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ON TWO THEOREMS OF A. ABIAN
Dedicated to Professor Kiiti Morita on his 60th birthday
Isa0 MOGAMI

A (non-zero) ring without non-zero nilpotent elements is called a
reduced ring. Recently, in his papers [1] and [2], A. Abian proved
the following :

(I) A commutative reduced ring is a direct product of fields if and
only if it is orthogonally complete and hyperatomic.

(I1) A commutative reduced ring is a direct product of integral
domains if it is orthogonally complete and superatomic.

In this paper, we shall prove that both these are still true for non-
commutative reduced rings, more precisely,

Theorem 1. The following conditions are equivalent :

(1) R is a reduced ring which is orthogonally complete and
hyperatomic.

(2) R is a direct product of division rings.

Theorem 2. The following conditions are equivalent :

(1) R is a reduced ring which is orthogonally complete and
superatomic.

(2) R is adirect product of integral domains and the annihilators
of those integral domains exhaust the proper prime ideals of R.

Although Theorem 1 has been obtained in [4] and our proofs of
Theorems 1 and 2 are very similar to those of (I) and (II) in [1] and [2]
respectively, we are much more skilful in performing those.

1. Definitions and lemmas. In a reduced ring, as is well-known,
the intersection of prime ideals equals 0, namely, every non-zero
element is excluded by some prime ideal (see for instance [5, p. 56]),
and every idempotent is central. In what follows, R will represent
always a reduced ring.

Lemma 1. Let r and s be elements of a reduced ring R.

(@) If rs= 0, then sr =0, and for every prime ideal P of R
either r or s is contained in P.

(b) If ris=vr, then there exists one and only one element r' such
that rr' = rly, v’»' =r and rr'* =7r'. (' will be called the semi-inverse
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of r.)

Proof. (a) sr =0 is clear by (s7)* =0. Moreover, s*R =10
yields #Rs = 0. Hence, r= P or s € P.

(b) This is only a consequence of [3, Lemma 1 and Theorem 1].
However, for the sake of completeness, we give here the proof. Evi-
dently, (rsr —#)*=0, and so rsr =7. By making use of this, we have
(sr*—r)* = 0, which implies s7*=r and sr=sr's=rs. Then, 7'=7rs*
satisfies the relations requested. Now, let 77" = ¢'"r, #*'' = and
ry'"=¢". Then, r’»'=r=r'r* implies r'r=r"r*»'=rr'. Hence, r''=
r'Pr = y'rr' =y’ = #'.

Now, for %, y= R we define #<y if and only if xy=2* (and yx=2°
by Lemma 1 (a)). Then, the relation < is a partial order in R. In
fact, the reflexibility and the antisymmetry are easy, and the tran-
sitivity can be seen as follows : If xy=x> and yz=3* then x’z=xyz=
xy:P=x'y=2" i.e., x(xz—2") =0, which implies (xz—2*)x=0 (Lemma 1
(a)). Hence, (xz—%)’=0, and eventually xz=x"

Following [1], R is defined to be orthogonaily complete if for every
orthogonal subset T of R (i.e., asubset 7 such that st = 0 for every
different s, £ = T) there exists sup 7 with respect to < mentioned
above. A non-zero element ¢ € R is called an atom of R if 1< a
implies =0 or x=a. An atom g is called a hyperatom if ax~0 (xER)
implies always axs = ¢ for some s € R, and H will denote the set of
all hyperatoms of R. R is defined to be hyperatomic if for every non-
zero element » & R there exists ¢ € H such that a< 7. Finally, an
element ¢ € R is called a superatom if a is contained in every proper
prime ideal except exactly one P(g), and S will denote the set of all
superatoms of R. (In [2], a superatom in our sense is called an atom.)
Obviously, if ¢ isin S then & is non-zero and —« is a superatom with
P(—a)=P(a). R is defined to be superatomic if for every proper prime
ideal P and every element » =R\ P there exists ¢=S such that e=R\P
and a < 7.

Lemma 2. If ais a hyperatom of a reduced ring R then ad' is an
idempotent hyperatom, where o' is the semi-tnverse of a.

Proof. Since ¢ = H and aa=+0, by Lemma 1 (b) « has the
semi-inverse &' and ¢ = ga' is a central idempotent. If Oster =
aa'r r = R) then a(a'*)t = @ with some t = R, and so (er)({a’) = e.
It remains therfore to show that ¢ is an atom. Assume that #<e, i.e,,
ex = x*. Then, ex*= e(ex) = x*, which yields (ex — x)* = 0. Hence,
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x=ex=x’. Recalling that z is then central, we have xa<<a. Accord-
ingly, (x@)a’'=xe=x is either 0 or aa'=e. This proves that ¢ is an
atom.

Now, let E={e,|y=TI} be the set of all idempotent hyperatoms
of R. We claim that A, = ¢,R is a division ring. In fact, ¢, is the
identity of A, and for every non-zero element e¢z(r € R) there exists
an element s € R such that e, = e,rs = (¢,7) (¢,s) (Lemma 2).

Lemma 3. If R is a hyperatomic reduced ring, then for every
non-zero element v & R there holds rE 5~ 0.

Proof. By hypothesis, ra=«* with some ¢=H. Then, by Lemma
2, aa' € E and raa' = a’a’' = a0, where &' is the semi-inverse of
a.

Lemma 4. Let R be a reduced ring.

(@) Let a=S, and r=R. If ars~0 then ar, ra<S and Plar)=
P(ra) = P(a).

(b) Let ap b= S. Then, ab40 if and only if P(a) = P(b).

(¢c) Let a,bES. If ab5+0 and a—b%0 then a—b<ES and
P(a — b) = P(a).

Proof. (a) Immediately, ar is contained in every proper prime
ideal different from P(z). On the other hand, there exists a proper
prime ideal excluding ar. Hence, ar<=S and P(ar)=P(a). Similarly,
by Lemma 1 (a) we see that rea € S and P(ra) = P(a).

(b), (c) If abs~40 then P(a) = P(ab) = P(b) by (a), and a — b is
contained in every prime ideal different from P(z). Hence, in case
a—b#0, a—be S and P(a—b) = Pla). Conversely, assume that
P(a)=P(b). If ab=0 then by Lemmal (a) a € P(a) or b= P(b), a
contradiction.

Corollary 1. In a reduced ring R, every superatom a is an atom.

Proof. Assume that *+< q¢ and £5+0. By Lemma 4 (a), xa= 1’
& S and P(xa)= P(a), whence it follows x €& P(z). Hence, x(a—x)
= 0 implies ¢ —x € P(a) (Lemma 1 (a)), andso a(a — x) € P(a). On
the other hand, a(z—x) is contained in every prime ideal different from
P(a). We obtain therefore @(¢—x)=0. Combining this with x(e — %)
= (0, we readily obtain (x — @)® = 0, and hence x = a.

In virtue of Lemma 4 (b), we can define an equivalence relation ~ in
S, where a~b if and only if @b50, or equivalently, P(a)=P(d). Let
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S =xleJAS* be the partition of S into the equivalence classes with respect

to ~. Obviously, Syi—> Py,= P(a) (e €S,) is well-defined, and S,N Px
= (J. As a direct consequence of Lemma 4, we see that B, =S, U {0}
is an ideal of R which is an integral domain and B,P; = 0.
In the rest of this section, we assume further that R is superatom-
ic. Then, S,—— P, gives a 1—1 correspondence between {S,[1 & 4}
and the set of all proper prime ideals of R. If r is in R\P, then by
hypothesis there exists some 7, =S, with »,<7r. We claim here that
such 7, is unique. Infact, if ,<7r and r,€ S, then (r —7r)7r,=0=
(r—r)r, implies r—7, r—7,€P, (Lemma 1 (a)). Hence, 7,—r,.€P.N
B,=0, namely, 7,=7,. On the other hand, if  is in P, then there
is no »,€S, with »,<». We define here the map g,: R—>B, by
r, if r € P,.
&(r) = {0 if r € P,

Lemma 5. Let R be a superatomic reduced ring. Then, g, is a ring
homomorphism leaving every element of the integral domain B, invariant
and Ker g, = P,. Accordingly, R= P, B, and P, coincides with
the annihilator of B,.

Proof. Since R is a reduced ring, the (right and left) annihilator
of B, has the intersection 0 with B,. It remains therefore to prove
(D) gilr+5) = g\(r)+g.(s) and (ii) gi(rs) = gu(r)gi(s) (r, sER). First, we
consider the case r&P, and s& P, Since s, =0, we obtain s,(r+
s)=s, s=s;, which means (r-+s),=s,. Hence, we have (i), and readily
(ii). Next, we consider the case r & P, and s& P,., We claim that
rs,=75, and s7;=s,7». Infact, by r, <7 and s, <s it follows 7, rs,
=7;5;. Since B, is an integral domain, we have rs,=r,s;,, and similarly
sr,=s57,. Hence, we have (#s)}7.s)=rs7,5,=(r:5))° namely, (rs), =
7\S», proving (ii). In order to see (i), we shall distinguish between two
cases. ()r+s&E P,: If rx+s.=0 then rnr=ri=si=ss= —ns,
i.e.,, 7(r+s)=0, wence it follows r,E P, or 7 +s& P, (Lemma 1 (a)).
This contradiction means that 7,+s\ES, (Lemma 4). Since (r+s) (r,+
SN =772t SrAFrsytssa=rrit st rsatsi= (ra+s5.)?, we have (r+sh=
ra+s, proving (i). (2) r+sEP,: Since O=(r+s)r=ritsn=nr+
si7a and O=(r+s)sx=rsy+si=r\s»+si, we obtain (7\+s)*=0, and so
#r+s, =0, proving (i). Finally, incase »r € P, and s € P,, thereis
nothing to prove. ’

2. Proofs of theorems. The notations employed in the preceding
section will be used here.
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Proof of Theorem 1. (1)=>(2): Let f: R——> II A, be the map
rET

defined by f(r) = (re,). Then, f is a ring homomorphism, and by
Lemma 3 Ker f= {rER|rE=0} =0. If f is shown to be an isomorphism,
A,y €I) are adapted for the division rings in (2). Now, let (') be an
arbitrary element of ,Hr A, By ee;<e and ¢, we can easily see

e

that ¢,e,=0 for every 7<4. Hence, T={r"|7 &I} is an orthogonal
subset of R and there exists r =sup 7. We shall prove now re¢;=7"
for evéry é€I'. By <7, we obtain r’re;= (r*)?, i.e, r*<7e,. On
the other hand, to be easily seen, #'(r’—re,+7)= ("), i.e, r<r'—re,
+7r for every Y=I. Hence, r<r'—re;+r, andso (F’'—re,+r)r=7r7
whence it follows 7%(re;)=7'r=r%,=(re,)*. Combining this with 7’ <re,,
we obtain re; =7’

(2)=>(1): Let R be the direct product of division rings R, (x € K).
Then, it is clear that R is orthogonally complete. If x = () is an
arbitrary non-zero element of R, then there exists a = K with £*40.
Then, we can easily see that x* is a hyperatom and x* < «.

Proof of Theorem 2. (1)=—>(2): Let g: R——> II B, be the map
AE A

defined by g(r)=(gx(r)). Then, by Lemma 5, g is a ring homomorphism
with Ker g=N Ker g,=N P,=0, and P, coincides with the annihi-

AEA AE4
lator of the integral domain B,. If g is shown to be an isomorphism,

B,(A € 4) are adapted for the integral domains in (2). Now, we shall
show that g is a surjection. Let (#*) be an arbitrary non-zero element
of };143"’ N ={ie4|r*=0}, and M= A\N. Since the set T= {*| 2 €M}

is an orthoghnal subset of R, by hypothesis there exists #=sup 7. To
our end, it suffices to show that r & P, if andonly if 2 & N. Assume
first that r€ P,. If A€M, then r*=r,& S,, but then ri=rr,=0, a
contradiction. Conversely, assume that A€ N. If r& P,, then 7* 7,
=0 =7, for every £ = M. Hence, r“(r,+7)=r'r =" namely,
r<r,+7r for every #=M. This implies »<7r\,+7, andso 7(r.-+7)
=7% However, the last contradicts r(r,+#)=r} +r%

(2)= (1) : Assume that R is the direct product of the integral
domains R,(rEK) and ‘I}n R, (a= K) exhaust the proper prime ideals of

R. Then, R is orthogonally complete evidently. Moreover, if x= (29
is an arbitrary element of R\II R, then we can easily see that x* is a

K
superatom of R not contained in l;Ia R, and x* £ x.

Corollary 2. If R is areduced ring with 1 which is orthogonally
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complete and superatomic, then R is a finite dirvect sum of integral
domains.

Proof. In any rate, by the proof of Theorem 2, R =AIEIA B, and
xLIa B, (o = A4) exhaust the proper prime ideals of R. If A is infinite,
then the proper ideal @1 B, is contained in some maximal ideal, which
is a contradiction.

REFERENCES

[1] A. Apian: Direct product decomposition of commutative semisimple rings, Proc. Amer.
Math. Soc. 24 (1970), 502—507.

[2] A. Asian: Decomposition of commutative semi-simple rings into direct products of in-
tegral domains, Archiv der Math. 24 (1973), 387—392.

[3] G. Azumava: Strongly m-regular rings, J. Fac. Sci. Hokkaido Univ., Ser, I, 13 (1954),
34—39.

[4] M. CuacroN: Direct product of division rings and a paper of Abian, Proc. Amer. Math.
Soc. 29 (1971), 259—262.

[5] J. LAMBEK: Lectures on Rings and Modules, Waltham, 1966.

DEPARTMENT OF MATHEMATICS,
OKAYAMA UNIVERSITY

(Received August 14, 1974)

Added in proof. A recent result of O. Goldman [J. Algebra 34
(1975), 64-73] enables us to see that the following condition is equiva-
lent to those in Theorem 1:

(B) R is a reduced ving with 1 which is complete tn its intrinsic

topology.
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