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IMBEDDINGS OF SOME SEPARABLE EXTENSIONS
IN GALOIS EXTENSIONS

TAKASI NAGAHARA

Throughout this paper, all rings will be assumed commutative with
identity element, R will mean a ring, and all ring extensions of R will
be assumed with identity element 1, the identity element of R. A
ring extension T/R 1is called strongly separable if T is a separable
R-algebra which is projective as an R-module (and so, T is a finitely
generated R-module). Given a set @ of automorphisms in a ring A
and a suktset T of A, we shall use the following conventions : (7, ®)
= the sulset of elements in & which leave the elements of T fixed;
J(®, A) = the fixring of @ in A; &|T = the restriction of & to T.
Now, in [1], M. Auslander and O. Goldman proved that if T/R is a
strongly separable extension such that 7 is a free R-module then T/R
is imbedded in a Galois extension of R. In (5], ‘G.]J. Janusz proved
that if 7/R is a strongly separable extension such that 7 has no proper
jdempotents then 7T /R is imbedded in a ®-Galois extension A/R
such that A has no proper idempotents (cf. [4], [8]). In this case,
there holds that J(J(7T, ®), A) =T, and moreover, A/T and T/R
have ranks in the sense of [2, Def. 2.5.2]. If, in general, A/R
is a ®-Galois extension and 7 is an intermediate ring of A/R with
J(S(T,®), A)=T then A/T and T/R are strongly separable extensions
with ranks (cf. [3, Th.1.3, Th.2.2, Lemma 4.1], and [2, Th.2.5.1,
Prop. 2.5.5])). In [7], the present author proved that every strongly
separable extension R[ae]/R with rank can be imbedded in a ®&-Galois
extension A/R such that J({(R[a], ®), A)=R[a].

In this paper, we shall prove the following imbedding theorems
which are analogous to some of the results on Galois extensions of fields.

Theorem 1. Let R[al/R be a strongly separable extension with
rank, and T/R[al an ©-Galois extension. Then, the ring extension
T/R can be imbedded in a &-Galois extension A|/R such that

J&(T, @), A) =T and J(R[a],®)|T = 9.

Theorem 2. Let E=R[a,, -+, @], and set E.=R[a,, -, a., i=1,
-« s, and E,=R. Assume that for every 0=i<s, Ei../E;is a strongly
separable extension with rank. Then, the ring extension E[/R can be
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tmbedded in a &-Galois extension AJ/R such that A= R[a,, -, @5, Gss,
<, an] and J(J(R[ay, -, al, ®), A)=R [a, -, al, t=1,, m

Throughout the rest of this note, let R[e¢]/R be a strongly sepa-
rable extension with rank, and T/R[«] an 9-Galois extension. Then,
by [7, Th. 1.1], there exists a separable polynomial f(X) in R[X]
such that R[X]/(f(X))= R[a] (g(X)+(f(X))—> g(a)). By [6, Th.
1.1], f(X) has a free splitting ring S = R[x,, >+, #,] where f(X) =
(X—2x,)-(X—=x,). By [6, Th.2.1], S is a Galois extension of R with
Galois group § where § is isomorphic to the group of permutations of
the set {x,, -~*, x,} under the mapping

x, %
7 (a(xl) o))

and there holds that J(J(R[xJ, B), S)=R[x], i=1, -, n. Moreover,
by [6, Cor. 1.1], R[x,] and R[a] are R-algebra isomorphic under the
mapping g(x,) —> g(a). We shall identify R[x,] (resp. g(x,)) with
R[a] (resp. g(@)). Then T is an 9-Galois extension of R[x,], and for
each ¢, T is an R[x;]-algebra by virtue of the R-algebra isomorphism

Rlx] — R[x,] (x, —> x,).
Now, we set {i] = R[x,], ¢{=1, -+, n, and for any permutation

12 -mn
Covpooen)

of the set (1, -+, #} and for any integer m <, we consider the tensor

product

(- (SQipT) R TIR -+ ) rpaT
where S=Sg p), .-, (p) Then this is an S-algebra, and which will
be denoted by S(p,, -*-, pn). Moreover, elements

(+(6Q6,)Q8)Q ) Qbn € S(py, **, Pm)

will be denoted by a®b, ®b,Q -+ ®b,. Under this situation, we prove
first the following

Lemma 1. Let

1 2 -« m
(oo g o )
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be any permutation of the set {1, -, m} (m<mn). Then S, -+, m) is
S-algebra isomorphic to S(p,, -+, pn) under the mapping

R85 ® @by — a® b, @by, @ Qb
Proof. For any i <m, we have canonical S-isomorphisms
S(Pn vy Diey b Pi+1)

= (S(ps, *, 2Ry TR, 1T

= TQp,, (S(D1, -, 2-)QpaT)

=(TQup, 1 S(01, ) 5i-))QpT

= (S(p1, ', D), 1T T

= S(Pn 0y Dty D, Pt)-

Hence we obtain

S(Pl, Y pm)gs(ph Y pl—h pi*h pi) Pt+2, Ty ﬁm)'

Repeating such transpositions, it follows that

S(P;, tty j),,,)":‘-’S(]_, tty, m),
completing the proof.
Now we set
A =8Q, -, n)
S, = {a@R1R1IR - R®1EA; ¢ <= S},
T, = {1056, Q - QRb,=A; b,=1 forall j=+*i)

where ¢ =1, .-, n. Then we can prove the following
Lemma 2. S=3S,, T=7T,(G =1, '+, n) under the canonical map-
pings.

Proof. Since R[x,] is a direct summand of T (as R[x,]-module)
the canonical mappings

S—> SQ1), S, -, ) — S, -, i+ DE=1, -, n—1)

are injective. Hence S =S, under the canonical mapping. Moreover,
for each { < #, the canonical mapping
S@ — SG, 1, -, i—1, 7+ 1, -, n)

is injective. Since R[x;] is a direct summand of S (as R[x;]-module),
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the canonical mapping 7 — S(i) is injective. Then, by Lemma 1, it
follows that 7 = T, under the canonical mapping.
Next, we shall prove the following

Lemma 3. Let 0 € sothat olx;) = x,, o (%) =%, (=1, 2)
and < an element in the Galois group O of T/R[x,]. Then

(1) there exists an R-algebra automorphism o* of A such that
Ha®b, Q0. & - Qb)) = ala) ® bq] & bqg K - ba',,-

(2) For each i< mn, there exists an R-algebra automorphism = of
A such that

™™Wa @b, Q- Qb)) =a @b, R see Rb.1 R r(bt) R @R b,

(3) o*t® = W* and PP = pPcD for every pE O where
i, 7=1 -, n and i~7].

@4 If =, -, 7€ and o*c, V- =1 then o¢* =P = ..
= =1,

Proof. Asis easilj seen, we have an R-algebra isomorphism
A=S8Q, -, n) — S(p., =, pu)
such that

a ®b1 ® tee ®bn - ”(a) @ bl ® o ®bn-

Then by Lemma 1, we obtain an automorphism of A such that
a®bl ® o ®b-n -_ ’T(a)®bql® b ®bq”~

Thus we obtain (1). The assertion (2) is easily seen. To see (3), let
a@b, Q- b, te an arbitrary element of A, and 1= an integer <.
If we set j = p, then

T @ @b, Q- Qb))
=6a®b6,Q - Qb )R Q@ ® b.)
= ) ®b,® b, @b) Qb DR,

=P (a(a) R, Q- ®b,_ b, ®b,,, ® - Rb,)
S ':(j)ﬂ*(a ® b1 ® R ® bn)-

Thus ¢*c® = ©®2¢*, The other half of (3) is obvious. The assertion
(4) will be easily seen by using of the result of Lemma 2.

Now, for s €, and for = € D, we denote by ¢*, = (i=1, -, n)
automorphisms of A as in the preceding lemma, and write
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F=1{"; 0 €3, & ={"EF"; alx) =},

EQ“) —_ {1.(‘-); = @} (" =1, «-, n)’

® = the group generated by §* U U --- U @,

®, = the group generated by F,* U DU -+ U .
Then, as an easy consequence of Lemmas 2 and 3, we obtain the follow-
ing

Lemma 4. (1) $=§F* (6 —>o"), =9 ( — ) (i=1, -, )

(2) M, 9P = 9P X - x £ (direct product).

3) ©& = F*(I1.H®) = (I1,9P) * (semi-direct product), in which
I1. 9% is normal. \

4) 6, =FH (ML) = (M9 F.* (semi-direct product), in
which I17..9% is normal. '

(53) &9 =@, x OV (direct product).

Now, for any subset B of S, we denote by B, the image of B
under the canonical isomorphism S -—= S,, and for any subset C of 7,
we denote by C; the image of C under the canonical isomorphism T——>
T, where i =1, ---, n (cf. Lemma 2). It is obvious that R[x,]. =
R[x.],. We write R[x,] = R[x,]. and R = R,. Under this situation,
we shall prove the following

Lemma 5. (1) If Cisan Rix,]-subalgebra of T and J(J(C, ), T)
= C then J(J(S+«T,: TiaC;, ©), A)=S«T,--T:aCi, i=n, n—1,--+,2.
In particular, J(3(S.T,, ©), A) =S.T,.

(2) If B is an R{[x,)-subalgebra of S and J(3(B, ¥), S) =B
then J(IB.T,, ®), A) = B.T,. Inparticular, J(J(T, ©), A)=T,.

(3) A isa Galois extension of R with Galois group ®.

(4) T, is a Galois extension of R[x,] with Galois group
J(R[x,], ®)\ T, which is isomorphic to T as Galois extension of R[x,]
under the canonical mapping. - :

Proof. By Lemma 4, we have the normal series
H® C HEVHMC . C IOV C FHIHD) = ©, and
0L90CFHILDY) =6,
Then, by [3, Th.1.3] and [4, Cor. 1.3], we obtain
SyTy+ Tyoy = JOP-9, 4) (G=nn—1, -, 2),
S. = J(IS®, A), R = J(G, A), and
S.T, = J(IIi.9®, 4) D J(B,, A)=T..
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From these facts, one will easily see (1) and (2). Now, since S is
$-Galois over R and T is ©-Galois over R[x,], by [3, Th.1.3], there
exist elements a,, -+, @, b,, -, b, in S and u,, -+, u, v,, s, U in
7 such that

2 ajo(b;) =9, ., (Kronecker’s delta) for all ¢ € § and

2k wut(v) =6, forall - € 9.
Then we have

ZJ."I,‘.._k,,(ai)*(uhl)l (ukn)n P((vk,,)" (vb])x(bj)*) =0,

for all p € F*(I1D¥) = O where (a), 0)sE Sy, 7 =1, -, 7, () €T,
k=1, s(1<i<#u). Hence by [3, Th.1.3], A is G-Galois over R.
Thus we obtain (3). The last assertion (4) follows immediately from
the fact 7, = J(®,, A) D (8,9P, A) = R[x,] and the product &,H
is direct (Lemma 4).

Now we are at the position to prove our theorems.

Proofs of Theorems 1 and 2. The first theorem is a easy conse-
quence of Lemma 5 (2, 3, 4). Hence we shall prove the second theorem.
Since the ring extension E/E, is Galois, we assume that for an integer
0<<i<s, the ring extension E/E; can be imbedded in a &,-Galois
extension A; of E; such that

-Ai = Ei[al'l‘l; Tty Gy /7S P ) am‘]) and
](3(Ei[al+:, sty a:], S), Ai) = Et[al+ly "ty a]
where ¢ =¢+1, -, m. Then by Lemma 5, the ring extension

A;/E;., can be imbedded in a &,_,-Galois extension A,_, of E,_, such
that

Aiv = Ecalay , @, Gy, -, Gy "*% a"‘i.—lj’ and
JR(Eiala, -, al, Gy, A.) = Eiy [ay, o, al]

where ¢=1¢, -+, m;_,. . This argument enables us to obtain the theorem.
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