a neighbourhood V of the origin in U. Then we have

$$m_i(f' \mid v) \geq m_i(f')$$
.

Definition 2.1. For a C^{∞} map germ $f:(\mathbf{R}^{n},0)\longrightarrow (\mathbf{R}^{p},0)$ we define the *i-homological multiplicity* $m_{i}(f)$ as

$$m_i(f) = \max\{m_i(f') \mid f' \text{ is a representative of } f\}$$

Remark 2.2. J.Damon and A.Galligo [3] have also defined the real multiplicity m(f) of a C^{∞} map germ in dimensions $n \leq p$ by considering the number of points of $(f')^{-1}(a) \cap V$. If $n \leq p$ and the real multiplicity is finite, then the 0-homological multiplicity $m_0(f)$ coincides with m(f). Especially both of multiplicities are equal for a C^{∞} stable map germ, since it is shown in [3, Proposition 2.4] that m(f) is finite for a C^{∞} stable map germ f. However it is easily seen that those multiplicities are not equal in general.

Lemma 2.3. The i-homological multiplicity $m_i(f)$ is a topological invariant for C^{∞} map germs f.

Proof. Let two C^{∞} map germs f and g be topologically equivalent. Then there exist their representatives $f':U\longrightarrow W$ and $g':U'\longrightarrow W'$ homeomorphisms $h:U\longrightarrow U'$ and $k:W\longrightarrow W'$ such that the following diagram commutes:

$$U \xrightarrow{f'} W$$

$$\downarrow h \qquad \downarrow k$$

$$U' \xrightarrow{g'} W'$$

Then for any $V \subset U$ and $y \in W$ we have

$$h((f')^{-1}(y) \cap V) = (g')^{-1}(h(y)) \cap h(V).$$

This shows that $m_i(f') = m_i(g')$. Hence we have $m_i(f) = m_i(g)$.

Lemma 2.4. Let $f:(\mathbf{R}^n,0) \longrightarrow (\mathbf{R}^p,0)$ be a C^{∞} map germ with rank $\min(n,p)$. Then

$$m_i(f) = \begin{cases} 1 & if \ i = 0, \\ 0 & otherwise. \end{cases}$$

Proof. Let $f': U \longrightarrow \mathbf{R}_P$ be any representative of f. Then there exists a neighbourhood V of the origin in U where there exist local coordinates x_1, \dots, x_n , null at 0 and y_1, \dots, y_p , null at 0 such that

$$\begin{cases} y_i \circ f = x_i, & 1 \le i \le \min(n, p) \\ y_i \circ f = 0, & n+1 \le i \le p \text{ when } n < p. \end{cases}$$

First we suppose that n > p. Then for any neighbourhood W of the origin in V, we can take an open ε -ball $\mathring{D}_{\varepsilon}$ with center 0 in W such that $(f')^{-1}(a) \cap \mathring{D}_{\varepsilon}$ is either diffeomorphic to an open ball of dimension n-p

or empty. Therefore we have that $m_0(f' \mid b_{\epsilon}) = 1$ and $m_i(f' \mid b_{\epsilon}) = 0$ for i > 0. On the other hand we have $m_i(f' \mid b_{\epsilon}) \ge m_i(f')$. Since $m_i(f)$ is the maximum of all $m_i(f')$ where f' is a representative of f, we obtain that $m_0(f) = 1$ and $m_i(f) = 0$ for i > 0. The proof for the case $p \ge n$ is similar.

3. C^{∞} stable map germs and homological multiplicities. In this section we will show that the homological multiplicities distinguish the topological type of a C^{∞} map germ with rank p from that of a C^{∞} stable map germ with rank p-1 when $n \geq p$.

Lemma 3.1. Let $f:(\mathbf{R}^n,0) \longrightarrow (\mathbf{R},0)$ be the C^{∞} function germ given by $x_1^2 + \cdots + x_r^2 - (x_{r-1}^2 + \cdots + x_n^2)$. Then

$$m_{r-1}(f) = \begin{cases} 1 & \text{if } r > 1 \\ 2 & \text{if } r = 1 \end{cases}$$

and

$$m_{n-r-1}(f) = \begin{cases} 1 & \text{if } n-r > 1\\ 2 & \text{if } n-r = 1. \end{cases}$$

Proof. For $\varepsilon > 0$ and $\delta > 0$, we let

$$V_{\varepsilon} = \{ (x_1, \dots, x_r) \mid x_1^2 + \dots + x_r^2 < \varepsilon^2 \}$$

$$U_{\delta} = \{ (x_{r+1}, \dots, x_n) \mid x_{r+1}^2 + \dots + x_n^2 < \delta^2 \}.$$

We consider the function $x_1^2 + \cdots + x_r^2 - (x_{r-1}^2 + \cdots + x_n^2)$ on $V_{\varepsilon} \times U_{\delta}$ which is denoted by f'. Then for any a with $0 < a < \varepsilon$, $(f')^{-1}(a)$ is diffeomorphic to $S^{r-1} \times \mathring{D}^{n-r}$ by the following map

$$p: s^{r-1} \times \mathring{D}^{n-r} \longrightarrow V_{\varepsilon} \times U_{\delta}$$

defined by

$$p((x_1,\dots,x_r),(x_{r+1},\dots,x_n)) = (\sqrt{a+b^2(x_{r+1}^2+\dots+x_n^2)}(x_1,\dots,x_r),b(x_{r+1},\dots,x_n))$$

where b is $\min(\delta, \sqrt{\varepsilon^2 - a^2})$. Let W be any neighbourhood of the origin in $V_{\varepsilon} \times U_{\delta}$. Then there exist $\varepsilon' > 0$ and $\delta' > 0$ such that $V_{\varepsilon'} \times U_{\delta'} \subset W$. For any a' with $0 < a' < \varepsilon'$ we have

$$H_{r-1}((f')^{-1}(a') \cap (V_{\epsilon} \times U_{\delta}); \mathbf{Z}) = \begin{cases} \mathbf{Z} & \text{if } r > 1 \\ \mathbf{Z} \oplus \mathbf{Z} & \text{if } r = 1 \end{cases}$$

and the inclusion

$$i:(f')^{-1}\cap (V_{\varepsilon'}\times U_{\delta'})\longrightarrow (f')^{-1}(a')\cap W$$

induces the injective homomorphism

$$i_*: H_{r-1}((f')^{-1}(a') \cap (V_{\varepsilon} \times U_{\varepsilon}); \mathbb{Z}) \longrightarrow H_{r-1}((f')^{-1}(a') \cap W; \mathbb{Z}).$$

We can also show that $(f')^{-1}(a') \cap (V_{\varepsilon} \times U_{\delta})$ is empty when $a' > \varepsilon'$ and homeomorphic to S^{r-1} when $a' = \varepsilon'$. If a' = 0, then it is contractible.

For a negative real number a, we have similarly that $(f')^{-1}(a')$ is diffeomorphic to $S^{n-r-1} \times \mathring{D}^r$ when $0 < |a| < \delta$, to S^{n-r-1} when $|a| = \delta$ and empty otherwise. Thus we have shown that for any representative f' there exists a restriction f'' with $m_{r-1}(f'') = 1$ if r > 1 and $m_{r-1}(f'') = 2$ if r = 1. This shows the lemma for $m_{r-1}(f)$. The case of $m_{n-r-1}(f)$ can be shown similarly.

Lemma 3.2. Let U be a neighbourhood of the origin of \mathbb{R}^{n+1} and $f': U \longrightarrow \mathbb{R}^2$ be the C^{∞} map given by

$$f'(x,\dots,x_{n+1})=(x_{n+1},\,x_1^2+\dots+x_s^2-x_{s+1}^2-\dots-x_{n-1}^2+x_n^2+x_{n+1}x_n).$$

Then

$$m_s(f') \ge 1$$
, $m_{n-s-1}(f') \ge 1$ and $m_0(f') = 3$ if $n = 1$.

Proof. We consider the range of (a,b) where the equation $x_n^3 + ax_n + b = 0$ has three real roots $r_1(a,b)$, $r_2(a,b)$ and $r_3(a,b)$ with $r_1(a,b) \le r_2(a,b) \le r_3(a,b)$. Let V be any neighbourhood of the origin U. We will show that there exists such a that the ranks of $H_s((f')^{-1}((a,0) \cap V; \mathbb{Z}))$ and $H_{n-s-1}((f')^{-1}((a,0)) \cap V; \mathbb{Z})$ are greater than 0. Then we have

$$m_s(f', V) \ge 1$$
 and $m_{n-s-1}(f', V) \ge 1$,

which is what we want by the definition of $m_i(f')$. In fact, if we take a sufficiently small negative number a, then we can show that the set consisting of $(x_1, \dots, x_{n+1}) \in V$ such that $x_{s+1} = \dots = x_{n-1} = 0$, $x_{n+1} = a$ and x_n is either $r_2(a, x_1^2 + \dots + x_s^2)$ or $r_3(a, x_1^2 + \dots + x_s^2)$ is homeomorphic to S^s . It is easily seen that the inclusion map

$$i: S^s \longrightarrow (f')^{-1}((a,0)) \cap V$$

induces the injective homomorphism

$$i_*: H_s(S^s; \mathbf{Z}) \longrightarrow H_s((f')^{-1}((a,0)) \cap V; \mathbf{Z}).$$

Hence we have $m_s(f') \ge 1$.

For $m_{n-s-1}(f')$ we consider similarly the set consisting of (x_1, \dots, x_{n+1}) $\in V$ such that $x_1 = \dots = x_s = 0$, $x_{n+1} = a$ and x_n is either $r_1(a, -x_{s+1}^2 - \dots - x_{n-1}^2)$ or $r_2(a, -x_{s+1}^2 - \dots - x_{n-1}^2)$. Then we have that it is

31

homeomorphic to S^{n-s-1} and that the inclusion map

$$i: S^{n-s-1} \longrightarrow (f')^{-1}((a,0)) \cap V$$

induces the injective homomorphism

$$i_*: H_{n-s-1}(S^{n-s-1}; \mathbf{Z}) \longrightarrow H_{n-s-1}((f')^{-1}((a,0)) \cap V; \mathbf{Z}).$$

Thus we have $m_{n-s-1}(f') \ge 1$. The proof for the case n = 1 is clear.

Proposition 3.4. Let $f, g: (\mathbb{R}^n, 0) \longrightarrow (\mathbb{R}^p, 0)$ $(n \ge p)$ denote \mathbb{C}^{∞} stable map germs with ranks p-1 and p respectively. Then f is not topologically equivalent to g.

Proof. We will show that there exists an integer i such that $m_i(f)$ and $m_i(g)$ are different. The homological multiplicity $m_i(g)$ is given in Lemma 2.4. We can choose a representative $f': U \longrightarrow \mathbf{R}^p$ of f which is written as (*) in Section 1. First we remark that $(f')^{-1}(a_1, \dots, a_p)$ is homeomorphic to $(f_P')^{-1}(a_P) \cap U_a$ where U_a denotes the subset of U with $x_1 = a_1, \dots, x_{p-1} = a_{p-1}$. Let r denote the rank of the Hessian of $q(x_p, \dots, x_n)$. Then by the splitting lemma (see, for example, [4,(4.3)]) we may suppose that in a neighbourhood V of the origin in U, q is written as follows

$$q(x_p, \dots, x_n) = x_p^2 + \dots + x_{p+s}^2 - x_{p+s+1}^2 - \dots - x_{p+r-1}^2 + q'(x_{p+r}, \dots, x_n),$$

where $s \le r-1$, $q' \in m'^3$ and m' is the ideal generated by $\dot{x}_{p+r}, \dots, x_n$.

If r = n - p + 1, then the number c is zero. It follows from Lemma 3.1 and the above remark that

$$m_s(f) = \begin{cases} 1 & \text{if } s > 0 \\ 2 & \text{if } s = 0 \end{cases}$$

$$m_{n-p-s-1}(f) = \begin{cases} 1 & \text{if } n-p-s > 1 \\ 2 & \text{if } n-p-s = 1. \end{cases}$$

Next we consider the case of r < n-p+1. Then the module $m/\psi(q)$ is isomorphic to $m'/\psi(q')$ where $\psi(q')$ is the ideal generated by q' and $\partial q'/\partial x_{p-r}, \cdots, \partial q'/\partial x_n$. Then we may choose a set of c elements v_1, \cdots, v_c in (*) of Section 1 such that v_1, \cdots, v_t are all monomials of degree 2 in m' which span m'^2 modulo m'^3 together with $\partial q'/\partial x_{p+r}, \cdots, \partial q'/\partial x_n$ and v_{t+1}, \cdots, v_c are other elements of m'. Then the following two cases are possible. The rank of the Hessian of $a_1v_1+a_2v_2+\cdots+a_tv_t$ is generically either n-p-r+1 or n-p-r for (a,\cdots,a_t) .

If the rank of the Hessian of $a_1v_1 + \cdots + a_tv_t$ is generically n-p-r+1 for (a_1, \dots, a_t) , then in a neighbourhood V of the origin in U the polynomial

$$q' + \sum_{i=1}^{l} a_i v_i$$

is written as

$$x_{p+r}^2 + \cdots + x_{p+r+u}^2 - x_{p+r+u+1}^2 - \cdots - x_n^2$$

under a change of coordinate of (x_{P+r}, \dots, x_n) . Hence it follows from Lemma 3.1 and the above remark that

$$m_{s+u+1}(f) \ge d$$
 where
$$\begin{cases} d = 1 \text{ for } s+u+1 > 0\\ d = 2 \text{ for } s+u+1 = 0 \end{cases}$$

and

$$m_{n-p-s-u-2}(f) \ge d'$$
 where
$$\begin{cases} d' = 1 \text{ for } n-p-s-u > 2\\ d' = 2 \text{ otherwise.} \end{cases}$$

Now consider the other case. Then q' is not an element of m'^4 . Hence we may suppose by the well known result (see [4,(4.6)]) that $q' + a_1v_1 + \cdots + a_\ell v_\ell$ is written as

$$x_{p+r}^2 + \cdots + x_{p+r+u}^2 - x_{p+r+u+1}^2 - \cdots - x_{n-1}^2 + x_n^3$$

under a change of coordinate of x_{P+r}, \dots, x_n . Moreover we may take x_n as v_{t+1} in (*) of Section 1. Now we consider f_{P+1} for $a_{t+2} = \dots = a_P = 0$ under the coordinate of \mathbb{R}^n which is written as

$$x_{P}^{2} + \cdots + x_{P+S}^{2} - x_{P+S+1}^{2} - \cdots - x_{P+r-1}^{2} + q' + a_{1}v_{1} + \cdots + a_{t}v_{t} + a_{t+1}x_{n}$$

Then by Lemma 3.2 we can verify that

$$m_{s+u+2}(f') \ge 1$$
 and $m_{n-s-u-p-2}(f') \ge 1$.

Therefore we have shown the proposition by Lemma 2.3 and Lemma 2.4.

4. A proof of Theorem. In this section we give a sketch of the proof of Theorem, since Proposition 3.4 enables us to follow the proof of [1, Theorem 3].

Let Σ^i be the subset of $\operatorname{Hom}(\mathbb{R}^n, \mathbb{R}^p)$ of the linear homomorphisms with kernel rank i. We have a bundle homomorphism of constant rank n-i, $h: \Sigma^i \times \mathbb{R}^n \longrightarrow \Sigma^i \times \mathbb{R}^p$ defined by

$$h((f,v)) = (f,f(v)).$$

Let K and C denote the bundles $\operatorname{Ker}(h)$ and $\operatorname{Cok}(h)$ respectively. Then there is a map $\phi: \operatorname{Hom}(K,C) \longrightarrow \operatorname{Hom}(R^n,R^p)$ given by

$$\phi((f,g)) = f + g$$

where f is an element of Σ^i and g an element of Hom(K,C) over f. We

here identify g with an element of $Hom(\mathbb{R}^n,\mathbb{R}^p)$ by the composition map

$$\mathbf{R}^n \xrightarrow{\text{projection}} K \xrightarrow{\mathbf{g}} C \subseteq \mathbf{R}^p$$

We can show that ϕ gives a diffeomorphism of a small tubular neighbourhood Z of the zero-section of Hom(K,C) onto a small neighbourhood of Σ^i in $Hom(\mathbf{R}^n,\mathbf{R}^p)$.

Let S(K) and S(C) denote the associated sphere bundles of K and C respectively. We consider a \mathbb{Z}_2 -action on $S(K)\times S(C)$ by mapping (v,v') onto (-v,-v') where $v\in S(K)$ and $v'\in S(C)$ and denote its quotient space by $S(K)\times_{\mathbb{Z}_2}S(C)$. Let $C(S(K)\times_{\mathbb{Z}_2}S(C))$ be the open mapping cylinder of $S(K)\times_{\mathbb{Z}_2}S(C)$ over Σ^i . Let $i>\max(0,\ n-p)$. Then $(\Sigma^{i-1}\cup\Sigma^i)\cap\phi(Z)$ is homeomorphic to $C(S(K)\times_{\mathbb{Z}_2}S(C))$.

Proof of Theorem. The case of $n \le p$ has already been treated in [1]. So we suppose that $n \ge p$. We prove the following statement by induction on i: Let f be a C^{∞} stable map germ of kernel rank i. Then f is not topologically equivalent to any C^{∞} stable map germ of kernel rank j with j < i.

Let i=n-p+1. Then the statement follows from Proposition 3.4. Next we suppose that the above statement is true for every i with i < k (k > n-p+1). Soppose that a C^{∞} stable map germ f of kernel rank k is topologically equivalent to a C^{∞} stable map germ g of kernel rank f with f < k. Then there exist representatives $f': U_1 \longrightarrow V_1$ and $g': U_2 \longrightarrow V_2$ of f and g respectively and homeomorphisms $h: U_1 \longrightarrow V_1$ and $f: U_2 \longrightarrow V_2$ such that the following diagram commutes:

$$U_1 \xrightarrow{f'} V_1$$

$$\downarrow h \qquad \downarrow k$$

$$U_2 \xrightarrow{g'} V_2$$

Since f is a C^{∞} stable map germ, we know by Lemma 1.1 that the set germ $S^r(f)_0$ is not empty for $r \leq k$. Let x be any element of $S^r(f')$ with r < k. Let $f'_x: (U_1, x) \longrightarrow (V_1, f'(x))$ be a C^{∞} map germ determined by f'. Similarly we consider a C^{∞} map germ $g'_{h}(x): (U_2, h(x)) \longrightarrow (V_2, g \circ h(x))$. If x is sufficiently near the origin of R^n , then both of f'_x and $g'_{h}(x)$ become C^{∞} stable map germs. By the construction f'_x and $g'_{h}(x)$ are topologically equivalent. Hence it follows from the assumption of induction that h(x) belongs to $S^r(g')$. This shows that the set germ $S^r(f)_0$ is equivalent to the set germ $S^r(g)_0$ for r < k. Hence $S^r(g)_0$ is not empty. If j < k-1,

then $S^{k-1}(g)_0$ is empty. Therefore we may suppose that j = k-1. By the above argument we know that $S^r(f)_0$ is equivalent to $S^r(g)_0$ for r < k-1. Hence $S^{k-1}(f)_0 \cup S^k(f)_0$ must be equivalent to $S^{k-1}(g)_0$. Since $S^{k-1}(g)_0$ is a set germ of the differentiable manifold $S^{k-1}(g')$, we have that

$$H_i(S^{k-1}(g)_0; \mathbf{Z}_2)_{loc} = \begin{cases} \mathbf{Z}_2 & i = \dim S^{k-1}(g) \\ 0 & \text{otherwise} \end{cases}$$

(see the definition of $H_i(*; \mathbb{Z}_2)_{loc}$ in [1, Section 2]).

Now we consider $f': U \longrightarrow V$ for which $f^1(f'): U \longrightarrow J^1(U,V)$ is transverse to $\Sigma^k(U,V)$ at the origin. When U and V are sufficiently small neighbourhoods, we may identify $J^1(U,V)$ with $U \times V \times \operatorname{Hom}(\mathbf{R}^n,\mathbf{R}^p)$. Then we can prove that $S^{k-1}(f)_0 \cup S^k(f)_0$ is equivalent to the set germ of $\mathbf{R}^l \times C(S^{k-1} \times_{\mathbf{Z}_2} S^{p-n+k-1})$ at $0 \times (*)$ where 0 is the origin, (*) a cone point and, $l = \dim S^k(f)_0$. It follows from [1, Lemma 3.2] that $\mathbf{R}^l \times C(S^{k-1} \times_{\mathbf{Z}_2} S^{p-n+k-1})$ is homeomorphic to $C(S^l(S^{k-1} \times_{\mathbf{Z}_2} S^{p-n+k-1}))$ where S^l denotes the l-fold suspension of $S^{k-1} \times S^{p-n+k-1}$. Hence we have that

$$H_{l+2}(S^{k}(f)_{0} \cup S^{k-1}(f)_{0}; \mathbf{Z}_{2})_{loc} = H_{1}(S^{k-1} \times_{\mathbf{Z}_{2}} S^{p-n+k-1}; \mathbf{Z}_{2})$$

It is easily seen that

$$H_1(S^{k-1} \times_{\mathbf{Z}_2} S^{p-n+k-1}; \mathbf{Z}_2) \neq \{0\}$$

for k-1 and $p-n+k-1 \ge 1$. This contradicts to the fact that

$$H_{l+2}(S^{k-1}(g)_0; \mathbb{Z}_2)_{loc} = \{0\},\$$

since $l+2 < \dim S^{k-1}(g)_0 = (k-1)+(p-n+k-1)+l+1$. This completes the proof.

Proof of Corollary. Since f and g are proper C^{∞} stable maps, it follows from [8, Theorem 4.1] that for any point x of N, the germs $f_x:(N,x)\longrightarrow (P,f(x))$ and $g_x:(N,x)\longrightarrow (P,g(x))$ determined by f and g are C^{∞} stable map germs respectively. Moreover f_x and g_x are topologically equivalent. Hence it follows from Theorem that $\ker(f_x)$ and $\ker(g_x)$ are equal. Therefore if $h:N\longrightarrow N$ and $k:P\longrightarrow P$ are homeomorphisms such that $g\circ h=k\circ f$, then h maps $S^i(f)$ onto $S^i(g)$. This is what we want.

5. Examples. We consider the special case of Corollary. Let f be a proper submersion of N into P. If g is a proper C^{∞} stable map and topologically equivalent to f, then it follows from Corollary that g must be a submersion of N into P. We now construct such examples. Let Σ be an exotic sphere of dimension n (see [5]). By a standard argument

in differential topology and the h-cobordism theorem (see [9]) we can prove that $\Sigma \times D^k$ is diffeomorphic to $S^n \times D^k$ for a sufficiently large integer k. By attaching two copies of $\Sigma \times D^k$ and $S^n \times D^k$ on their boundaries respectively we obtain a diffeomorphism $h: \Sigma \times S^k \longrightarrow S^n \times S^k$. Now we consider two projections $p_1: S^n \times S^k \longrightarrow S^k$ and $p_2: \Sigma \times S^k \longrightarrow S^k$. Then we have two submersions, $p_1, p_2 \circ h^{-1}: S^n \times S^k \longrightarrow S^k$. Since Σ is homeomorphic to S^n ($n \ge 5$), we have that p_1 and $p_2 \circ h^{-1}$ are topologically equivalent. However they are not differentiably equivalent since the fibre of $p_2 \circ h^{-1}$ is the exotic sphere Σ .

REFERENCES

- [1] J. DAMON: Topological Properties of discrete algebra types I: The Hilbert-Samuel functions, Advances in Math., Suppl. Ser., 5 (1978), 83—113.
- [2] J. DAMON: Topological properties of real simple germs, curves and the nice dimensions n > p, Math. Proc. Cambridge Philos. Soc. 89 (1981), 457—472.
- [3] J. DAMON and A. GALLIGO: A topological invariant for stable map germs, Invent. Math. 32 (1976), 103—132.
- [4] C. GIBSON: Singular points of smooth mappings, Pitman, London, 1979.
- [5] M. KERVAIRE and J. MILNOR: Groups of homotopy spheres I, Ann. of Math. 77 (1963), 504-537.
- [6] H. LEVINE: Singularities of differentiable mappings, Lecture Notes in Math. 77, 1—89, Springer-Verlag, Berlin, 1971.
- [7] J. MATHER: Stability of C[∞] mappings, IV: Classification of stable germs by R-algebras, Publ. Math. I.H.E.S. 37 (1970), 223—248.
- [8] J. MATHER: Stability of C[∞] mappings, V: Transversality, Advances in Math. 4 (1970), 301—336.
- [9] J. MILNOR: Lectures on h-cobordism theorem, Princeton Univ. Press, Princeton, 1965.

DEPARTMENT OF MATHEMATICS
COLLEGE OF GENERAL EDUCATION
YAMAGUCHI UNIVERSITY

(Received October 1, 1981)