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ON COPRIMARY DECOMPOSITION
THEORY FOR MODULES

Isa0 MOGAMI and Hisao TOMINAGA

Recently, in his paper [2], D. Kirby introduced the notion of co-
primary modules over a commutative ring, and obtained several results
on coprimary decompositions for Artinian modules. In this note, by
making use of the technique employed in [1] and [3], we shall

investigate the s-coprimary decomposition theory for modules over non-
commutative rings.

1. Preliminaries. Throughout, R will represent a ring, and M a
non-zero left R-module. Given an ideal a of R, M*" is defined to be the
intersection N bM, where b runs over all the finite products of ideals of
R not contained in a. (M?=M by definition. ) As in [3], p(M) will denote
the prime radical of /(M)= {x&R|xM=0}. If I(M") C p(M), or equiva-
lently p(M’)=p(M), for every non-zero submodule M’ of M, 0 is defined to
be a primary submodule of M (cf. [1]). Now, dualizing the notion, M
is defined to be coprimary if {(M/M') € p(M), or equivalently p(M/M")
=p(M), for every proper submodule M’ of M. In case M is coprimary
and p=p(M), M will be called a p-coprimary module. If M is coprimary
and p(M) is nilpotent modulo /(M), M is defined to be s-coprimary.

The next is easy, and will be freely used without mention.

Proposition 1. The following conditions are equivalent :
(1) M is coprimary.

(2) aM=M for every ideal a of R not contained in p(M).
(3) MM =M.

An idea p of R is called a coassociated ideal of M if there exists a
proper submodule M’ such that M/M' is p-coprimary. The set of all co-
associated ideals of M will be denoted by P*(M). (P*(0)= @ by definition.)
If there exists an ideal p in R such that P*(M/M')= {p} for every proper
submodule M’ of M then M is called a P*-module.

Proposition 2. (1) If M is coprimary, and M' a proper submodule
of M, then I(M/M") is a right-primary ideal.

(2) Let N and M' be submodules of M. If N is p-coprimary and not
contained in M' then N+M'|M' is p-coprimary.
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(3) If N and N' are p-coprimary submodules of M, then so is N+N'.

Proof. (1) Assume that there exist ideals a, b of R such that abC
I(M/M') and bZ p(M/M"). Then, M' 2 abM=aM, namely, a< I(M/M').

(2) This is obvious by N+M'/M'=N/NNM'.

(3) Since (N+N")=I(N)NI(N'), we have p(N+N')=p(N) N p(N")
=p. If ais an ideal of R not contained in p, then aN=N and aN'=N/,
and hence a(N+N")=N+N".

Proposition 3. (1) If M is b-s-coprimary then p is prime and aM==M
for every ideal a of R contained in b.

(2) Let N and M’ be submodules of M. If N is p-s-coprimary and is
not contained in M' then M+M'[|M' s p-s-coprimary.

(38) If N and N'! are p-s-coprimary, then so is N+N'.

Proof. (2) and (3) are easy by Prop. 2 (2) and (3).

(1) If a is an ideal of R contained in p then there exists a positive
integer % such that a*M=0, which means aM==M. Next, we shall prove
that p is prime. Let b, ¢ be ideals of R such that bcCp. As was shown
just above, there holds beM==M. If ¢Zp, then MDObcM=bM, and hence
bChp.

Proposition 4. If N is a submodule of M then P*(M/N)Z P*(M)
C P*(N)UP*(M/ N).

Proof. Let S be a proper submodule of M such that M/S is p-copri-
mary. If S+Ns4M then M/S+ N is p-coprimary and pe P*(M/N). On
the other hand, if S+ N=M then N/NNS=M/S is p-coprimary and pE
P*(N). The inclusion P*(M/N)C P*(M) is almost evident.

2. Coprimary decompositions. A finite set {M;|¢= 1} of coprimary
(resp. s-coprimary) submodules of M is called a coprimary (resp. s-
coprimary) decomposttion of M if M=3er M;, M+2err M; for every
proper subset I’ of I, and p(M;) 5 p(M,) for every i=j. If {N;|j € J}
is a finite set of coprimary (resp. s-coprimary) submodules of M with M
=3es N;, then Prop. 2 (3) (resp. Prop. 3 (3)) secures the existence of
a coprimary (resp. s-coprimary) decomposition of M.

Proposition 5. Let {M,|i=1, -+, k} be an s-coprimary decomposition
of M, and p,=p(M,) (i=1, -, k). Let a be an ideal of R.

(1) IfaM=M then alyp; (i=1, -+, k), and conversely.
(2) M®=2lpca M.. 1Ifadoes not contain all p’s then M*=bM with a

finite product b of ideals of R not contained in a.
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Proof. (1) If a is contained in some p;, then a*M; =0 for some
positive integer .  Accordingly, we have a*"M== M, whence it follows
aM=+=M. The converse is obvious.

(2) Without loss of generality, we may assume that p,, -, p, S @
and b, -+, P € a. In case I=Fk, our assertion is evident by (1). Hence-
forth, we assume that (0<C) /<Ck. There exists a positive integer %
such that p% M,;=0 (j=!+1, -+, k). Since every b; is prime by Prop. 3 (1),
b=(Pre1 =+ PO L P; (=1, +++, I). There holds then M* -3\, M - >k, M™
=3 M;=bM OM°®, namely, M°=3!., M,=bM.

Theorem 1. Let {M,|i=1, -, k} be an s-coprimary decomposition of
M, and p;=p(M;) (i=1, -+, k). Then there holds the following :

(1) P*M)={p, -, p:.

(2) A prime divisor p of I(M) is contained in P*(M) if and only if
PMP £ MP. Every minimal prime divisor of I(M) is contained in P*(M),
and if p; is minimal in P*(M) then MP =M,.

Proof. (1) Evidently, p(M) is nilpotent modulo /(M). Next, we
claim that if M is s-coprimary then k=1. Since p=p(M)= Nk, p, is prime
by Prop. 3 (1), without loss of generality, we may assume that p,, ***, Pn
Cp(m>1) and Py, -+, Pe £ p. Then, by Prop. 5, M=M?=3>", M,
whence it follows m=k. Combining this with p= N%., b, we obtain k=1.
Now, we shall proceed into the proof of (1). Obviously, M/> .« M, is p;-
coprimary as a non-zero homomorphic image of M;, and so P*(M)2 {p,,
-+, b}, Conversely, assume that M/N is p-coprimary. Then, M/ N=
>k, M;+N)/N, where (M,+N)/N is either 0 or p;-s-coprimary by Prop.
3 (2). Accordingly, by Prop. 3 (3), M/N has an s-coprimary decomposi-
tion {M;/N | j=1. -+, I} such that {p(M;/N) | j=1, =, I} S {p,, -, bu}.
Then, as was mentioned above, we obtain /=1 and pe {p,, -+, b}.

(2) If p is contained in P*(M)={p,, -=-, .}, then we may assume
that by, >, PuarEPp=pn and Pusy, == P <Zp. Then, MP=M,+ - +M, 5~
pM?® by Prop. 5. Next, we shall prove the converse. Since pD NL, b,
we may assume that p,, -, pn SPp(m>1) and Ppsy, -, P € p. (Ifpisa
minimal prime divisor of /(M) then it is obviously in P*(M).) Since M’s~
pMP®, we obtain 37L, M; 5= p(307: M,) by Prop. 5 (2), and hence p Z p;,
namely, p=p;, for some < m (Prop. 5 (1)). The final assertion is evident
by Prop. 5 (2).

Now, let {M;|¢=1, ---, k} be an s-coprimary decomposition of M. A
subset P* of {p;=p(M,)|i=1, -, k} is called an isolated subset of {p;|i=
1, .-+, k} if every p, contained in one of the members of P* belongs to P*.

For an isolated subset P* of {p; | i=1, -+, k} we set MP*':-Z})‘EP* M.
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which coincides with > ye-* MP by Prop. 5 (2) and is called a coisolated
component of M. By Th. 1, we readily obtain the following :

Theorem 2. Suppose that M has an s-coprimary decomposition. Then,
the set of coisolated components of M does not depend on the choice of s-
coprimary decompositions of M.

Finally, we shall examine cases in which every s-coprimary decom-
position is direct. '

Theorem 3. Suppose R contains 1 and M is unital. Let {M;|i=1, ---,
k} be a finite set of s-coprimary submodules of M such that M=35, M,
and (R~) pi=p(M;) (=1, -+, k). If b/’s are patrwise comaximal, then
M=, M, and this is the unique s-coprimary decompsition of M.

Proof. Since p;’s are comaximal, so are /(M,)’s, and so I(M,)-+
{2 M)=R. Hence, M;N 2 M= (M) +I(Z 1t M) (M N2 1 M)
=0, which means M=@i-, M;. Obviously, the last is an s-coprimary
decomposition of M and P*(M)= {p,, -*-, p:} by Th. 1. Further, every p;
is minimal in P*(M) and M; =M?": by Th. 1 (2), which means the unique-
ness of the s-coprimary decompositions.

Corollary. Let R be a left Artinian ring with 1. If M is a completely
reducible module with a finite number of homogeneous components, then
the tdealistic decomposition of M is the unique s-coprimary decomposition
of M.

Proof. If Nis an arbitrary irreducible submodule of M then I/(N)=
p(N) is a maximal ideal of R and N is isomorphic to a minimal left ideal
of R/I(N). We have seen therefore that if N’ is another irreducible
submodule of M non-isomorphic to N then p(N’) = p(N). Further, to be
easily seen, the homogeneous component of M containing N is p(N)-s-
coprimary. Now, our assertion is a consequence of Th. 3.

3. Coprimary decomposition theory and A R*-modules. When every
non-zero submodule of M has a coprimary (resp. s-coprimary) decomposi-
tion, M is said to have the coprimary (resp. s-coprimary) decomposition
theory. Incase M has the coprimary (resp. s-coprimary) decomposition
theory, every non-zero factor submodule of M has a coprimary (resp. s-
coprimary) decomposition by Prop. 2 (resp. Prop. 3), and if N is a primary
submodule of M then M/ N is coprimary. Conversely, in case M has the
primary decomposition theory, if M/N is coprimary then N is primary.
(Cf. [3].)

If M satisfies one of the following equivalent conditions (I) and (II),
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it is called an AR*-module :

(I) For each submodule N of M and each ideal a of R, there exists
a positive integer % such that N+a"02a"'N (= {x&M|ax S N}).

(II) For each submodule N of M and each ideal a of R, there exists
a positive integer % such that aN+(a 0N N)=N.,

One may remark here that if M is an AR*-module, then so is every
non-zero factor submodule of M. Finally, M is said to be p*-worthy if
P*(M*) is finite and non-empty for every non-zero factor submodule M*
of M.

Proposition 6. If M has the s-coprimary decomposition theory, then
there holds the following :

(1) M is an s-module, that is, p(M*) is nilpotent modulo I(M*) for
every non-zero factor submodule M* of M.

(2) For every submodule N of M, if NaD(NU)R2D - D(++«(N%)«--)%
then n < s(N) with a positive integer s(N) depending solely on N.

(3) M is p*-worthy.

(4) M is an AR*-module.

Proof. (1)-(3) are easy by Props. 3 and 5 and Th. 1.

(4) It suffices to consider non-zero N. Let {N, | i=1, ---, k} be an
s-coprimary decomposition of N. We may assume then aS p(N ), :--, p(N,)
and a Z p(N,,1), -+, p(Ni). There exists a positive integer 4 such that
a"N;=0 (=1, --+, I). Since N,++-+N, € a™*0NN and Ni,+-+N,ZaN,
it follows aN-+(a ™ 0N N)=N.

Proposition 7. Let M be an AR*-module and an s-module.

(1) If Nis a P*-submodule of M then N is s-coprimary.

(2) If M is Artinian, then M has the s-coprimary decomposition
theory.

Proof. (1) Let N' be an arbitrary proper submodule of N. Since
P*(N/N"Y=P*(N)={p}, there exists a proper submodule N" of N con-
taining N' such that N/N" is p-s-coprimary. Now, let W te an arbitrary
proper submodule of N, and choose a proper sukmodule W' of N contain-
ing W such that N/ W' is p-s-coprimary. Since /(N/N') C I(N/N") C p,
Prop. 3 (1) yields /(N/N')N+ W'C N, which means that /(N/N")N is
small in N. By the condition (II), there exists a positive integer # such
that I(N/N")N+((/(N/N"))"*0NN)=N. It follows then (/(N/N'))™* 0NN
=N, namely, /(N/N'))N=0. This means that /((N/N') CTp(N), that is,
N is s-coprimary.

(2) Since every non-zero submodule of M is a finite sum of sum-
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irreducible submodules, it remains only to show that if a non-zero sub-
module N of M is not s-coprimary then N is not sum-irreducible. There
exists a proper submodule N' of N such that a=!(N/N')Z p(N), or a*N
#0 for every positive integer n. By the condition (II), there exists a
positive integer k& such that aN+(a 0N N)=N. It is obvious that aNC
N'CN and a™*0N NCN.

Combining Prop. 6 with Prop. 7, we obtain at once

Theorem 4. Let M be an Artinian module. In order that M have the
s-coprimary decomposition theory, it is necessary and sufficient that M be
an AR*-module and an s-module.

In [2], D. Kirby has proved that every unital Artinian s-module
over a commutative ring with 1 has the s-coprimary decomposition the-
ory. However, the following example will show that it is not the case
for non-commutative rings.

FOO
Example. Let R=(FF 0), where F is a field, and M the left
FFF
000
R-module R. To be easily seen, a=|{F 0 0) is an ideal of R andaDa’*=
FFF

FFF
=a, which means that M is not an AR*-module.

000
== (0 0 0) . Moreover, a”*0Na=0, and we have a-a-(a’0Na)
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