

Mathematical Journal of Okayama University

Volume 28, Issue 1

1986

Article 22

JANUARY 1986

Identification of the ratio ergodic limit for an invertible positive isometry on L^1

Ryotaro Sato*

*Okayama University

Math. J. Okayama Univ. 28 (1986), 165–171

IDENTIFICATION OF THE RATIO ERGODIC LIMIT FOR AN INVERTIBLE POSITIVE ISOMETRY ON L_1

RYOTARO SATO

1. Introduction. Let T be an invertible positive isometry on L_1 of a σ -finite measure space. It is proved that if f and p are in L_1 and p is nonnegative, then the ratios $\left(\sum_{i=m}^n T^i f \right) / \left(\sum_{i=m}^n T^i p \right)$ converge almost everywhere on the set $\left\{ \sum_{i=m}^{+\infty} T^i p > 0 \right\}$ as $m \rightarrow -\infty$ and $n \rightarrow +\infty$, independently; and the identification of the limit is obtained.

Let (X, \mathcal{F}, μ) be a σ -finite measure space and T a linear operator from $L_1 = L_1(X, \mathcal{F}, \mu)$ into itself. T is called *positive* if $f \geq 0$ implies $Tf \geq 0$, a *contraction* if $\|Tf\|_1 \leq \|f\|_1$ for all $f \in L_1$, and an *isometry* if $\|Tf\|_1 = \|f\|_1$ for all $f \in L_1$. For f and p in L_1 , with $p \geq 0$, we write

$$R_m^n(f, p)(x) = \left(\sum_{i=m}^n T^i f(x) \right) / \left(\sum_{i=m}^n T^i p(x) \right).$$

It follows from the Chacon-Ornstein theorem [2] that if T is a positive contraction on L_1 then the pointwise limit

$$\lim_{n \rightarrow +\infty} R_0^n(f, p)(x)$$

exists and is finite a.e. on the set $\left\{ x : \sum_0^{+\infty} T^i p(x) > 0 \right\}$; furthermore if C denotes the conservative part of T (i.e. $C = \left\{ x : \sum_0^{+\infty} T^i g(x) = +\infty \right\}$ for some $g \in L_1$ with $g > 0$ a.e. on X), then the identification of the limit can be done, on C , by the Chacon identification theorem [1]. However, in this paper, we assume T to be an invertible positive isometry on L_1 and consider the ratios $R_m^n(f, p)(x)$, with $m < 0 < n$. Noticing that the conservative parts of T and T^{-1} coincide, we may apply these two theorems to infer that the pointwise limit

$$R_{-\infty}^{+\infty}(f, p)(x) = \lim_{m \rightarrow -\infty, n \rightarrow +\infty} R_m^n(f, p)(x)$$

exists and is finite a.e. on the set $\left\{ x : \sum_{-\infty}^{+\infty} T^i p(x) > 0 \right\}$. But the Chacon identification theorem can be applied only on the conservative part C , not on

the whole set X . This is the starting point for the study in this paper. We shall obtain the identification of the limit $R_{-\infty}^{+\infty}(f, p)(x)$ on the whole set X . In the process of doing this, the almost everywhere existence of the limit $R_{-\infty}^{+\infty}(f, p)(x)$ is proved as a by-product; we do not use the Chacon-Ornstein theorem. The method is chiefly dependent upon the argument given in Garsia ([4], pp. 39-41) for the identification of the limit function in the Chacon-Ornstein theorem.

2. Identification of the ratio ergodic limit. Let T be an invertible positive isometry on L_1 . Since $\|T^{-1}f\|_1 = \|f\|_1$, for any $f \in L_1$, if $f \geq 0$ then we must have $T^{-1}f \geq 0$. Thus T^{-1} is also a positive isometry on L_1 . For any nonnegative function h on (X, \mathcal{F}, μ) , we define $Th = \lim_n Tf_n$, where $f_n \in L_1$ and $0 \leq f_n \uparrow h$. Clearly, this definition is independent of the choice of the sequence. Similarly, $T^{-1}h$ is defined.

$A \in \mathcal{F}$ is called *invariant* if

$$A = \text{supp } T1_A = \{x : T1_A(x) \neq 0\},$$

where 1_A denotes the indicator function of A . It is easy to check that $A \in \mathcal{F}$ is invariant if and only if $TL_1(A) = L_1(A)$, where $L_1(A) = \{f \in L_1 : \text{supp } f \subset A\}$. Therefore, if $0 \leq p \in L_1$ then the set $E(p) = \left\{x : \sum_{-\infty}^{+\infty} T^t p(x) > 0\right\}$ is invariant. The class of all invariant sets is denoted by \mathcal{I} . Since T is invertible, \mathcal{I} is a sub- σ -field of \mathcal{F} .

We are now in a position to state the theorem.

Theorem. *If T is an invertible positive isometry on L_1 , then for any f and p in L_1 , with $p \geq 0$, the pointwise limit*

$$\lim_{m \rightarrow -\infty, n \rightarrow +\infty} R_m^n(f, p)(x) = R_{-\infty}^{+\infty}(f, p)(x)$$

exists and is finite a.e. on the set $E(p) = \left\{x : \sum_{-\infty}^{+\infty} T^t p(x) > 0\right\}$; furthermore, the limit function $R_{-\infty}^{+\infty}(f, p)$ is measurable with respect to \mathcal{I} and satisfies

$$\int_A R_{-\infty}^{+\infty}(f, p) \cdot p \, d\mu = \int_A f \, d\mu$$

for all $A \in \mathcal{I}$ with $A \subset E(p)$.

To prove the theorem, we need some lemmas.

Lemma 1. *Let $h \in L_\infty = L_\infty(X, \mathcal{F}, \mu)$. Then $T^*h = h$ if and only if h is measurable with respect to \mathcal{J} .*

Proof. Suppose h is measurable with respect to \mathcal{J} . An easy approximation argument shows that for the proof of $T^*h = h$, it suffices to prove that $T^*1_A = 1_A$ for all $A \in \mathcal{J}$. But, $A \in \mathcal{J}$ implies $T^*1_A = 0$ on $X \setminus A$, because $\langle f, T^*1_A \rangle = \langle Tf, 1_A \rangle = \int_A Tf d\mu = 0$ for all $f \in L_1(X \setminus A)$. Similarly, $T^*1_{X \setminus A} = 0$ on A . Thus $T^*1_A = 1_A$, since $T^*1 = 1$.

Conversely, suppose $T^*h = h$. (Here we may and will assume without loss of generality that $0 \leq h \leq 1$.) Given an $\alpha > 0$, write $A = \{x : h(x) > \alpha\}$, $h_1(x) = \min\{h(x), \alpha\}$ and $h_2(x) = h(x) - h_1(x)$. Then $h = h_1 + h_2 = T^*h = (T^{-1})^*h = (T^{-1})^*h_1 + (T^{-1})^*h_2$. Since $(T^{-1})^*h_1 \leq \alpha$ and $h > \alpha$ on A , it follows that $(T^{-1})^*h_2 > 0$ on A . Since $\text{supp } h_2 = A$, we then have

$$(T^{-1})^*1_A > 0 \text{ on } A.$$

By this and the fact that $T^*(T^{-1})^*1_A = 1_A$, we see that

$$T^*1_A = 0 \text{ on } X \setminus A.$$

Hence $T^*1_A \leq 1_A$, and by a similar argument, $(T^{-1})^*1_A \leq 1_A$. Consequently,

$$1_A = T^*(T^{-1})^*1_A \leq T^*1_A \leq 1_A,$$

which implies $1_A = T^*1_A$ and hence $A \in \mathcal{J}$. The proof is complete.

Lemma 2. *If $h \in L_\infty$ satisfies $T^*h = h$, then for any $f \in L_1$*

$$T(hf) = h(Tf).$$

Proof. If $A \in \mathcal{J}$ then, clearly, $T(1_A f) = 1_A(Tf)$ for all $f \in L_1$. This, together with Lemma 1 and an easy approximation argument, completes the proof.

Lemma 3. *If f and p are in L_1 and $p > 0$ a.e. on X , define*

$$M(f, p)(x) = \sup_{m \leq 0 \leq n} |R_m^n(f, p)(x)|.$$

Then, for any $\lambda > 0$, $\int_{\{M(f, p) > \lambda\}} p \, d\mu \leq \frac{4}{\lambda} \|f\|_1$.

Proof. Put

$$M_+(f, p)(x) = \sup_{0 \leq n} |R_0^n(f, p)(x)|$$

and

$$M_-(f, p)(x) = \sup_{m \leq 0} |R_m^0(f, p)(x)|.$$

Then we have $M(f, p) \leq M_+(f, p) + M_-(f, p)$, and so

$$\{M(f, p) > \lambda\} \subset \left\{M_+(f, p) > \frac{\lambda}{2}\right\} \cup \left\{M_-(f, p) > \frac{\lambda}{2}\right\}.$$

Since $\left\{M_+(f, p) > \frac{\lambda}{2}\right\} \subset \left\{\sup_{0 \leq n} \sum_{i=0}^n T^i (|f| - \frac{\lambda}{2} p) > 0\right\}$, the Hopf maximal ergodic theorem (see e.g. [4], p. 23) gives

$$\int_{\{M_+(f, p) > \frac{\lambda}{2}\}} p \, d\mu \leq \frac{2}{\lambda} \|f\|_1.$$

Similarly, $\int_{\{M_-(f, p) > \frac{\lambda}{2}\}} p \, d\mu \leq \frac{2}{\lambda} \|f\|_1$, and hence the proof is completed.

Proof of the Theorem. We can easily show that we need only check the validity of the Theorem when $p > 0$ a.e. on X . Thus in the following proof we will assume that $p > 0$ a.e. on X .

Let M be the class of all functions f of the form

$$f = hp + g - Tg, \text{ where } h \in L_\infty, g \in L_1 \text{ and } T^*h = h.$$

Making use of Lemma 2, if $f = hp + g - Tg \in M$ then

$$R_m^n(f, p)(x) = h(x) + \frac{T^m g(x) - T^{n+1} g(x)}{\sum_{i=m}^n T^i p(x)}.$$

Since $p > 0$ a.e. on X , the Chacon-Ornstein lemma (see e.g. Theorem 2.4.2 in [4]) shows that

$$\lim_{m \rightarrow -\infty, n \rightarrow +\infty} R_m^n(f, p) = h \text{ a.e. on } X.$$

Next, to prove that M is dense in L_1 , let $k \in L_\infty$ be such that $\langle f, k \rangle = 0$ for all $f \in M$. Then we have $\langle g - Tg, k \rangle = \langle g, k - T^*k \rangle = 0$ for all $g \in L_1$. Thus $k = T^*k$, and $\langle kp, k \rangle = \int k^2 p \, d\mu = 0$. It follows that $k = 0$ a.e. on X , which proves the denseness of M in L_1 .

For $f = hp + g - Tg \in M$, put

$$Hf = hp = R_{-\infty}^{+\infty}(f, p) \cdot p.$$

Then

$$\|Hf\|_1 = \int (\operatorname{sgn} h) hp \, d\mu = \int (\operatorname{sgn} h)[f - g + Tg] \, d\mu$$

where $\operatorname{sgn} h(x) = h(x)/|h(x)|$ if $h(x) \neq 0$, and is 0 if $h(x) = 0$. Since $T^*(\operatorname{sgn} h) = \operatorname{sgn} h$ by Lemma 1, it follows that

$$\int (\operatorname{sgn} h)[f - g + Tg] \, d\mu = \int (\operatorname{sgn} h)f \, d\mu \leq \|f\|_1.$$

Thus $\|Hf\|_1 \leq \|f\|_1$ ($f \in M$). Since M is dense in L_1 , H can be uniquely extended to a contraction operator on L_1 . We will denote this extension by the same letter H . Clearly, if $A \in \mathcal{J}$ then

$$\int_A Hf \, d\mu = \int_A f \, d\mu$$

for all $f \in M$ and thus for all $f \in L_1$.

Now, to finish the proof of the Theorem, it suffices to show that

$$\lim_{m \rightarrow -\infty, n \rightarrow +\infty} R_m^n(f, p) = (1/p)Hf \text{ a.e. on } X$$

for all $f \in L_1$. To do this, we notice that if $f \in L_1$ and $e \in M$ then

$$\begin{aligned} |R_m^n(f, p) - (1/p)Hf| &\leq |R_m^n(f - e, p) - (1/p)H(f - e)| + |R_m^n(e, p) - (1/p)He| \\ &\leq M(f - e, p) + |(1/p)H(f - e)| + |R_m^n(e, p) - (1/p)He|. \end{aligned}$$

Since $R_m^n(e, p) \rightarrow (1/p)He$ a.e. on X as $m \rightarrow -\infty$ and $n \rightarrow +\infty$, independently, if we let

$$f^*(x) = \lim_{N \rightarrow +\infty} \sup_{m \leq -N, n \geq N} \left| R_m^n(f, p)(x) - \frac{Hf(x)}{p(x)} \right|$$

then, for any $\varepsilon > 0$,

$$\{f^* > 2\varepsilon\} \subset \{M(f-e, p) > \varepsilon\} \cup \{(1/p)H(f-e) > \varepsilon\}.$$

By Lemma 3,

$$\int_{\{M(f-e, p) > \varepsilon\}} p \, d\mu \leq \frac{4}{\varepsilon} \|f-e\|_1.$$

On the other hand,

$$\int_{\{(1/p)H(f-e) > \varepsilon\}} p \, d\mu \leq \frac{1}{\varepsilon} \|H(f-e)\|_1 \leq \frac{1}{\varepsilon} \|f-e\|_1.$$

Here $\|f-e\|_1$ can be arbitrarily small. Thus $\int_{\{f^* > 2\varepsilon\}} p \, d\mu = 0$. Since $\varepsilon > 0$ is arbitrary, it follows that $f^* = 0$ a.e. on X , and this completes the proof.

Remark. If $\{T^n : -\infty < n < +\infty\}$ is a group of positive linear operators on L_1 satisfying $\sup_n \|T^n\| = K < +\infty$, then the convergence result in the Theorem holds. In fact, if L denotes a Banach limit (cf. [3]) and if we define $\lambda(A) = L\left(\int T^n 1_A \, d\mu\right)$ for $A \in \mathcal{F}$ with $\mu(A) < +\infty$ and $\lambda(A) = \sup\{\lambda(B) : B \in \mathcal{F} \text{ with } B \subset A \text{ and } \mu(B) < +\infty\}$ for $A \in \mathcal{F}$ with $\mu(A) = +\infty$, then, as is easily seen, $(X, \mathcal{F}, \lambda)$ is a σ -finite measure space such that $K^{-1}\mu \leq \lambda \leq K\mu$ and T is an invertible positive isometry on $L_1(X, \mathcal{F}, \lambda)$. Since $f \in L_1(X, \mathcal{F}, \mu)$ if and only if $f \in L_1(X, \mathcal{F}, \lambda)$, the convergence result follows from the Theorem.

REFERENCES

- [1] R. V. CHACON : Identification of the limit of operator averages, *J. Math. Mech.* 11 (1962), 961–968.
- [2] R. V. CHACON and D. S. ORNSTEIN : A general ergodic theorem, *Illinois J. Math.* 4 (1960), 153–160.
- [3] N. DUNFORD and J. T. SCHWARTZ : *Linear Operators. I : General Theory*, Interscience, New York, 1958.

[4] A. M. GARSIA : *Topics in Almost Everywhere Convergence*, Markham, Chicago, 1970.

DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE
OKAYAMA UNIVERSITY
OKAYAMA, 700 JAPAN

(Received May 12, 1986)