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Introduction. In 1958, Ambrose and Singer proved the following theo-
rem ([1])

Theorem. Let (M, g) be a connected, simply connected, complete Rie-
mannian space. Then (M, g) is a homogeneous Riemannian space if and only
if there exists a tensor field T of type (1, 2) such that (1) (VyT)y = [Ty,
Tr] - TTXY (2) g(Tst Z)+g(Y. TXZ) =0 (3) ( VXR)}’Z = [Tx, Ryz] _RTXYZ
—Ryryz for X, Y, Ze X(M), where V denotes the Riemannian connection
on (M, g) and R denotes the curvature tensor.

We note here that this theorem is an extention of the characterization
of symmetric spaces given by E. Cartan. Indeed if there exists a tensor
field T= 0 on (M, g), then (M, g) is a symmetric space. A tensor field of
type (1, 2) which satisfies the above (1), (2), (3) is called a homogeneous
structure. In [5], Tricerri and Vanhecke studied many properties of homoge-
neous structures and gave the classification of the homogeneous structures on
2-dimensional space forms. There is only canonical homogeneous structure
T=0 on R?, §% but H® admits two types of homogeneous structure up
to “isomorphisms” : one is T = 0 and another one is TyY = g(X, Y)&—
g(é, Y)X for X, Y € X(H?), where § = yaiv. They also gave the classi-
fication of those on Heisenberg group.

In this paper, we give the complete classification of the homogeneous
structures on 3-dimensional space forms.

For instance in case of sphere, we have

Theorem. The 3-dimensional sphere (S* = |(x1, x,, x1, x.) € R*|
i-1x’ =1, g) of constant curvature 1 admits two types of homogeneous
structures up to the isomorphisms :

(1) .;\'Yz_—"g(T;Y‘ Z):— /\dV(X, Y.Z) (AgO)
(2) T(MNxyz=(@V+216, @ (: A :))(X. Y, Z) (A e R—(0))
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for X, Y, Ze %(S®), where we put at ¢ = (x1, x2, 23, x,) € S°

&, |q = _xzdx1+171dxz+xcdx3 —x,da:,
6 ’q = —ux;dx; —Icltr2+xldxa+1‘zdx4
05 Iq = —x,dx, + x3dx; — x2d2s + 21 dx,

3-dimensional case seems to be most interesting, because the group of
all isometries of §* with constant curvature is not simple.

I would like to express my thanks to Professors T. Sakai and L. Vanhecke
for their kind advice.

1. Homogeneous structure. In this section we give some facts which
are needed in our proof. In the following (M. g) always denotes a connected,
simply connected, complete Riemannian space.

(1.1) Let (M, g) be a homogeneous Riemannian space and G be a con-
nected subgroup of the connected component I,(M ) of the isometry group of
(M, g) acting transitively on M. If we have a reductive decomposition g =
m @ b, of its Lie algebra, where m is a subspace of g with [m, §,] C m
and §, is the Lie algebra of the isotropy subgroup H, of G at p € M, then
the G-invariant metric connection 7 called the canonnical connection is
defined as follows : Firstly for ¥ € g, we denote by y* a vector field on M

given by 7*|, = —;I;(exp t¥)(q):i=0 at ¢ € M. Then we define for £ € g

(7:8%), = [a*, B*], = —[e, B]% where a € m such that o*|, = X.

If we define a tensor T by T = ¥V —V, then this T is a homogeneous structure
(cf. [4], [5]) and we have

TxY’p = Vya*'p for y,e TP(M),

g(TyY, Z), = glla, B1* v*)o—sg([B. 7]* o*)o+g(ly, al*, £*%),

where we take ¥ € g such that y*|, = Z.
We note here that T is G-invariant.

Conversely, suppose that a homogeneous structure 7 is given on a Rie-
mannian space (M, g). Then there exists a connected subgroup G of Io(M)
which acts simply transitively on the holonomy bundle P(u) of a connection
7 = V—T through u € O(M). There exists a reductive decomposition of

g, which is defined from the decomposition of T,(P(u)) into the vertical
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space and horizontal space relative to 7, so that 7 coincides with the canon-
ical connection defined from the reductive decomposition. Note here that this
group G is the minimum connected subgroup of Io(M) constructing the homoge-
neous structure T (cf. [4], [5]).

For the homogeneous structure T defined from g = m @ §,, the Lie
algebra of the isometry group and its reductive decomposition defined from
T is given by g = m @ [m, m]|f,.

Definition 1.1. Let (M. g) be a homogeneous Riemannian space. Then
two homogeneous structures T and T on (M, g) are said to be isomorphic if
there exists an isometry ¢ on (M, g) such that «(TY) = T'o.ne*(Y) for
X, Ye X(M).

Theorem 1.2.([5]) Let (M, g) be a homogeneous Riemannian space and
G. G’ be the connected Lie subgroups of I(M) acting transitively on M. Now
assume that the Lie algebra g (resp. §') of G (resp. G') has a reductive decom-
position 3 = m @ b, (resp. §' = m' @ bg). Then the homogeneous structure
T defined from @ = m @ Ypoand T' from §' = m' @ Y, are isomorphic if and
only if there exists a Lie algebra isomorphism ¥ from m @ [m, m]|b, to
m' @ [m', m]|hq such that W(m) = m, ¥([m, m]|h,)=([m’, m]|9,) and
V| m is an isometry from m to m' where m (resp. m') has the inner product
induced from (To(M), g,) (resp. (T{M), gq)) by the map a— a*|, (resp.

a — a’*lq)

Proof. We refer to Theorem 2.1 and 2.2 in [5].
2. The homogeneous structures on S°.

Theorem 2.1. The 3-dimensional sphere (S° = {(x,, x;, x3. x:) € R*|
i-1x’ =11, g) of constant curvature 1 admits two types of homogeneous
structures up to the isomorphisms :

(1) Toz=g(TRY, Z) = AdV(X, Y, Z) (1 20)
(2) T(Mxyz=dV+26,(0: A 6:)(X. Y, Z) (e R—(0))

Jor X, Y, Ze X(S?), where we put at ¢ = (x,. x;, x;3, x,) € S°

6, |q = ”‘Izdxl+xldxz+l‘4dx3 _I3dI4
leq = —xdx, —xidx, + x:1dxs + x2dx,
05 !q = _xtdrl+x3d-rz_xzd~1'3+xldx4
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Proof. I,(S°) = SO(4) and its Lie algerais 30(4). Let H, = SO(3)
be the isotropy subgroup of SO(4) at p=(1,0,0,0) € 8. Then §, =
{w,, ws, ws), where we put w; = Ey;s1—Ei,:(i=1,2,3) wy= Eu—Es,,
ws = Ey—E, we = Es;— Ey; for the matrix unit Ej. Further if we set
Uy = Wa— Wy, Uy = Wg— Wy, Uz = We— Wy, V1 = Wyt W, Vy = ws+w, and
3 = wg+ wy, then we have

2
X,

o

* *

y Va2 |p = s V3 |p = .
p ax;; r) ax-i D

V;k|p:

We also get

[u:, u;] = 2uy, [vi, v;] = 2v, for even permutation

(2.1 R of (1. 2. 3). [um val =0 (my n=1, 2, 3).

Namely we have 80(4) = 3u(2); @ 8u(2), (the direct sum as Lie algebra)
with 8u(2), = (v,, vs, v3) and 31(2), = (uy, us, us).

First note that there are no subgroups of dimension 2 in SO(3), because
SO(3) is simple. Thus the possible connected subgroups G of I,(S®) acting
transitively on S° are as follows :

(4,) dimG =4 and dim(G N H,) =1
(A;) dimG =3 and dim(G N H,) =0

Case (A,): G = SO(4) and its Lie algebra is § =380(4), Let mbe a
complement of B, in g. Then m is expressed as {v,+ ¢(v,), vot+@(v,), v+
@(v3)) by means of a linear map ¢ from 3u(2), to b, and by using [m, b,] C
m, the m-component of a reductive decomposition of g relative to §, is given
by

m,\ == <'V[+(A_1)W4, 'Vz+(A_1)'H’5, 'l"3+(:1_1)"’6> (/1 [ R)

From (1, 1) in the section 1, the homogeneous structure T* defined from this
decomposition g = m”* @ 0, satisfies

Zg( T:,\;‘V,*, v,’f)p
= g([vit(A=1)wius, vi]*, v¥) o—g([vs, vil* vy
+g([1’k, V£+(A—1)Wt+3]*s V}k)p

A+1 *
- g([ 2 Vis vj] 4 "’ﬁ) _g(['VJ, Wc]*, -v;k)p
P

A+1 *
g(lth, 2 vi:| sv.;k)
p
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Therefore we have Tjru;uzlo = g(THvF, vE), = sgn(i, j, k)A. Thus we
get T*|, = AdV|,, where dV denotes the volume form of (S° g). Since T
and dV are G-invariant, we have T* = AdV (A € R) and it is trivial that T?
and T* are isomorphic if and only if A> = x*. This gives the homogeneous
structures of the first kind in the theorem.

Case (A;): dimg =4 and dim(g N B,) = 1. We consider more pre-

cisely the next three cases :

(43) dim(g N 8u(2),) =3
(AD) dim(8 N 8u(2),) =2
(A?) dim(g N 3u(2),) =1

First note that the case (A7) doesn’t occur since there are no subalgebras
of dimension 2 in 3u(2),.

Lemma 2.2. If g satisfies the condition (A}) (resp. (A3)) there exists
w (resp. w') in Y, such that § = 3u(2), @ Rw (resp. 8 = 3u(2), & Rw').

Proof. Case (Aj) is trivial because we have 8u(2), ¢ g. In case
(A3), it suffices to see that g N 3u(2), = 3u(2),. First note that dim
(g| 8u(2),) = 3 because of dim(g N 8u(2),) = 1. Next we have

glau(2), =[g| 3u(2),, g N ho! 3u(2),]
=[g. an bl 8u(2).] c 3 N 8u(2),.

Then clearly dim(g N 8u(2);) = dim(g|su2,) = 3 holds. q. e.d.

Next we shall determine the reductive decompositions of 9 = 3u(2), @
Rw. To do this, choose a basis ¥,, ¥,, ¥; € 8u(2), and w € Rw such that
w, 7] =0, [, %] =¥, [w, %] = —¥, and [¥,, ;] = 27, where(i,j, k)
is an even permutation. Then it is easy to show from these relations that
the m-component of the reductive decompositions of g is given by (¥,+ Aw,
vy, ¥3) (A € R). We note here that the homogeneous structure defined from
this decomposition is isomorphic to the homogeneous structures defined from
3u(2), @ Rwy = (vi+ Awy, vs, va) @ Rw, by Theorem 1.2. In fact, | % +
AW, ¥y, ¥3] (resp. | v+ Aw,, v,, v31) is an orthonormal basis relative to the
inner product induced from (Tp(S?), g,) into {(¥,+ AW, ¥,, ;) (resp. {v,+
Aw,, v;, v3)). Hence it suffices to determine the homogeneous structures
T(A) defined from 8u(2), & Rw, = m(A) & Rw,, where m{(A) = (v, + Aw,,
vy, v3). By using the relations
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2] o )
'V;klpz ,V;k|p= ,1’:’Hp—
(2.2) 3X:2 |p oX;3 |p o4 ip

[V1+/1‘W4, Vl] =0, [’V\‘Fl\‘wu Vz] = (2+A)'V3s
[‘V1+/\‘W4» Va] = —(2+ 11)1’2

we have from (1.1) in section 1 that

(D) 2 ais =1+ 2| Tz - =40
T(A) 2 aiz . ai., N TN 2, ai o aarz 5
T35, = el ™Wasa ™ Bal,

and T(A)%ait =0 (i=1,2,3).

These relations mean that for X, Y, Z e TAS®)
T(/\)xyzlp - g(T( A)x}’, Z)p = (dV'f‘ /\dxz ® (dxs N dxA))p(Xa Y, Z)-
Now since both of T(A) and dV are SU(2),-invariant, we have

T(/\)xvzlq = (dV+ A§0*d~"f52 ® (‘P*dxa A\ ¢*(ir‘))q(X, Y, Z)
for any point ¢ € S°,

where ¢™'(p) =4q, ¢ € SU(2): and ¢™ is the pull back by ¢. Let's identify
_ . :

S* with SU(2) = ‘(3. ‘—Zz) Iz 4 |22 ? = 1
22 z2i/|lz, 2. € C

1‘4) —»(z; = x1+x28, 2, = 13+.’L‘4i). Then SU(2)l C Io(Sa) acts as left

by a map h: (xi, x;, x3,

translations on SU(2). In fact, the identifications is given by v, — (6 _?),

Vv, — ((1) —(1)), vy —> (_? —(I)) in terms of Lie algebra. Therefore it fol-
lows that

(¢*dr2)q = _xzdxx +Ild1‘z+x4d’l§3_1?3dx4

(¢*dx3)q = —xydx, —x,dx; + 2x,doc; -+ x2dx,

(¢*dx4)q - —x4dr,+x3drz~—xzdx3+x‘dr4.

We denote ¢*dx,, ¢*dxs, ¢*dx, by 6., 8., 6, respectively and we have

Lemma 2.3. T(A) and T(u) are isomorphic iff A = p.

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 28/iss1/23
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Proof. Suppose that T(A) and T(u) are isomorphic. We may assume
that A & 0 and x 2 0 by Theorem 1.2. Then there exists a map f from
m(A) @ Rw, to m( ) @& Rw, satisfying the conditions of Theorem 1.2. Since
[v+ Aw,, vs, vs] (resp. {vi+ uw,, ¥4, v31) is an orthonormal basis of m(A)
(resp. m(y)) relative to the inner product induced from (T,(S?), g,), we have

S Aw, vy, v, wy) = (v pwy, va, vs, wy)

where (a;;) € O(3) and k € R. By using the fact that f is a Lie algebra

isomorphism, we have a;, = a5 =0, ), =1 and k* = 1. Further by using

it for the relation (2.2), it follows that (14 A)? = (14 u)* and A* = (~.

Namely we have A = u. q.e.d.
Case (A;) : The possible g are as follows :

(4;) dim(g N 3u(2),) =0
(43) dim(g N &u(2),) =1
(A3) dim(g N 3u(2),) =3

First Case (A3) can not occur. In fact we have glaz, = g N 3u(2),
from dim( g N 8u(2),) = 1. Hence it follows from dim § = 3 that dim(g N
3u(2),) = 2, a contradiction. The case (A3) implies g = 8u(2),. Finally
Case (A3) implies § = 8u(2),. In fact, from g N 8u(2), = (0), g is ex-
pressed as | f(u)+u|u € 8u(2),} by means of a linear map f from 8u(2), to
8u(2),. Since g is a Lie algebra, we see that f is a Lie algebra homomor-
phism. Namely f is a zero map or Lie algebra isomorphism. On the other
hand, %, gives a Lie algebra isomorphism f: 8u(2),— 8u(2), such that
B, = | f(u)+ulue 8u(2),}. Hence if fis the Lie algebra isomorphism,
then f7'f': 8u(2), — 3u(2), gives an element of SO(3u(2),) and has a
non-zero fixed point. Namely §, N g = (0), a contradiction. Clearly 3u(2),
and 3u(2), defined the isomorphic homogeneous structures. The homoge-
neous structure defined from 8u(2), is the case A = 0 in the homogeneous
structures T({A). g.e.d.

3. The homogeneous structures on H®.
Theorem 3.1. The 3-dimensional hyperbolic space (H® = |(x, y. z) €

1
R|z> 0}, g= 7(dx’+dyz+dzz)) admits two types of homogeneous siruc-
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tures up to the isomorphisms :

(1) THz=g(TRY, Z)=AdV(X, Y, Z) (A2 0)
(2) T(N,Y = rg(X, OlglY, n)t—glY, ni
+8(X, V)é—g(£. V)X (A=0)

for X, Y, Ze X(H?), where dV is the volume form of (H®, g) and 7 = z—j—,

3 5 ox
é’———za—y, $=2‘¥.

Proof. Let's consider as H* = |x+yi+zjlx, y e R,z> 0} Clx+yi
+2j+ wk | (the algebra of quaternions). Then I,(H?) = SL(2, C)/+1 and
the isotropy subgroup K of I,(H*) at j € H® is SU(2)/+1 = SO(3). There-
fore the Lie algebra of I,(H°) and K are 8((2, C) and 3u(2), respectively.
Hence the possible connected subgroups G of I,(M) acting transitively on H®
are given as follows as in 8%:

(B,) dimG=6
(B,) dimG=4 and dim(GN K) =1
(B;) dimG=3and dim(GN K)=0

Case (B,): G = SL(2, C) with Lie algebra &((2, C). Note here
that there is a basis |u;, ¢;} (i =1, 2, 3) in 81(2, C) such that u¥|; =

2] o o
22l uf|j=¥; ua*|1=a—y
=0, [u1, cnl = tn—ca (m= 2, 3), [us, u;] =0, [us, ¢1] = —us, [ue, c.]
= —U, [U'Zs Cs] = C, [uz, Cx] = U, [‘U-a' Cz] = —C [u31 Ca] = —U, [Ct,
c;] =cx ((i, ], k) : even permutation of (1, 2, 3)) and 8u(2) = {c,, cs, c3).
Then it is easy to show that the m-component of a reductive decomposition
of g relative to 8u(2) is given by {u,+ Ac,, up—c,+ Acs, us—cs—Acz) (A

€ R) and the corresponding homogeneous structure T? is isomorphic to AdV,

and [w, um] = un (m=2,3) [u, ci)
J

where dV denotes the volume form of (H*, g). T? and T* are isomorphic iff
AT = A

Case (B;) : To begin with, we shall state the definitions and theorems
given in [2], [3] without proof. By definition, a Riemannian space satisfies
the condition (S.M) if M is a simply connected homogeneous Riemannian
space of sectional curvature < 0 which admits a connected subgroup S of
I,(M) acting simply transitively on M.

Definition 3.2. Let M be a Riemannian space satisfying the condition
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(S.M) without Euclidean factor relative to the de Rham decomposition of M.
Then a connected subgroup S’ of Io(M) is said to be a modification of S if S’
acts simply transitively on M and the Lie algebra 3’ of S’ is in the normalizer
n(8) of the Lie algebra 3 of S. (cf. [3] p. 43, 44)

We also say that 8’ is a modification of 3.

Remark. S'is a modification of S if and only if S is a modification of
S'. (cf. [3] p. 45 remark (b))

Definition 3.3. Let (M, g) be a Riemannian space satisfying thé condi-
tion (S.M) and B the Killing form of the Lie algebra g of G = I,(M). Then
a subgroup S of G is said to be in standard position if for some point p € M,
B(V,U) =0 for all Ve [8, 8]* and all Ue §p. In the above [3, 8]+
denotes the orthogonal complement of [8, 8] in 8 relative to the inner prod-
uct induced from (T(M), g,) into 8 and Y, is the Lie algebra of the isotropy
subgroup of G at p. (cf. [3] p. 45)

We also say that & is in standard position.

Theorem 3.4. Let M be a Riemannian space satisfying the condition
(S.M) without Euclidean factor. Then for a connected subgroup S’ of I,(M)
acting simply transitively on M, there exists a unique subgroup S of I,(M)
being in standard position such that S' is a modification of S. (cf. [3] p. 48)

Theorem 3.5. Let M be a Riemannian space satisfying the condition
(S.M) without Euclidean factor. Then for subgroups S and S’ of I,(M) being
in standard position, there exists a € I(M) such that aSa™' = S'. Con-
versely, if S is in standard position then for any element a € I(M), aSa™"
= S' is in standard position. (cf. [3] p. 46 Remark (a) and p. 44)

Remark. We may state Theorem 3.4 and 3.5 in terms of Lie algebra.
First from Theorem 3.5, the Lie algebra being in standard position is ob-
tained from the fixed Lie algebra in standard position by adjoint representation
Ad(a) of some a € I(M). Now let 8 be the Lie algebra in standard position.
Then 8 and Ad(a)@ = 8’ (a € I,(M)) are Lie algebra isomorphic and iso-
metric relative to the inner products induced from (T,(M), g,) and (Too(M),
gap). respectively. Hence we find by Theorem 1.2 that the homogeneous
structures defined from these algebras are isomorphic. Furthermore a modi-
fication of & is transfered to a modification of 3' by Ad(a). Thus the homo-
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geneous structure defined from the Lie algebra of any subgroup of I(M)
acting simply transitively on M is isomorphic to that defined from the Lie
algebra of a subgroup of I(M) which is a modification of a fixed subgroup
of S, being in standard position.

Now, we shall apply the above fact to the case of H'.

Lemma 3.6. Puté—[ )IteR ‘MEC] Then 8 is in stan-
t(1+/\l) w ) ¢ ER]
dard position and 3,\—[ 114+ |we ¢ (A e R) are

modifications of 8 = 3,.
Proof. The Killing form Bon 8[(2, C) as real Lie algebra is given by
B(X, Y) = 8Re(irace (XY)). Further [3,, 8.] is (8 0) we Cl and the

orthogonal complement [ 85, 8,]% of [ 84, 8.] in 8, relative to the inner pro-
duct induced from (T (H’), g into 8, is equal to

[(mgm —x(10+xi))|teR]'

Hence B([ 8, 81", ©®u(2)) =0 iff A =0. On the other hand, we have
obviously dim 8, =3 and &, 2u(2) = (0) for all A€ R. Thus &, is
in standard position. If we consider a subalgebra 8 of the normalizer n(3,)
of 3, with dimension 3, it is easy to show that there exists A € R such that

8 = 8, because of n(3,) = [((z) _1:)

modifications of 8 = 8,. q.e.d.

z, we C}. Hence 3, (A € R) are

Lemma 3.7. Let 3, and 3, be as in the above lemma. Then there
exisis a Lie algebra isomorphism @ from 8, to 8, such that ¢ is an isomeiry
relative to the inner products induced from (T, (H*), g») iff A* = 1.

Proof. First note that 8, (k = A, 1) have orthonormal bases

[Vk=(1+ki)(% ?), U, = (O 1),u3=(0 i) ;
0 2 00 00

Now if there exists ¢ in this lemma, then it follows that A* = 4 by the same
argument with the proof of Lemma 2.3. Conversely if A’ = 4, then the

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 28/iss1/23
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existance of such ¢ is obvious. g.e.d.

Proposition 3.8. The homogeneous structures T(A) defined from 3,
(A=0) are given by

T(A)xY = A8(X, §)g(Y, n)T—g(Y, Onl+g(X, Y)E—g(€, V)X
Jor X, Y e X(H°)

) o
ayyg_z

d
where we put 7 = 2 =z Pyt

oz

Proof. By using [va, uz2] = us+ Aus, [va, us] = us— Aus, [uz, us] =0

and v¥ |, = aiz ) uf |, = —a% R u¥l, = % o we see that T(A) satis-
fies

T(A) 2 aaz L= (D) g ai o= T(/\)a% aax = 0

T( A)%% o _% s Tz ai o a_az w

T(’Ua% aaz " = _a_i, N T(/\)% aay " - % W

T3], = Ayl Wiy, = 4 5l,

from (1.1) in section 1.
On the other hand, the connected subgroup of I,(H®) corresponding to

Ba is
M1+ Ad) 0 1 w
S/\ = [(e 0 e—m+u))<0 Y)

Let’s identify S, with H°. Namely, for (x, y, z) € H°, we put

te R
we C

] (semi-direct product)

e(log 2N +AD 0 1 e—(lozz)(x+yi}
@(x, Yy, Z) = 0 -fog 2x1+a8 |\ 1

e

This & gives a diffeomorphism between S, and H®, and H® admits group
structures defined from S, Hence we have
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] 9
(L(x.y.m)*(—)m = &(x, Y. z)*( 5x )m

3 . 2]
= zcos(Alogz) o +zsin(Alog z) 3y

(3.2) (le.y.z))*(i)m = O(x, y, 2)*( aa; ).;,—_.

. 2 _9
= —zsin(Alog 2z) aJ‘:+zcos()tlogz) 3y

(L[x.y.z»)*(i)m= o(x, y, z)*( o ) 3

oz oz u‘,»_z oz’

Since T(A) is S,-invariant, by using (3.1)and (3.2), it follows easily that

T(A)ef =T(Nen=T(A)nt =0, T(A)pp= & T(A)né = —1,
T(Nel = £ T(Mef = — ¢ and T(Dep = AL, T(A)el = — An.

Thus we have

T(A)xY = 2g(X, E)lglY, )¢ —g(Y, OInl+glX, Y)E—g(€, V)X
for X, Ye X(H*)

Case (B,) : The following theorem has been proved in [2].

Theorem 3.9. Let M be a connected, simply connected homogeneous
Riemannian space of sectional curvature < 0 and G a connected subgroup of
I(M) acting transitively on M. Then there exists a solvable subgroup of G
acting simply transitively on M. (cf. [2] p. 327)

Lemma 3.10. Let G be a connected subgroup of dimension 4 of I,(H*)
acting transitively on H®. then there exists a solvable subgroup S of G acting
simply transitively on H® such that N(S) = G, where N(S) is the normalizer

of S.

Proof. Let g be the Lie algebra of G. Then there exists a solvable
Lie subalgebra 8 of g such that 8 N 8u(2) = (0) and dim 8 = 3 from
Theorem 3.9. By the way, we have already known the form of such 8from the
remark in this section and Lemma 3.6 : 8 = Ad(a) 8,, where A R,
ac 1o wd = ("TNSR
g =Ad(a) 8, & Rv (v e 3u(2)) fromdim g=4 and dim(g N 3u(2)) =1.

] Therefore we have
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This implies Ad(a™')g = 8,® RAd(a™")v. Now let Ad(a™")v = (k —Z)

a w) of 8,, there is s € R and

(k. b, c € C). Then for any element (0 .

(oﬂ _;) € 8, such that

(6 o) (6 o) = (25 )= (6 —5)+(C &)

0 —a/’ \c —k —2¢c —cw 0 —p8 c —k/)°

Note that ¢ & 0 implies s = —2a. If A % 0, we have ¢ = 0 since a ¢ R.

Therefore Ad(a™')v € n(8x) = n(8,). Hence we get Ad(a™')3 = n(3,)

from dim n(8,) = 4. Thus g is the normalizer of Ad(a) 8,. If A=0 and

¢ % 0, then s = —2¢a and therefore 8+ sk = 8—2ak = cwi.e. 8 = 2ka+

cw. Here # € R. Hence g is the normalizer of Ad(a) 8, by using the same

argument as the case A % 0. As consequence, we have G = N{aS,a™').
g.e.d.

The homogeneous structures defined from the reductive decompositions
of the Lie subalgebra g of 81(2, C) satisfying the condition (B;) coincide
with those defined from the Lie algebra 3 satisfying the condition (B;). In
fact, by Lemma 3.10, g takes the form Ad(a)n(8,) and its reductive de-
compositions is given by Ad(a)n(8,) = Ad(a) 81 @ Ad(a) (n(8,) N 8u(2)),
since we have n(38, = [(8 ”)

0 —z
decompositions of the Lie algebra of aN(S,)a™' at a(j) € H®. Thus the
required result is obtained from Theorem 1.2, q.e.d.

z, we C’]. These are the reductive

4. The homogeneous structures on R°.

Theorem 4.1. The 3-dimensional Euclidean space (R®, g) admits two
types of homogeneous structures up io the isomorphisms :

R
C (A>0)

for X, Y, Z € X(R*), where dV is a volume form of (R’ g).

Proof. The possible G’s which are connected subgroups of I(R?®) =
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acting transitively on R® are as follows as in

the case S® and H*:

(C,) dim G=6
(C;) dim G=4 and dim(G N SO(3)) =1
(C;) dim G= 3 and dim(G N SO(3)) =0

Case (C,): G = I(R*) = R*XS0(3) with Lie algebra

g=R* @ 80(3) =

If we choose u, = Eaz—Ezs, Uy = E13_E31, Us = E21—E12 and e, =

= E\,, e, = E,,, es = E,; as a basis of g, then we have

o 2] o

* * Ak
e = — , P s e —_—
1 Io arx |o €z |o a_}’ ’n 3 Io 2z

(4.1) [uy, u;] = ux for even permutation (i, j, k) of (1, 2, 3)

_ [0 for i=
e o] = [sgn(i, j. ke

0

As in the case S° and H°, by using [ 80(3), m]  m, it follows easily that
the m-component of the reductive decomposition of g relative to.30(3) is
given by m* = (e;+ Au,|i =1, 2, 3) (A € R) and the homogeneous struc-
ture defined from g= m* @ 80(3) is isomorphic to AdV.

Case (C;) : By Theorem 3.9, it sufficies to determine the solvable
subalgebra g of R® @ ©o(3) such that dim g= 3 and dim(g N 80(3)) = 0.
We may express g as (e,+f(e;)|i =1, 2, 3) by means of a linear map f
from R’ to 30(3) since g is a complement of 30(3). Now by using the fact
that g is a solvable Lie algebra, we have f(e,) = sf(e,), fles) = tf(e1),
where ¢, s € R and further g is expressed as {&,+u, &,, &), |&;]i=1, 2,
3} is an orthonormal basis of R’ and z € 80(3). Since we may choose a ba-
sis {u;]i = 1, 2, 3| of 80(3) such that @, and &, (i, j =1, 2, 3) satisfy
the relation (4.1), g is given by (A4,+€,, &;, &). Here it is clear that
the Lie algebras (A#,+¢é,, é;, €;) and ga = (Au,+e,, e,, e;) are Lie
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algebra isomorphic and isometric relative to the inner products induced from
(To(R?), go). Hence by Theorem 1.2 it suffices to determine the homogeneous
structures T(A) defined from g,. By (4.1) and (1.1) in section 1, we have

o

. T(X) 2 o —A %y

[ ar 3z |o

2| 2 -2
T g5 | =0 TWg5, |0— A

0

and the other components of T(A) are equal to zero. On the other hand, the
connected subgroup of I,(R*) corresponding to g, is

1 0 0 x
_]{0 cos(Ax) —sin(Ax) y
Gr = 0 sin(Ax) cos(Ax) =z x,y.z€R.

0 0 0 1

Since T(A) is Ga-invariant, we get T(A) 2. 2| _ Ai T(A) 2 ° | =

2 A ’ or 3y q oz q’ or 92 q
— Aa—y by easy computation and the other components of T(A) are zero at
q

any point ¢ € R’. Thus we have

T(/\)xY=/\g(X’ a—ax)‘g(y’ aay) aaz g(y, aay)a_?']

(Ae R) for X, Y € X¥(R?).

By using the same argument as in the proof of Lemma 2.3, it easily follows
that T(A) and T(u) are isomorphic iff A* = 47,

Case (C,) : From Theorem 3.9, the Lie algebra g satisfying the con-
dition (C,) contains a Lie algebra satisfying the condition (C;). Therefore
g is expressed as (Ae,+é&,, €., €;) @ Ri, since there are no subalgebras
of dimension 2 in 80(3). Hence we have g = R* @ Ru,. Conversely it is
easy to show that the reductive decomposition of g is given by (A#4,+é,, &,
¢:» ® Rit,. Then from Theorem 1.2, the homogeneous structures defined
from the decomposition (A%, +¢&,. €,, €;) @ Ri, is isomorphic to the homo-
geneous structures defined from ga. This completes the proof of theorem
4.1. g.e.d.

-

5. The quotient space and homogeneous structures. As stated in (1.1)
of section 1 we have a one-to-one correspondence between the class of homo-
geneous structures on a homogeneous Riemannian space M, and the represen-
tations of M as quotient space of the minimum connected subgroup of I(M).
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Here we give these correspondence explicitly in case of S°, H°, R* in the

following table :

The class of homogeneous structures The representation of S*

Thvz = g(T’}Y, Z)
=MVIX. Y. Z) (A%1,A120) 1) S0(4)/80(3)

T(AN vz = (dV+ 216, @ (6: A\ 6:))X. Y. Z)
(A € R—(0)) 2) SU(2)xS0(2)/S0(2)

Txvz = dV(X, Y., Z) SU(Z)

1) S0O(4)/S0(3) is the reductive homogeneous space with decomposi-
tion 80(4) = m* @ &0(3) such that

0 x y z
mr = {| —x 0 —2z Ayllx, y, 2R
—y Az 0 —Ax

2) SU(2)xS0(2) is the group with the multiplication (4, e‘*){B, e'?)
= (A(e'®Be™ ), e“**®), where we embed the group SO(2) into GL(2, C)
ie
by a map e‘® — (g (1)), and SU(2) X S0(2)/S0(2) is the reductive homo-
geneous space with decomposition 3u(2) @ 80(2) = m(A) @ 380(2) such
that

m() = [(’(1“)” “lierze c].
4 —t
The class of homogeneous structures l The representation of H*
Tf\"yz = g(T?Y. Z)
= MV(X, Y, Z) (A20) 3 SL2, C)/£1/S0(3)
T(A)«Y = Ag(X, Og(Y. n)¢—glY, Onl S, = I(e"""“ w ) te R]
+8(X, Y)é—g(, )X (1 20) ATV o emwe €

3) SL(2, C)/+1/S0(3) is the reductive homogeneous space with de-
composition &1(2, C) = mA @ 8u(2) such that

t
z —

mA=[(1+Ai)( f)‘teR,zeC].
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The class of

The representation of R?
homogeneous structures

T;k'rz = g(TfQY- Z)

= MdWV(X, Y, Z) 4) R'XS0(3)/S0(3)
(A= 0)
T(/\)XYZ 1 0 O x
2] 2 2 i x
x, =2 y, 2 )2 _||0 cos(Ax) —sin(Ax) y|[*
/lg( ax)[g( 3)’) 9z Ga=1lo sin(Ax) cos(Ax) =z ge ¢
0 0 0 1

(v Z)2] 0> 0

4) R’XS0(3)/S0(3) is the reductive homogeneous space with decom-

position R* @ 80(3) = m* @ 30(3) such that

0 —Az Ayix
Az 0 —Ax iy
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