Mathematical Journal of Okayama University

Volume 17, Issue 1

1974

Article 5

DECEMBER 1974

Imbeddings of some separable extensions in Galois extensions

Takasi Nagahara*

Copyright ©1974 by the authors. *Mathematical Journal of Okayama University* is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

^{*}Okayama University

IMBEDDINGS OF SOME SEPARABLE EXTENSIONS IN GALOIS EXTENSIONS

TAKASI NAGAHARA

Throughout this paper, all rings will be assumed commutative with identity element, R will mean a ring, and all ring extensions of R will be assumed with identity element 1, the identity element of R. A ring extension T/R is called strongly separable if T is a separable R-algebra which is projective as an R-module (and so, T is a finitely generated R-module). Given a set \mathfrak{G} of automorphisms in a ring A and a subset T of A, we shall use the following conventions: $\Im(T, \Im)$ = the subset of elements in \otimes which leave the elements of T fixed; $I(\mathfrak{G}, A) = \text{the fixring of } \mathfrak{G} \text{ in } A; \mathfrak{G} | T = \text{the restriction of } \mathfrak{G} \text{ to } T.$ Now, in [1], M. Auslander and O. Goldman proved that if T/R is a strongly separable extension such that T is a free R-module then T/Ris imbedded in a Galois extension of R. In [5], G. J. Janusz proved that if T/R is a strongly separable extension such that T has no proper idempotents then T/R is imbedded in a \mathfrak{G} -Galois extension A/Rsuch that A has no proper idempotents (cf. [4], [8]). In this case, there holds that $J(\Im(T, \mathbb{G}), A) = T$, and moreover, A/T and T/Rhave ranks in the sense of [2, Def. 2.5.2]. If, in general, A/Ris a \mathfrak{G} -Galois extension and T is an intermediate ring of A/R with $I(\Im(T, \Im), A) = T$ then A/T and T/R are strongly separable extensions with ranks (cf. [3, Th. 1. 3, Th. 2. 2, Lemma 4. 1], and [2, Th. 2. 5. 1, Prop. 2.5.5]). In [7], the present author proved that every strongly separable extension R[a]/R with rank can be imbedded in a G-Galois extension A/R such that $J(\Im(R[a], \Im), A) = R[a]$.

In this paper, we shall prove the following imbedding theorems which are analogous to some of the results on Galois extensions of fields.

Theorem 1. Let R[a]/R be a strongly separable extension with rank, and T/R[a] an \mathfrak{D} -Galois extension. Then, the ring extension T/R can be imbedded in a \mathfrak{D} -Galois extension A/R such that $J(\mathfrak{J}(T, \mathfrak{D}), A) = T$ and $\mathfrak{J}(R[a], \mathfrak{D})/T = \mathfrak{D}$.

Theorem 2. Let $E=R[a_1, \dots, a_s]$, and set $E_i=R[a_1, \dots, a_i]$, i=1, \dots , s, and $E_o=R$. Assume that for every $0 \le i < s$, E_{i+1}/E_i is a strongly separable extension with rank. Then, the ring extension E/R can be

T. NAGAHARA

60

imbedded in a \mathfrak{G} -Galois extension A/R such that $A = R[a_1, \dots, a_s, a_{s+1}, \dots, a_m]$ and $J(\mathfrak{R}[a_1, \dots, a_t], \mathfrak{G}), A) = R[a_1, \dots, a_t], t = 1, \dots, m.$

Throughout the rest of this note, let R[a]/R be a strongly separable extension with rank, and T/R[a] an \mathfrak{P} -Galois extension. Then, by [7, Th. 1.1], there exists a separable polynomial f(X) in R[X] such that $R[X]/(f(X)) \cong R[a]$ $(g(X)+(f(X)) \longrightarrow g(a))$. By [6, Th. 1.1], f(X) has a free splitting ring $S = R[x_1, \dots, x_n]$ where $f(X) = (X-x_1)\cdots(X-x_n)$. By [6, Th. 2.1], S is a Galois extension of R with Galois group \mathfrak{F} where \mathfrak{F} is isomorphic to the group of permutations of the set $\{x_1, \dots, x_n\}$ under the mapping

$$\sigma \longrightarrow \begin{pmatrix} x_1 & \cdots & x_n \\ \sigma(x_1) & \cdots & \sigma(x_n) \end{pmatrix}$$

and there holds that $J(\Im(R[x_i], \Im), S) = R[x_i]$, $i=1, \dots, n$. Moreover, by [6, Cor. 1.1], $R[x_1]$ and R[a] are R-algebra isomorphic under the mapping $g(x_1) \longrightarrow g(a)$. We shall identify $R[x_1]$ (resp. $g(x_1)$) with R[a] (resp. g(a)). Then T is an \mathfrak{D} -Galois extension of $R[x_1]$, and for each i, T is an $R[x_i]$ -algebra by virtue of the R-algebra isomorphism $R[x_i] \longrightarrow R[x_1]$ ($x_i \longrightarrow x_1$).

Now, we set $[i] = R[x_i]$, $i = 1, \dots, n$, and for any permutation

$$\left(\begin{array}{ccc} 1 & 2 & \cdots & n \\ p_1 & p_2 & \cdots & p_n \end{array}\right)$$

of the set $\{1, \dots, n\}$ and for any integer $m \le n$, we consider the tensor product

$$(\cdots((S\bigotimes_{[p_1]}T)\bigotimes_{[p_2]}T)\bigotimes\cdots)\bigotimes_{[p_m]}T$$

where $S = S_{[p_1], [p_2], \dots, [p_m]}$. Then this is an S-algebra, and which will be denoted by $S(p_1, \dots, p_m)$. Moreover, elements

$$(\cdots((a\otimes b_1)\otimes b_2)\otimes\cdots)\otimes b_m\in S(p_1,\cdots,p_m)$$

will be denoted by $a \otimes b_1 \otimes b_2 \otimes \cdots \otimes b_m$. Under this situation, we prove first the following

Lemma 1. Let

$$\begin{pmatrix} 1 & 2 & \cdots & m \\ p_1 & p_2 & \cdots & p_m \end{pmatrix}$$

61

be any permutation of the set $\{1, \dots, m\}$ $(m \le n)$. Then $S(1, \dots, m)$ is S-algebra isomorphic to $S(p_1, \dots, p_m)$ under the mapping

$$a \otimes b_1 \otimes b_2 \otimes \cdots \otimes b_m \longrightarrow a \otimes b_{p_1} \otimes b_{p_2} \otimes \cdots \otimes b_{p_m}$$

Proof. For any i < m, we have canonical S-isomorphisms $S(p_1, \dots, p_{i-1}, p_i, p_{i+1}) = (S(p_1, \dots, p_{i-1}) \bigotimes_{[p_i]} T) \bigotimes_{[p_{i+1}]} T$

$$= (S(p_1, \dots, p_{i-1}) \bigotimes_{[p_{i-1}]} T) \bigotimes_{[p_{i+1}]} T$$

$$\cong T \bigotimes_{[p_{i+1}]} (S(p_1, \dots, p_{i-1}) \bigotimes_{[p_{i}]} T)$$

$$\cong (T \bigotimes_{[p_{i+1}]} S(p_1, \dots, p_{i-1})) \bigotimes_{[p_{i}]} T$$

$$\cong (S(p_1, \dots, p_{i-1}) \bigotimes_{[p_{i+1}]} T) \bigotimes_{[p_{i}]} T$$

$$= S(p_1, \dots, p_{i-1}, p_{i+1}, p_{i}).$$

Hence we obtain

$$S(p_1, \dots, p_m) \cong S(p_1, \dots, p_{i-1}, p_{i+1}, p_i, p_{i+2}, \dots, p_m).$$

Repeating such transpositions, it follows that

$$S(p_1, \dots, p_m) \cong S(1, \dots, m)$$

completing the proof.

Now we set

$$A = S(1, \dots, n)$$

$$S_* = \{a \otimes 1 \otimes 1 \otimes \dots \otimes 1 \in A : a \in S\},$$

$$T_i = \{1 \otimes b_1 \otimes \dots \otimes b_4 \in A : b_i = 1 \text{ for all } i \neq i\}$$

where $i = 1, \dots, n$. Then we can prove the following

Lemma 2. $S \cong S_*$, $T \cong T_i$ $(i = 1, \dots, n)$ under the canonical mappings.

Proof. Since $R[x_1]$ is a direct summand of T (as $R[x_1]$ -module), the canonical mappings

$$S \longrightarrow S(1), S(1, \dots, i) \longrightarrow S(1, \dots, i+1) (i=1, \dots, n-1)$$

are injective. Hence $S \cong S_*$ under the canonical mapping. Moreover, for each $i \leq n$, the canonical mapping

$$S(i) \longrightarrow S(i, 1, \dots, i-1, i+1, \dots, n)$$

is injective. Since $R[x_i]$ is a direct summand of S (as $R[x_i]$ -module),

T. NAGAHARA

the canonical mapping $T \longrightarrow S(i)$ is injective. Then, by Lemma 1, it follows that $T \cong T_i$ under the canonical mapping.

Next, we shall prove the following

Lemma 3. Let $\sigma \in \mathcal{F}$ so that $\sigma(x_i) = x_{p_i}$, $\sigma^{-1}(x_i) = x_{q_i}$ $(i = 1, \dots, n)$ and τ an element in the Galois group \mathfrak{P} of $T/R[x_i]$. Then

- (1) there exists an R-algebra automorphism σ^* of A such that $\sigma^*(a \otimes b_1 \otimes b_2 \otimes \cdots \otimes b_n) = \sigma(a) \otimes b_{q_1} \otimes b_{q_2} \otimes \cdots b_{q_n}$.
- (2) For each $i \leq n$, there exists an R-algebra automorphism $\tau^{(i)}$ of A such that

$$\tau^{(i)}(a \otimes b_1 \otimes \cdots \otimes b_n) = a \otimes b_1 \otimes \cdots \otimes b_{i-1} \otimes \tau(b_i) \otimes b_{i+1} \otimes \cdots \otimes b_n$$

- (3) $\sigma^* \tau^{(i)} = \tau^{(p_i)} \sigma^*$ and $\tau^{(i)} \rho^{(j)} = \rho^{(j)} \tau^{(i)}$ for every $\rho \in \mathfrak{P}$ where $i, j = 1, \dots, n$ and $i \neq j$.
- (4) If $\tau_1, \dots, \tau_n \in \mathfrak{P}$ and $\sigma^* \tau_1^{(1)} \dots \tau_n^{(n)} = 1$ then $\sigma^* = \tau^{(1)} = \dots = \tau^{(n)} = 1$.

Proof. As is easily seen, we have an R-algebra isomorphism

$$A = S(1, \dots, n) \longrightarrow S(p_1, \dots, p_n)$$

such that

$$a \otimes b_1 \otimes \cdots \otimes b_n \longrightarrow \sigma(a) \otimes b_1 \otimes \cdots \otimes b_n$$
.

Then by Lemma 1, we obtain an automorphism of A such that

$$a \otimes b_1 \otimes \cdots \otimes b_n \longrightarrow \sigma(a) \otimes b_{q_1} \otimes \cdots \otimes b_{q_n}$$
.

Thus we obtain (1). The assertion (2) is easily seen. To see (3), let $a \otimes b_1 \otimes \cdots b_n$ be an arbitrary element of A, and $1 \leq i$ an integer $\leq n$. If we set $j = p_i$ then

$$\sigma^*\tau^{(i)} (a \otimes b_1 \otimes \cdots \otimes b_n)$$

$$= \sigma^*(a \otimes b_1 \otimes \cdots \otimes b_{i-1} \otimes \tau(b_i) \otimes b_{i+1} \otimes \cdots \otimes b_n)$$

$$= \sigma(a) \otimes b_{q_1} \otimes \cdots b_{q_{j-1}} \otimes \tau(b_{q_j}) \otimes b_{q_{j+1}} \otimes \cdots \otimes b_{q_n}$$

$$= \tau^{(j)} (\sigma(a) \otimes b_{q_1} \otimes \cdots \otimes b_{q_{j-1}} \otimes b_{q_j} \otimes b_{q_{j+1}} \otimes \cdots \otimes b_{q_n})$$

$$= \tau^{(j)} \sigma^*(a \otimes b_1 \otimes \cdots \otimes b_n).$$

Thus $\sigma^* \tau^{(t)} = \tau^{(p_l)} \sigma^*$. The other half of (3) is obvious. The assertion (4) will be easily seen by using of the result of Lemma 2.

Now, for $\sigma \in \mathcal{F}$, and for $\tau \in \mathcal{F}$, we denote by σ^* , $\tau^{(i)}$ $(i = 1, \dots, n)$ automorphisms of A as in the preceding lemma, and write

62

$$\mathfrak{F}^* = \{\sigma^* \; ; \; \sigma \in \mathfrak{F}\}, \quad \mathfrak{F}_1^* = \{\sigma^* \in \mathfrak{F}^* \; ; \; \sigma(x_1) = x_1\},$$
$$\mathfrak{S}^{(1)} = \{\tau^{(1)} \; ; \; \tau \in \mathfrak{F}\} \; (\mathbf{i} = 1, \; \cdots, \; n),$$

 \mathfrak{G} = the group generated by $\mathfrak{F}^* \cup \mathfrak{P}^{(1)} \cup \cdots \cup \mathfrak{P}^{(n)}$,

 \mathfrak{G}_1 = the group generated by $\mathfrak{F}_1^* \cup \mathfrak{P}^{(2)} \cup \cdots \cup \mathfrak{P}^{(n)}$.

Then, as an easy consequence of Lemmas 2 and 3, we obtain the following

Lemma 4. (1) $\mathfrak{F} \cong \mathfrak{F}^* (\sigma \longrightarrow \sigma^*), \ \mathfrak{D} \cong \mathfrak{D}^{(1)} (\tau \longrightarrow \tau^{(i)}) \ (i = 1, \dots, n).$

- (2) $\Pi_i \, \mathfrak{D}^{(i)} = \mathfrak{D}^{(1)} \times \cdots \times \mathfrak{D}^{(n)}$ (direct product).
- (3) $\mathfrak{G} = \mathfrak{F}^*(\Pi_i \mathfrak{F}^{(i)}) = (\Pi_i \mathfrak{F}^{(i)}) \mathfrak{F}^*$ (semi-direct product), in which $\Pi_i \mathfrak{F}^{(i)}$ is normal.
- (4) $\mathfrak{G}_1 = \mathfrak{F}_1^*(\Pi_{i-2}^n \mathfrak{P}^{(i)}) = (\Pi_{i-2}^n \mathfrak{P}^{(i)}) \mathfrak{F}_1^*$ (semi-direct product), in which $\Pi_{i-2}^n \mathfrak{P}^{(i)}$ is normal.
 - (5) $\mathfrak{G}_1\mathfrak{H}^{(1)} = \mathfrak{G}_1 \times \mathfrak{H}^{(1)}$ (direct product).

Now, for any subset B of S, we denote by B_* the image of B under the canonical isomorphism $S \longrightarrow S_*$, and for any subset C of T, we denote by C_i the image of C under the canonical isomorphism $T \longrightarrow T_i$, where $i = 1, \dots, n$ (cf. Lemma 2). It is obvious that $R[x_1]_* = R[x_1]_1$. We write $R[x_1] = R[x_1]_*$ and $R = R_*$. Under this situation, we shall prove the following

Lemma 5. (1) If C is an $R[x_1]$ -subalgebra of T and $J(\Im(C, \Im), T) = C$ then $J(\Im(S_*T_1 \cdots T_{i-1}C_i, \Im), A) = S_*T_1 \cdots T_{i-1}C_i, i=n, n-1, \dots, 2$. In particular, $J(\Im(S_*T_1, \Im), A) = S_*T_1$.

- (2) If B is an $R[x_1]$ -subalgebra of S and $J(\Im(B, \Im), S) = B$ then $J(\Im(B_*T_1, \Im), A) = B_*T_1$. In particular, $J(\Im(T_1, \Im), A) = T_1$.
 - (3) A is a Galois extension of R with Galois group S.
- (4) T_1 is a Galois extension of $R[x_1]$ with Galois group $\mathfrak{I}(R[x_1], \mathfrak{G}) | T_1$ which is isomorphic to T as Galois extension of $R[x_1]$ under the canonical mapping.

Proof. By Lemma 4, we have the normal series

$$\begin{split} \mathfrak{H}^{(n)} &\subset \mathfrak{H}^{(n-1)} \mathfrak{H}^{(n)} \subset \cdots \subset \Pi \mathfrak{H}^{(i)} \subset \mathfrak{F}^* (\Pi \mathfrak{H}^{(i)}) = \mathfrak{G}, \quad \text{and} \quad \\ & \Pi_{i-2}^n \mathfrak{H}^{(i)} \subset \mathfrak{F}_1^* (\Pi_{i-2}^n \mathfrak{H}^{(i)}) = \mathfrak{G}_1. \end{split}$$

Then, by [3, Th. 1. 3] and [4, Cor. 1. 3], we obtain

$$S_*T_1 \cdots T_{j-1} = J(\mathfrak{S}^{(j)} \cdots \mathfrak{S}^{(n)}, A) \quad (j = n, n-1, \dots, 2),$$

 $S_* = J(\Pi \mathfrak{S}^{(i)}, A), R = J(\mathfrak{S}, A), \text{ and}$
 $S_*T_1 = J(\Pi_{i-2}^n \mathfrak{S}^{(i)}, A) \supset J(\mathfrak{S}_1, A) = T_1.$

T. NAGAHARA

From these facts, one will easily see (1) and (2). Now, since S is \mathfrak{F} -Galois over R and T is \mathfrak{F} -Galois over $R[x_1]$, by [3, Th. 1. 3], there exist elements $a_1, \dots, a_r, b_1, \dots, b_r$ in S and $u_1, \dots, u_s, v_1, \dots, v_s$ in T such that

$$\sum_{i} a_{i}\sigma(b_{i}) = \delta_{1,\sigma}$$
 (Kronecker's delta) for all $\sigma \in \mathcal{F}$ and $\sum_{k} u_{k}\tau(v_{k}) = \delta_{1,\tau}$ for all $\tau \in \mathfrak{F}$.

Then we have

$$\sum_{j,k_1,\ldots,k_n} (a_j)_* (u_{k_1})_1 \cdots (u_{k_n})_n \rho((v_{k_n})_n \cdots (v_{k_1})_1 (b_j)_*) = \delta_{1,\rho}$$

for all $\rho \in \mathfrak{F}^*(\Pi \mathfrak{P}^{(i)}) = \mathfrak{G}$ where $(a_j)_*, (b_j)_* \in S_*, j = 1, \dots, r, (u_{k_i})_i \in T_i, k_i = 1, \dots, s \ (1 \leq i \leq n)$. Hence by [3, Th. 1. 3], A is \mathfrak{G} -Galois over R. Thus we obtain (3). The last assertion (4) follows immediately from the fact $T_1 = J(\mathfrak{G}_1, A) \supset J(\mathfrak{G}_1\mathfrak{P}^{(i)}, A) = R[x_1]$ and the product $\mathfrak{G}_1\mathfrak{P}^{(i)}$ is direct (Lemma 4).

Now we are at the position to prove our theorems.

Proofs of Theorems 1 and 2. The first theorem is a easy consequence of Lemma 5 (2, 3, 4). Hence we shall prove the second theorem. Since the ring extension E/E_i is Galois, we assume that for an integer $0 < i \le s$, the ring extension E/E_i can be imbedded in a \mathfrak{G}_i -Galois extension A_i of E_i such that

$$A_i = E_i[a_{i+1}, \dots, a_s, a_{s+1}, \dots, a_{m_i}], \text{ and } J(\Im(E_i[a_{i+1}, \dots, a_t], \Im_i), A_i) = E_i[a_{i+1}, \dots, a_t]$$

where $t=i+1, \dots, m_i$. Then by Lemma 5, the ring extension A_i/E_{i-1} can be imbedded in a \mathfrak{G}_{i-1} -Galois extension A_{i-1} of E_{i-1} such that

$$A_{i-1} = E_{i-1}[a_i, \dots, a_s, a_{s+1}, \dots, a_{m_i}, \dots, a_{m_{i-1}}], \text{ and}$$

$$J(\Im(E_{i-1}[a_i, \dots, a_i], \Im_{i-1}), A_{i-1}) = E_{i-1}[a_i, \dots, a_i]$$

where $t = i, \dots, m_{i-1}$. This argument enables us to obtain the theorem.

REFERENCES

- [1] M. Auslander and O. Goldman: The Brauer group of a commutative ring, Trans. Amer. Math. Soc., 97 (1960), 367—409.
- [2] N. BOURBAKI: Algèbre commutative, Chapitres I-II, Actualitès Sci. Indust., No. 1290, Herman, Paris, 1961.
- [3] S. U. Chase, D. K. Harrison and Alex Rosenberg: Galois theory and Galois cohomology of commutative rings, Mem. Amer. Math. Soc., 52 (1965), 15—33.
- [4] F. DEMEYER: Separable algebras over commutative rings, Lecture notes in Math., No. 181, Springer, Berlin, 1971.

64

IMEEDDINGS OF SOME SEPARABLE EXTENSIONS

65

- [5] G.J. Janusz: Separable algebras over commutative rings, Trans. Amer. Math. Soc., 122 (1966), 461—479.
- [6] T. NAGAHARA: On separable polynomials over a commutative rings II, Math. J. Okayama Univ., 15 (1972), 149—162.
- [7] T. NAGAHARA: On separable polynomials over a commutative rings III, Math. J. Okayama Univ., 16 (1974), 189—197.
- [8] T. NAGAHARA: An imbedding theorem for separable algebras, Proc. Amer. Math. Soc., 41 (1973), 399-402.

DEPARTMENT OF MATHEMATICS,
OKAYAMA UNIVERSITY

(Received August 17, 1973)

Produced by The Berkeley Electronic Press, 1974

7